2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

Größe: px
Ab Seite anzeigen:

Download "2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z)."

Transkript

1 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften und Gesetze der reellen Zahlen ableiten lassen. In diesem Paragraphen behandeln wir die sogenannten Körper-Axiome, aus denen die Rechenregeln für die vier Grundrechnungsarten folgen. Da diese Rechenregeln sämtlich aus dem Schulunterricht geläufig sind, und dem Anfänger erfahrungsgemäß Beweise selbstverständlich erscheinender Aussagen Schwierigkeiten machen, kann dieser Paragraph bei der ersten Lektüre übergangen werden. Mit R sei die Menge aller reellen Zahlen bezeichnet. Auf R sind zwei Verknüpfungen (Addition und Multiplikation) + : R R R, (x,y) x + y, : R R R, (x,y) xy, gegeben, die den sog. Körper-Axiomen genügen. Diese bestehen aus den Axiomen der Addition, der Multiplikation und dem Distributivgesetz, die wir der Reihe nach besprechen. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). (A.2) Kommutativgesetz. Für alle x, y R gilt x + y = y + x. (A.3) Existenz der Null. Es gibt eine Zahl 0 R, so dass x + 0 = x für alle x R. (A.4) Existenz des Negativen. Zu jedem x R existiert eine Zahl x R, so dass x +( x)=0. O. Forster, Analysis 1, Grundkurs Mathematik DOI / _2, Springer Fachmedien Wiesbaden 2013

2 18 Folgerungen aus den Axiomen der Addition (2.1) Die Zahl 0 ist durch ihre Eigenschaft eindeutig bestimmt. Beweis. Sei 0 R ein weiteres Element mit x + 0 = x für alle x R. Dann gilt insbesondere = 0. Andrerseits ist = 0 nach Axiom (A.3). Da nach dem Kommutativgesetz (A.2) aber = 0 + 0, folgt 0 = 0, q.e.d. (2.2) Das Negative einer Zahl x R ist eindeutig bestimmt. Beweis. Sei x eine reelle Zahl mit x + x = 0. Addition von x von links auf beiden Seiten der Gleichung ergibt ( x)+(x+x )=( x)+0. Nach den Axiomen (A.1) und (A.3) folgt daraus (( x)+x)+x = x. Nach (A.2) und (A.4) ist ( x)+x = x +( x)=0, also (( x)+x)+x = 0 + x = x + 0 = x. Durch Vergleich erhält man x = x, q.e.d. (2.3) Es gilt 0 = 0. Beweis. Nach (A.4) gilt 0 +( 0) =0 und nach (A.3) ist = 0. Da aber das Negative von 0 eindeutig bestimmt ist, folgt 0 = 0. Bezeichnung. Für x,y R setzt man x y := x +( y). (2.4) Die Gleichung a + x = b hat eine eindeutig bestimmte Lösung, nämlich x = b a. Beweis. i) Wir zeigen zunächst, dass x = b a die Gleichung löst. Es ist nämlich a +(b a) =a +(b +( a)) = a +(( a)+b)=(a +( a)) + b = 0 + b = b + 0 = b, q.e.d. Dabei wurden bei den Umformungen die Axiome (A.1) bis (A.4) benutzt. ii) Wir zeigen jetzt die Eindeutigkeit der Lösung. Sei y irgend eine Zahl mit a + y = b. Addition von a auf beiden Seiten ergibt ( a)+(a + y)=( a)+b. Die linke Seite der Gleichung ist gleich (( a)+a)+y = 0 + y = y, die rechte Seite gleich b +( a)=b a, d.h. es gilt y = b a, q.e.d.

3 19 (2.5) Für jedes x R gilt ( x)=x. Beweis. Nach Definition des Negativen von x gilt ( x)+( ( x)) = 0. Andrerseits ist nach (A.2) und (A.4) auch ( x)+x = x +( x) =0. Aus der Eindeutigkeit des Negativen folgt nun ( x)=x. (2.6) Für alle x,y R gilt (x + y)= x y. Beweis. Nach Definition des Negativen von x + y ist (x + y)+( (x + y)) = 0. Addition von x auf beiden Seiten der Gleichung liefert y +( (x + y)) = x. Andererseits hat die Gleichung y+z = x für z die eindeutig bestimmte Lösung z = x y. Daraus folgt (x + y)= x y, q.e.d. II. Axiome der Multiplikation (M.1) Assoziativgesetz. Für alle x, y, z R gilt (xy)z = x(yz). (M.2) Kommutativgesetz. Für alle x, y R gilt xy = yx. (M.3) Existenz der Eins. Es gibt ein Element 1 R, 1 0, so dass x 1 = x für alle x R. (M.4) Existenz des Inversen. Zu jedem x R mit x 0 gibt es ein x 1 R, so dass xx 1 = 1. III. Distributivgesetz (D) Für alle x,y,z R gilt x(y + z)=xy + xz. Folgerungen aus den Axiomen II und III (2.7) Die Eins ist durch ihre Eigenschaft eindeutig bestimmt. (2.8) Das Inverse einer reellen Zahl x 0 ist eindeutig bestimmt. Die Aussagen (2.7) und (2.8) werden ganz analog den entsprechenden Aussagen (2.1) und (2.2) für die Addition bewiesen, indem man überall die Addition

4 20 durch die Multiplikation, die Null durch die Eins und das Negative durch das Inverse ersetzt. (2.9) Für alle a,b R mit a 0 hat die Gleichung ax = b eine eindeutig bestimmte Lösung, nämlich x = a 1 b =: b a =: b/a. Beweis. i) x = a 1 b löst die Gleichung, denn a(a 1 b)=(aa 1 )b = 1 b = b 1 = b. ii) Zur Eindeutigkeit. Sei y eine beliebige Zahl mit ay = b. Multiplikation der Gleichung mit a 1 von links ergibt a 1 (ay)=a 1 b. Die linke Seite der Gleichung kann man unter Anwendung der Axiome (M.1) bis (M.4) umformen und erhält a 1 (ay)=y, woraus folgt y = a 1 b, q.e.d. (2.10) Für alle x,y,z R gilt (x + y)z = xz + yz. Beweis. Unter Benutzung von (M.2) und (D) erhalten wir (x + y)z = z(x + y)=zx + zy = xz + yz, q.e.d. (2.11) Für alle x R gilt x 0 = 0. Beweis. Da = 0, folgt aus dem Distributivgesetz x 0 + x 0 = x (0 + 0)=x 0. Subtraktion von x 0 von beiden Seiten der Gleichung ergibt x 0 = 0. (2.12) Für x,y R gilt xy = 0 genau dann, wenn x = 0 oder y = 0. (In Worten: Ein Produkt ist genau dann gleich null, wenn einer der Faktoren null ist.) Beweis. Wenn x = 0 oder y = 0, so folgt aus (2.11), dass xy = 0. Sei nun umgekehrt vorausgesetzt, dass xy = 0. Falls x = 0, sind wir fertig. Falls aber x 0, folgt aus (2.9), dass y = x 1 0 = 0, q.e.d. (2.13) Für alle x R gilt x =( 1)x. Beweis. Unter Benutzung des Distributivgesetzes erhält man x +( 1) x = 1 x +( 1) x =(1 1) x = 0 x = 0, d.h. ( 1)x ist ein Negatives von x. Wegen der Eindeutigkeit des Negativen folgt die Behauptung. (2.14) Für alle x,y R gilt ( x)( y)=xy.

5 21 Beweis. Mit (2.13), sowie dem Kommutativ- und Assoziativgesetz erhält man ( x)( y)=( x)( 1)y =( 1)( x)y =( ( x))y. Da ( x)=x wegen (2.5), folgt die Behauptung. (2.15) Für alle reellen Zahlen x 0 gilt (x 1 ) 1 = x. (2.16) Für alle reellen Zahlen x 0, y 0 gilt (xy) 1 = x 1 y 1. Die Regeln (2.15) und (2.16) sind die multiplikativen Analoga der Regeln (2.5) und (2.6) und können auch analog bewiesen werden. Allgemeines Assoziativgesetz Die Addition von mehr als zwei Zahlen wird durch Klammerung auf die Addition von jeweils zwei Summanden zurückgeführt: x 1 + x 2 + x x n :=(...((x 1 + x 2 )+x 3 )+...)+x n. Man beweist durch wiederholte Anwendung des Assoziativgesetzes (A.1), dass jede andere Klammerung zum selben Resultat führt. Analoges gilt für das Produkt x 1 x 2... x n. Allgemeines Kommutativgesetz Sei (i 1,i 2,...,i n ) eine Permutation (d.h. Umordnung) von (1,2,...,n). Dann gilt x 1 + x x n = x i1 + x i x in, x 1 x 2... x n = x i1 x i2... x in. Dies folgt durch wiederholte Anwendung der Kommutativgesetze (A.2) bzw. (M.2) sowie der Assoziativgesetze. Aus dem allgemeinen Kommutativgesetz kann man folgende Regel für Doppelsummen ableiten: n m i=1 j=1 a ij = m n j=1 i=1 Denn nach Definition gilt n m i=1 j=1 a ij = a ij. ( m j=1a 1 j ) + ( m ) ( m ) 2 j nj j=1a j=1a

6 22 und m n j=1 i=1 =(a 11 + a a 1m )+...+(a n1 + a n a nm ) ( n ) ( n ) ( n ) a ij = i1 + i im i=1a i=1a i=1a =(a 11 + a a n1 )+...+(a 1m + a 2m a nm ). Es kommen also in beiden Fällen alle nm Summanden a ij, 1 i n, 1 j m, vor, nur in anderer Reihenfolge. Allgemeines Distributivgesetz Durch wiederholte Anwendung von (D) und Folgerung (2.10) beweist man Potenzen ( n )( m x i i=1 j=1 y j ) = n m i=1 j=1 x i y j. Ist x eine reelle Zahl, so werden die Potenzen x n für n N durch Induktion wie folgt definiert: x 0 := 1, x n+1 := x n x für alle n 0. (Man beachte, dass nach Definition auch 0 0 = 1.) Ist x 0, so definiert man negative Potenzen x n,(n > 0 ganz), durch x n :=(x 1 ) n. Für die Potenzen gelten folgende Rechenregeln: (2.17) x n x m = x n+m, (2.18) (x n ) m = x nm, (2.19) x n y n =(xy) n. Dabei sind n und m beliebige ganze Zahlen und x,y reelle Zahlen, die 0 vorauszusetzen sind, falls negative Exponenten vorkommen. Wir beweisen als Beispiel die Aussage (2.19) und überlassen die anderen dem Leser als Übung. a) Falls n 0, verwenden wir vollständige Induktion nach n. Der Induktions- Anfang n = 0 ist trivial.

7 23 Induktions-Schritt n n + 1. Unter Verwendung des Kommutativ- und Assoziativgesetzes der Multiplikation erhält man x n+1 y n+1 = x n xy n y = x n y n xy = IV (xy) n xy =(xy) n+1, q.e.d. b) Falls n < 0, ist m := n > 0 und x n y n = x m y m =(x 1 ) m (y 1 ) m. Nach a) gilt (x 1 ) m (y 1 ) m =(x 1 y 1 ) m, also unter Benutzung von (2.16) x n y n =(x 1 y 1 ) m =((xy) 1 ) m =(xy) m =(xy) n, q.e.d. Bemerkung. Eine Menge K, zusammen mit zwei Verknüpfungen + : K K K, (x,y) x + y, : K K K, (x,y) xy, die den Axiomen I bis III genügen, nennt man Körper. In jedem Körper gelten alle in diesem Paragraphen hergeleiteten Rechenregeln, da zu ihrem Beweis nur die Axiome verwendet wurden. Beispiele. R, Q (Menge der rationalen Zahlen), und C (Menge der komplexen Zahlen, siehe 13) bilden mit der üblichen Addition und Multiplikation jeweils einen Körper. Dagegen ist die Menge Z aller ganzen Zahlen kein Körper, da das Axiom von der Existenz des Inversen verletzt ist (z.b. besitzt die Zahl 2 Z in Z kein Inverses). Ein merkwürdiger Körper ist die Menge F 2 = {0,1} mit den Verknüpfungen und Die Körper-Axiome können hier durch direktes Nachprüfen aller Fälle verifiziert werden. F 2 ist der kleinst-mögliche Körper, denn jeder Körper muss mindestens die Null und die Eins enthalten. In F 2 gilt = 0. Also kann man die Aussage nicht mithilfe der Körper-Axiome beweisen. Insbesondere kann man allein aufgrund der Körper-Axiome die natürlichen Zahlen noch nicht als Teilmenge der reellen Zahlen auffassen. Hierzu sind weitere Axiome erforderlich, die wir im nächsten Paragraphen behandeln.

8 24 AUFGABEN 2.1. Man zeige: Es gelten die folgenden Regeln für das Bruchrechnen (a, b, c, d R, b 0, d 0): a) a b = c genau dann, wenn ad = bc, d b) a b ± c ad ± bc =, d bd c) a b c d = ac bd, a b d) c = ad, falls c 0. d bc 2.2. Man beweise die Rechenregel (2.17) für Potenzen: x n x m = x n+m,(n,m Z, x R, wobei x 0 falls n < 0 oder m < 0). Anleitung. Man behandle zunächst die Fälle (1) n 0, m 0, (2) n > 0 und m = k mit 0 < k n, und führe den allgemeinen Fall auf (1) und (2) zurück Seien a ik für i, k N reelle Zahlen. Man zeige für alle n N n n k k=0 i=0 a ik = n n i i=0 k=0 a ik = n m m=0 k=0 a m k,k Es sei N := N { }, wobei ein nicht zu N gehöriges Symbol ist. Auf N führen wir zwei Verknüpfungen N N N, (a,b) a + b, N N N, (a,b) a b, wie folgt ein: i) Für a, b N sei a + b bzw. a b die übliche Addition bzw. Multiplikation natürlicher Zahlen. ii) a + = + a = für alle a N. iii) 0 = 0 = 0 und a = a = für alle a N {0}. Man zeige, dass diese Verknüpfungen auf N die Körperaxiome (A.1), (A.2), (A.3), (M.1), (M.2), (M.3) und (D), aber nicht (A.4) und (M.4) erfüllen.

9

Reelle Zahlen, Gleichungen und Ungleichungen

Reelle Zahlen, Gleichungen und Ungleichungen 9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen

Mehr

Kapitel 1. Körper und Zahlen. 1.1 Mengen

Kapitel 1. Körper und Zahlen. 1.1 Mengen Kapitel 1 Körper und Zahlen 11 Mengen 12 Das Prinzip der vollständigen Induktion 13 Körper 14 Geordneter Körper 15 Reelle Zahlen 16 Komplexe Zahlen 11 Mengen Dieser Abschnitt gibt eine kurze Einführung

Mehr

Zahlen und elementares Rechnen (Teil 1)

Zahlen und elementares Rechnen (Teil 1) und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung

Mehr

2.2 Konstruktion der rationalen Zahlen

2.2 Konstruktion der rationalen Zahlen 2.2 Konstruktion der rationalen Zahlen Wie wir in Satz 2.6 gesehen haben, kann man die Gleichung a + x = b in Z jetzt immer lösen, allerdings die Gleichung a x = b im allgemeinen immer noch nicht. Wir

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Mathematik und Logik

Mathematik und Logik Mathematik und Logik 5. Übungsaufgaben 2006-11-21 1. Beweisen Sie, daß die Aussage allgemeingültig ist. A = A Beweis. Dies ist ein Spezialfall von (((A = B) = B) = B) = (A = B), was wir wie folgt beweisen.

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 18. April 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

2 Die Menge der ganzen Zahlen. von Peter Franzke in Berlin

2 Die Menge der ganzen Zahlen. von Peter Franzke in Berlin Die Menge der ganzen Zahlen von Peter Franzke in Berlin Das System der natürlichen Zahlen weist einen schwerwiegenden Mangel auf: Es gibt Zahlen mn, derart, dass die lineare Gleichung der Form mx n keine

Mehr

2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen

2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen bezüglich der Addition und Multiplikation: a, b N mit

Mehr

1 Algebraische Strukturen

1 Algebraische Strukturen Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen

Mehr

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik Rationale, irrationale und reelle Zahlen 4-E Vorkurs, Mathematik Rationale Zahlen Der Grund für die Einführung der rationalen Zahlen ist der, dass wir mit ihnen auch Gleichungen der Form q x = p lösen

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

Axiomatische Beschreibung der ganzen Zahlen

Axiomatische Beschreibung der ganzen Zahlen Axiomatische Beschreibung der ganzen Zahlen Peter Feigl JKU Linz peter.feigl@students.jku.at 0055282 Claudia Hemmelmeir JKU Linz darja@gmx.at 0355147 Zusammenfassung Wir möchten in diesem Artikel die ganzen

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN 24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN x 2 = 0+x 2 = ( a+a)+x 2 = a+(a+x 2 ) = a+(a+x 1 ) = ( a+a)+x 1 = x 1. Daraus folgt dann, wegen x 1 = x 2 die Eindeutigkeit. Im zweiten Fall kann man für a 0 schreiben

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 29.09. - Freitag 9.10.2015 Vorlesung 2 Mengen, Zahlen, Logik Kai Rothe Technische Universität Hamburg-Harburg Mittwoch 30.09.2015 Mengen.................................

Mehr

Analysis I. Vorlesung 4. Angeordnete Körper

Analysis I. Vorlesung 4. Angeordnete Körper Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 4 Angeordnete Körper Zwei reelle Zahlen kann man ihrer Größe nach vergleichen, d.h. die eine ist größer als die andere oder es handelt sich

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Lineare Algebra Kapitel 9. Vektorräume Der Körper der reellen Zahlen Der Vektorraumbegriff, Beispiele Rechnen in Vektorräumen Linearkombinationen und Erzeugendensysteme Lineare Abhängigkeit und Unabhängigkeit

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Repetitionsaufgaben Termumformungen

Repetitionsaufgaben Termumformungen Kantonale Fachschaft Mathematik Repetitionsaufgaben Termumformungen Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Vorbemerkung... 1 B) Lernziele... 1 C)

Mehr

Rechnen mit Klammern

Rechnen mit Klammern Rechnen mit Klammern W. Kippels 28. Juli 2012 Inhaltsverzeichnis 1 Gesetze und Formeln zum Rechnen mit Klammern 3 1.1 Kommutativgesetze.............................. 3 1.2 Assoziativgesetze...............................

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

$Id: gruppen.tex,v /04/24 15:25:02 hk Exp $ $Id: ring.tex,v /04/24 15:35:17 hk Exp $

$Id: gruppen.tex,v /04/24 15:25:02 hk Exp $ $Id: ring.tex,v /04/24 15:35:17 hk Exp $ $Id: gruppen.tex,v 1.13 2012/04/24 15:25:02 hk Exp $ $Id: ring.tex,v 1.11 2012/04/24 15:35:17 hk Exp $ 2 Gruppen 2.3 Zyklische Gruppen Wir hatten am Ende der letzten Sitzung bewiesen, dass in einer endlichen

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

Konstruktion der reellen Zahlen 1 von Philipp Bischo

Konstruktion der reellen Zahlen 1 von Philipp Bischo Konstruktion der reellen Zahlen 1 von Philipp Bischo 1.Motivation 3 1.1. Konstruktion von R im allgemeine 3 2.Voraussetzung 3 2.1Die Menge Q zusammen mit den beiden Verknüpfungen 3 2.2Die Rationalen Zahlen

Mehr

Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N =

Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen bezüglich der Addition und Multiplikation: a, b N mit

Mehr

Natürliche, ganze und rationale Zahlen

Natürliche, ganze und rationale Zahlen Natürliche, ganze und rationale Zahlen Zunächst haben die zum Zählen verwendeten natürlichen Zahlen 0, 1, 2, 3,... nichts mit dem reellen Zahlen zu tun. Durch die ausgezeichnete reelle Zahl 1 (Maßeinheit!)

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

$Id: mengen.tex,v /11/16 20:09:23 hk Exp $ $Id: komplex.tex,v /11/16 20:12:23 hk Exp hk $

$Id: mengen.tex,v /11/16 20:09:23 hk Exp $ $Id: komplex.tex,v /11/16 20:12:23 hk Exp hk $ $Id: mengen.tex,v.7 2008//6 20:09:23 hk Exp $ $Id: komplex.tex,v.2 2008//6 20:2:23 hk Exp hk $ I. Grundlagen 3 Mengen und Abbildungen 3.4 Vollständige Induktion und endliche Mengen Wir wollen noch ein

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

1.2 Eigenschaften der ganzen Zahlen

1.2 Eigenschaften der ganzen Zahlen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen

Mehr

1.2 Rechnen mit Termen II

1.2 Rechnen mit Termen II 1.2 Rechnen mit Termen II Inhaltsverzeichnis 1 Ziele 2 2 Potenzen, bei denen der Exponent negativ oder 0 ist 2 3 Potenzregeln 3 4 Terme mit Wurzelausdrücken 4 5 Wurzelgesetze 4 6 Distributivgesetz 5 7

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Sei G eine Gruppe. Zeige, dass ( 1 ) 1 = Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Arbeitsblatt 3 Die Pausenaufgabe Aufgabe 3.1. Formuliere die binomischen

Mehr

Lineare Algebra. I. Vektorräume. U. Stammbach. Professor an der ETH-Zürich

Lineare Algebra. I. Vektorräume. U. Stammbach. Professor an der ETH-Zürich Lineare Algebra U Stammbach Professor an der ETH-Zürich I Vektorräume Kapitel I Vektorräume 1 I1 Lineare Gleichungssysteme 1 I2 Beispiele von Vektorräumen 7 I3 Definition eines Vektorraumes 8 I4 Linearkombinationen,

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

5. Gruppen, Ringe, Körper

5. Gruppen, Ringe, Körper 5. Gruppen, Ringe, Körper 5.1. Gruppen Die Gruppentheorie, als mathematische Disziplin im 19. Jahrhundert entstanden, ist ein Wegbereiter der modernen Mathematik. Beispielsweise folgt die Gruppe, die aus

Mehr

Vektorgeometrie Layout: Tibor Stolz

Vektorgeometrie Layout: Tibor Stolz Hanspeter Horlacher Vektorgeometrie Layout: Tibor Stolz 1. Einführung Eine Grösse, zu deren Festlegung ausser einer Zahl auch noch die Angabe einer Richtung nötig ist, heisst VEKTOR. P 2 P 1 P 1 P 2 P

Mehr

(a+1) = a+12 12(b+6) 36. = 12b (a+4) 12(a-2) = 12a+48. 3a b a. kürzen mit 19 (=ggt) k)

(a+1) = a+12 12(b+6) 36. = 12b (a+4) 12(a-2) = 12a+48. 3a b a. kürzen mit 19 (=ggt) k) Lösungen Mathematik Dossier Rechnen mit Varilen a) Erweitern mit Bruch (-) (-) 6 a+ b+6 a+ a- 6 (a+) 6 a+ (b+6) b+ (a+) (a-) a+ a-6 6 0 (a+) a+ (b+6) 6 b+ 6 (a+) (a-) a+ a- (-0) (-0) (-) (-) (-0) (-)(a+)

Mehr

Rechnen mit Klammern

Rechnen mit Klammern Rechnen mit Klammern W. Kippels 22. August 2015 Inhaltsverzeichnis 1 Gesetze und Formeln zum Rechnen mit Klammern 3 1.1 Kommutativgesetze.............................. 3 1.2 Assoziativgesetze...............................

Mehr

Vorkurs Mathematik 1

Vorkurs Mathematik 1 Vorkurs Mathematik 1 Einführung in die mathematische Notation Konstanten i komplexe Einheit i 2 + 1 = 0 e Eulersche Zahl Kreiszahl 2 Einführung in die mathematische Notation Bezeichner Primzahlen, Zähler

Mehr

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}.

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Dezimaldarstellung 1 2 Teilbarkeit

Mehr

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st Primzahlen Herbert Koch Mathematisches Institut Universität Bonn 12.08.2010 1 Die Primfaktorzerlegung Wir kennen die natürlichen Zahlen N = 1, 2,..., die ganzen Zahlen Z, die rationalen Zahlen (Brüche

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

1 Mengen und Mengenoperationen

1 Mengen und Mengenoperationen 1 Mengen und Mengenoperationen Man kann verschiedene Objekte mit gemeinsamen Eigenschaften zu Mengen zusammenfassen. In der Mathematik kann man z.b. Zahlen zu Mengen zusammenfassen. Die Zahlen 0; 1; 2;

Mehr

Reelle Zahlen. Mathematische Grundlagen Lernmodul 4. Stand: Oktober 2010

Reelle Zahlen. Mathematische Grundlagen Lernmodul 4. Stand: Oktober 2010 Mathematische Grundlagen Lernmodul 4 Reelle Zahlen Stand: Oktober 200 Autoren: Prof. Dr. Reinhold Hübl, Professor Fakultät für Technik, Wissenschaftliche Leitung ZeMath, E-Mail: huebl@dhbw-mannheim.de

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige

Mehr

2. Machen Sie sich klar, dass jede denkbare Festsetzung fur die noch fehlenden\ Dierenzen durch Werte in N 0 unschone\ Konsequenzen hat.

2. Machen Sie sich klar, dass jede denkbare Festsetzung fur die noch fehlenden\ Dierenzen durch Werte in N 0 unschone\ Konsequenzen hat. 3 Die ganzen Zahlen 3.1 Historisches Die { bisher noch nicht erklarte { Subtraktion ist in N 0 nicht uneingeschrankt durchfuhrbar. Die negativen Zahlen wurden noch zu Zeiten von Rene Descartes als falsche\

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.11 2012/04/16 19:15:39 hk Exp $ $Id: gruppen.tex,v 1.11 2012/04/17 10:30:56 hk Exp $ 1 Modulare Arithmetik 1.3 Restklassen Wir waren gerade damit beschäftigt eine Beispiele zum Rechnen

Mehr

Definition 4.2. Die Menge Q der rationalen Zahlen ist definiert durch. Wir führen jetzt auf Z eine Addition und eine Multiplikation ein durch

Definition 4.2. Die Menge Q der rationalen Zahlen ist definiert durch. Wir führen jetzt auf Z eine Addition und eine Multiplikation ein durch Kapitel 4 Die rationalen Zahlen Wir haben gesehen, dass eine Gleichung a x = b mit a, b Z genau dann eine Lösung x Z besitzt, wenn a b. Zum Beispiel hat 2 x = 1 keine Lösung x Z. Wir wollen nun den Zahlbereich

Mehr

Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1

Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Kapitel 3 Lineare Gleichungssysteme 3.1. Einleitung Beispiel 1 3 Kinder haben eingekauft. Franz hat 4 Lakritzen, 2 Schokoriegel und 5 Kaugummis

Mehr

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen Universität Paderborn WS 2007/2008 Warburger Str. 100 33098 Paderborn Seminararbeit zur Zahlentheorie Die Gaußschen Zahlen Tatjana Linkin, Svetlana Krez 20. November 2007 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

Wiederholung Vorlesungen 1 bis 8

Wiederholung Vorlesungen 1 bis 8 Wiederholung Vorlesungen 1 bis 8 Aufgabe 1 a) Sind die im Folgenden gegebenen Ausdrücke als Folge interpretierbar? Wenn ja, wie? i) 1,,4,8,16,3,64,..., ii)... 5, 3, 1,1,3,5,..., iii) 3,10,π,4, 1 7,10,1,14,16,18,...

Mehr

Neben der Addition tritt nun die Multiplikation als weitere Struktureigenschaft

Neben der Addition tritt nun die Multiplikation als weitere Struktureigenschaft Kapitel 3 Rationale Zahlen 31 Die rationalen Zahlen (Körper, Abzählbarkeit) Was ist mit der Gleichung z q = w in Z? Für gegebene z, w Z ist diese Gleichung in der Menge der ganzen Zahlen im Allgemeinen

Mehr

Potenzen - Wurzeln - Logarithmen

Potenzen - Wurzeln - Logarithmen Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt. 7 KONVERGENTE FOLGEN 35 und die größe untere Schranke mit bezeichnet haben. inf M = Infimum von M Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt der Limes superior der Folge, und lim

Mehr

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen. Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen

Mehr

Grundlagen der Mengenlehre

Grundlagen der Mengenlehre mathe plus Grundlagen der Mengenlehre Seite 1 1 Grundbegriffe Grundlagen der Mengenlehre Def 1 Mengenbegriff nach Georg Cantor (1845-1918) Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener

Mehr

Algebraische Kurven. Holger Grzeschik

Algebraische Kurven. Holger Grzeschik Algebraische Kurven Holger Grzeschik 29.04.2004 Inhaltsübersicht 1.Einführung in die Theorie algebraischer Kurven 2.Mathematische Wiederholung Gruppen, Ringe, Körper 3.Allgemeine affine Kurven 4.Singuläre

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

1 Mengen. 1.1 Definition

1 Mengen. 1.1 Definition 1 Mengen 1.1 Definition Eine Menge M ist nach dem Begründer der Mengenlehre Georg Cantor eine Zusammenfassung von wohlunterschiedenen(verschiedenen) Elementen. Eine Menge lässt sich durch verschiedene

Mehr

U. Rausch, 2010 Potenzrechnung 1

U. Rausch, 2010 Potenzrechnung 1 U. Rausch, 2010 Potenzrechnung 1 Potenzrechnung 1 Schreibweise und Potenzrechenregeln Unter einer Potenz versteht man ein Symbol der Form a x, gesprochen a hoch x, wobei a und x (reelle) Zahlen sind. Dabei

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

Natürliche Zahlen, Summen und Summenformeln

Natürliche Zahlen, Summen und Summenformeln Vorlesung Natürliche Zahlen, Summen und Summenformeln.1 Die natürlichen Zahlen Die natürlichen Zahlen sind diejenigen Zahlen mit denen wir zählen 0,1,,3,... Es gibt unendlich viele und wir schreiben kurz

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Mathematische Grundlagen 2. Termrechnen

Mathematische Grundlagen 2. Termrechnen Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen

Mehr

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen.

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Kapitel 1 - Mathematische Grundlagen Seite 1 1 - Mengen Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Definition 1.1 (G. Cantor.

Mehr

Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n.

Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n. Die Fakultät Definition: Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n. n! = 1 2 3... (n 2) (n 1) n Zusätzlich wird definiert 0! = 1 Wie aus der Definition

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

2.3 dreimal Handeln: Vergleichen, Messen, Rechnen

2.3 dreimal Handeln: Vergleichen, Messen, Rechnen 2.3 dreimal Handeln: Vergleichen, Messen, Rechnen Maximilian Geier Institut für Mathematik, Landau Universität Koblenz-Landau Didaktische Stufenfolge Tätigkeit 1. direkter Vergleich von zwei Repräsentanten

Mehr

2 Teilbarkeit in Z. (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c.

2 Teilbarkeit in Z. (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c. 2 Teilbarkeit in Z Bis auf weiteres stehen kleine Buchstaben für ganze Zahlen. Teilbarkeit. Sei a 0. Eine Zahl b heißt durch a teilbar, wenn es ein q gibt mit b = qa. Wir sagen dann auch: a teilt b (ist

Mehr

Polynome Teil V: Elementarsymmetrische Funktionen.

Polynome Teil V: Elementarsymmetrische Funktionen. Die WURZEL Werkstatt Mathematik Polynome Teil V: Elementarsymmetrische Funktionen. Es gibt Gleichungssysteme, die lassen sich mit schulischen Mitteln nicht bzw. nur sehr mühsam knacken. So musste etwa

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Reelle Zahlen (R)

Reelle Zahlen (R) Reelle Zahlen (R) Bisher sind bekannt: Natürliche Zahlen (N): N {,,,,,6... } Ganze Zahlen (Z): Z {...,,,0,,,... } Man erkennt: Rationale Zahlen (Q):.) Zwischen den natürlichen Zahlen befinden sich große

Mehr

Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst

Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst Potenzen mit ganzzahligen Exponenten Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst Man schreibt a n = b Dabei heißt a die Basis,

Mehr

1 Funktionen. 1.1 Definitionen und Bezeichnungen

1 Funktionen. 1.1 Definitionen und Bezeichnungen 1 1 Funktionen 1.1 Definitionen und Bezeichnungen Eine Funktion f ist eine eindeutige Abbildung einer Menge X in eine andere Y. Ist x X, dann ist f(x) y Y das Bild des Elementes x. x heißt das Urbild des

Mehr

3. Zahlbereiche und algebraische Strukturen

3. Zahlbereiche und algebraische Strukturen technische universität dortmund Dortmund, im November 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung von Kapitel 3 3. Zahlbereiche

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11 Mathematik für Wirtschaftswissenschaftler, WS / Musterlösungen zu Aufgabenblatt Aufgabe 76: Bestimmen Sie mittels Gauß-Elimination die allgemeine Lösung der folgenden linearen Gleichungssysteme Ax b: a)

Mehr

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 egelsammlung mb2014 THM Friedberg von 6 16.08.2014 15:04 Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 Sammlung von Rechenregeln, extrahiert aus dem Lehrbuch: Erhard Cramer, Johanna Neslehová: Vorkurs

Mehr

Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner

Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner Rechengesetze 1. Rechengesetze für natürliche Zahlen Es geht um

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2007/2008. Erforderliche Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2007/2008. Erforderliche Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dr. Christoph Barbian e Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 007/008 Erforderliche Vorkenntnisse In der

Mehr

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Name: Vorname:

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich  Name: Vorname: Mengenlehre ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 21. August 2016 Inhaltsverzeichnis 1 Mengenlehre 1 1.1 Die Menge im mathematischen

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

Zahlen und Funktionen

Zahlen und Funktionen Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen

Mehr