Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N =

Größe: px
Ab Seite anzeigen:

Download "Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N ="

Transkript

1 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen bezüglich der Addition und Multiplikation: a, b N mit (a + b) N und (a b) N. Für Addition und Multiplikation gilt - das Kommutativgesetz (Vertauschungsgesetz): a + b = b + a a b = b a, - das Assoziativgesetz (a + b) + c = a + (b + c) (a b) c = a (b c) und - das Distributivgesetz a (b + c) = a b + a c. 1

2 2.1 Natürliche Zahlen N Für N existiert eine Ordnungsrelation, d.h. für a, b N gilt entweder a größer b : a > b oder a kleiner b : a < b oder a gleich b : a = b. Die natürlichen Zahlen N können auf einem Zahlenstrahl dargestellt werden. Oft wird N um die Null erweitert. Man erhält die Menge N 0 : N 0 = { 0, 1, 2, 3, 4,... }. Mächtigkeit (Anzahl der Elemente) von N ist unendlich ( geschrieben: #N = ); außerdem gilt: N = {1, 2, 3, 4,... } ist per definitionem abzählbar unendlich. 2

3 2.2 Ganze Zahlen Z N ist nicht abgeschlossen bezüglich der Subtraktion. Erweiterung von N auf die Menge der ganzen Zahlen Z Z = {., -3, -2, -1, 0, 1, 2, 3, 4,.}. N ist eine Teilmenge von Z : N Z. Die ganzen Zahlen liegen auf einer Zahlengerade. Mächtigkeit von Z : Z ist ebenfalls abzählbar unendlich, d.h. obwohl N Z ist, sind N und Z gleich mächtig. Folgende Gegenüberstellung zeigt, dass Z abgezählt werden kann: N Z

4 2.3 Rationale Zahlen Q Z ist nicht abgeschlossen bezüglich der Division. Erweiterung auf die Menge der Rationalen Zahlen Q. Rationale Zahlen werden durch Division von ganzen Zahlen dargestellt: Q = { a a Z ; b Z \ {0} }. b (da Division durch Null ist nicht definiert) Q ist eine Obermenge von Z : Z Q. Wenn a und b einen gemeinsamen Teiler haben, kann man a/b durch diesen Teiler dividieren, ohne dass sich der Wert von a/b verändert (Kürzen eines Bruchs). 4

5 2.3 Rationale Zahlen Q Besondere Bedeutung haben die Brüche mit den Nennern 10, 100, 1000, (Dezimalbrüche). Eine aus Dezimalbrüchen zusammengesetzte Zahl nennt man Dezimalzahl: 3,14159 = Rationale Zahlen können entweder als Dezimalzahlen mit endlich vielen Ziffern, z.b. 1 2 = 0,5 ; 3 8 = 0,375; oder als Dezimalzahlen mit unendlich vielen Ziffern, die sich periodisch wiederholen, z.b. 1 = 0,33333 = 0,3 3 1 = 0, = 0, dargestellt werden. 5

6 2.3 Rationale Zahlen Q Rationale Zahlen liegen dicht auf der Zahlengerade, d.h. zwischen zwei rationalen Zahlen liegen unendlich viele rationale Zahlen. Aber: Die Zahlengerade wird nicht vollständig von Q bedeckt. 6

7 2.4 Reelle Zahlen R Zahlreiche Probleme können nicht in Q gelöst werden. Beispiel: Länge der Diagonalen in einem Einheitsquadrat (Kantenlänge a = 1): x 2 = 2 (Satz von Pythagoras) x Q Einführung der irrationalen Zahlen I: Eine irrationale Zahl kann nicht als Bruch zweier ganzer Zahlen dargestellt werden. Irrationale Zahlen sind Dezimalzahlen mit unendlich vielen Ziffern, die sich nicht periodisch wiederholen. Beispiele für irrationale Zahlen: 2 = 1, π = 3, e = 2,

8 2.4 Reelle Zahlen R Die Gesamtheit der rationalen und irrationalen Zahlen bildet die Menge der reellen Zahlen R. R ist eine Obermenge von Q: Q R. R entspricht den Punkten auf der Zahlengerade, d.h. jede reelle Zahl entspricht genau einem Punkt auf der Geraden und jeder Punkt entspricht genau einer reellen Zahl (siehe Bijektivität ). 8

9 2.4 Reelle Zahlen R Mächtigkeit von R : R kann nicht abgezählt werden. Man sagt, R ist überabzählbar. R bildet eine algebraische Struktur, die als Körper bezeichnet wird. Eine Menge bildet einen Körper, wenn zwei zweistellige Verknüpfungen (üblicherweise Addition und Multiplikation) definiert sind und die sogenannten Körperaxiome erfüllt sind. Die Körperaxiome werden im folgenden am Beispiel der reellen Zahlen vorgestellt (a, b, c R). 9

10 Exkurs 1: Körperaxiome 1.) Abgeschlossenheit bezüglich Addition und Multiplikation Für R gilt: a + b R und a b R 2.) Das Kommutativgesetz gilt für Addition und Multiplikation Für R gilt: a + b = b + a und a b = b a 3.) Das Assoziativgesetz gilt für Addition und Multiplikation Für R gilt: (a+b) + c = a + (b+c) und (a b) c = a (b c) 4.) Das Distributivgesetz gilt Für R gilt: a (b+c) = a b + a c 5.) Es gibt genau ein Neutralelement (Einheitselement) bezüglich der Addition: Für R ist dies 0. a + 0 = 0 + a = a 6.) Es gibt genau ein Neutralelement (Einheitselement) bezüglich der Multiplikation: Für R ist dies 1: a 1 = 1 a = a 10

11 Körperaxiome 7.) Es gibt für jedes a bezüglich der Addition genau ein inverses Element (Bei der Verknüpfung eines Elementes mit seinem Inversen ergibt sich das Neutralelement). Für R ist dies (-a): a + (-a) = -a + a = 0. 8.) Es gibt für jedes a 0 bezüglich der Multiplikation genau ein inverses Element Für R ist dies a -1 = 1 a : a a -1 = a -1 a = 1 Bemerkung: Q bildet ebenfalls einen Körper, N und Z hingegen nicht (o.b.d.a.). 11

12 2.5 Rechnen mit reellen Zahlen Ungleichung In R gibt es eine Ordnungsrelation, d.h. es gilt für a, b, c R: entweder a größer b : a > b oder a kleiner b : a < b oder a gleich b : a = b. Desweiteren gilt: a < b und b < c => a < c a < b => a + c < b + c a < b und c > 0 => a c < b c a < b und c < 0 => a c > b c a > 0 => -a < 0 a 0 => a² > 0 a > 0 => 1 a > 0 0 < a < b => 0 < 1 < 1 b a 0 < a < b => 0 < a < b 12

13 2.5.2 Betrag von reellen Zahlen Der Betrag einer Zahl ist ihr Abstand von der Null. Für a R gilt: a = + a für a 0, a = - a für a 0. Beispiel: a = x - 3: a = x - 3 für x 3 0 x 3 a = -x + 3 für x 3 < 0 x < 3 13

14 2.5.3 Intervalle Für a, b R mit a < b bezeichnet man [a, b] = { x R a x b } als das abgeschlossene Intervall (a, b) = { x R a < x < b } als das offene Intervall (Eine andere Schreibweise verwendet ]a; b[ für ein offenes Intervall) [a; b) = { x R a x b } als das nach rechts offene Intervall. (a; b] = { x R a x b } als das nach links offene Intervall. Unbeschränkte Intervalle haben nach einer Seite keine Grenze. Beispiele: [a; ) = { x R a x } (- ; a) = { x R x < a } 14

15 2.5.4 Rechnen mit der Null R ist (wie alle anderen Zahlenmengen, die wir behandeln) nullteilerfrei. D.h. ein Produkt aus mehreren Faktoren wird genau dann Null, wenn mindestens ein Faktor Null ist: a b = 0 => a = 0 v b = 0. v für vel = oder Des weiteren gilt für a R und a 0 a 0 = 0 a + 0 = a 0 a = 0 a 0 = 1 a 0 = 1 = an a n = a n-n = a 0 = 1 0! = 1 Nicht definiert sind: 0 0, 0 0, a 0. 15

16 Exkurs 2: Fakultät n! wird als n-fakultät bezeichnet. n! ist das Produkt aller natürlicher Zahlen kleiner gleich n: 0! = 1 1! = 1 2! = 1 2 = 2 3! = = 6 n! = n Für sehr große Werte von n gibt eine berühmte Näherung: 2 Stirlingsche Formel: n! 2π n ( n e )n 16

17 Exkurs 2: Fakultät n! wird ähnlich auch bei reelle Zahlen eingesetzt. Mit x! ist das Produkt reeller Zahlen x-n größer Null gemäß x! = x (x-1) (x-2) (x-3) (x-4) (x-5) definiert. Als sogenannte Gamma-Funktion Γ(x) erhält sie große Bedeutung in der Wahrscheinlichkeitsrechnung. Es gilt die Rekursionsformel Γ(x+1) = x Γ(x). Die Werte von Γ(x) mit x (0;+1) sind in Wertetabellen gelistet, z.b. Γ( 1 2 ) = 2 π. 17

18 Exkurs 2: Fakultät Manchmal wird nur das Produkt der k < n größten Zahlen benötigt. n k = n (n-1) (n-2) (n-k+1) Für n = k ergibt sich wieder n!. Außerdem gilt n k = n! k! (= n k k! k! = n (n 1) (n 2) (n k+1) k! k! ) Genauso wichtig sind die sogenannten Binomialkoeffizienten.. 18

19 Exkurs 3: Binomialkoeffizienten Definition: Seien n und k beliebige nichtnegative ganze Zahlen, dann ist der Binomialkoeffizient n k folgenden Ausdruck definiert n k = n k k! Für k=0 wird n k = n 0 = 1 gesetzt. = (lies: n über k ) durch n n 1 n 2 (n k+1) Es gelten folgende Regeln: n k = n! = n k! n k! n k n 1 = n n n = 1 n k + n k + 1 = n + 1 k k!

20 Exkurs 3: Binomialkoeffizienten Anwendungsbeispiele: Pascalsches Dreieck der Binomische Lehrsatz (a + b) n = a n + n 1 an 1 b 1 + n 2 an 2 b n n 1 a1 b n 1 +b n 20

2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen

2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen bezüglich der Addition und Multiplikation: a, b N mit

Mehr

01. Zahlen und Ungleichungen

01. Zahlen und Ungleichungen 01. Zahlen und Ungleichungen Die natürlichen Zahlen bilden die grundlegendste Zahlenmenge, die durch das einfache Zählen 1, 2, 3,... entsteht. N := {1, 2, 3, 4,...} (bzw. N 0 := {0, 1, 2, 3, 4,...}) Dabei

Mehr

Zahlen 25 = = 0.08

Zahlen 25 = = 0.08 2. Zahlen Uns bisher bekannte Zahlenbereiche: N Z Q R ( C). }{{} später Schreibweisen von rationalen/reellen Zahlen als unendliche Dezimalbrüche = Dezimalentwicklungen. Beispiel (Rationale Zahlen) 1 10

Mehr

Man kann die natürlichen Zahlen in verschiedenen Klassen einteilen:

Man kann die natürlichen Zahlen in verschiedenen Klassen einteilen: A.1.1 Zahlenmengen Die Menge der natürlichen Zahlen, die mit N bezeichnet werden N = {1, 2, 3, 4, 5,... } benutzen wir im Alltag, um mehrere gleichartige Gegenstände zu zählen. Es gibt unendlich viele

Mehr

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik Rationale, irrationale und reelle Zahlen 4-E Vorkurs, Mathematik Rationale Zahlen Der Grund für die Einführung der rationalen Zahlen ist der, dass wir mit ihnen auch Gleichungen der Form q x = p lösen

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

Reelle Zahlen, Gleichungen und Ungleichungen

Reelle Zahlen, Gleichungen und Ungleichungen 9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen

Mehr

1 Aufbau des Zahlensystems

1 Aufbau des Zahlensystems 1 Aufbau des Zahlensystems 1.1 Die Menge N der natürlichen Zahlen 1.1.1 Definition Die mathematischen Eigenschaften dieser durch das Abzählen von Gegenständen motivierten Zahlenmenge lassen sich auf die

Mehr

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit.

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit. Kapitel 4 Reelle Zahlen 4.1 Die reellen Zahlen (Schranken von Mengen; Axiomatik; Anordnung; Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die

Mehr

Münchner Volkshochschule. Planung. Tag 02

Münchner Volkshochschule. Planung. Tag 02 Planung Tag 02 Prof.Dr. Nils Mahnke Mathematischer Vorkurs Folie: 45 Mengenlehre VII Mengenoperationen: 1) Vereinigungsmenge: A B { x x A x B} 2) Schnittmenge: A 3) Differenzmenge: B { x x A x B} A \ B

Mehr

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Definition 1.1 (Menge) Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen.

Mehr

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016 MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/17 MARK HAMILTON LMU MÜNCHEN 1.1. Grundbegriffe zu Mengen. 1. 17. OKTOBER 2016 Definition 1.1 (Mengen und Elemente). Eine Menge ist die Zusammenfassung

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

Überabzählbarkeit der reellen Zahlen

Überabzählbarkeit der reellen Zahlen Überabzählbarkeit der reellen Zahlen Mathematik M4 Dozentin: Dr. Regula Krapf Jan Lukas Schallenberg Matr. Nr.: 214202241 November 2017 1 Inhaltsverzeichnis 1 Dedekindsche Schnitte 3 2 Addition und Multiplikation

Mehr

Die natürlichen Zahlen

Die natürlichen Zahlen Mathematik I für Informatiker Zahlen p. 1 Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}. Damit kann man, beginnend mit der leeren Menge Ø, eine unendliche

Mehr

Zahlen und elementares Rechnen (Teil 1)

Zahlen und elementares Rechnen (Teil 1) und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung

Mehr

Die natürlichen Zahlen

Die natürlichen Zahlen Die natürlichen Zahlen Damit kann man, beginnend mit der leeren Menge, eine unendliche Folge von Mengen bilden: Mathematik I für Informatiker Zahlen p.1/12 Kürzt man ab so erhält man,,,..., allgemeiner

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

2. Reelle und komplexe Zahlen [Sch-St ]

2. Reelle und komplexe Zahlen [Sch-St ] 7 2. Reelle und komplexe Zahlen [Sch-St 6.4-6.5] 2.1 Körperstruktur und Anordnung von R [Kö 2.1-2.2] Für (beliebige) reelle Zahlen a, b, c R gelten die folgenden (algebraischen) Körperaxiome: (K1) a +

Mehr

HM I Tutorium 2. Lucas Kunz. 3. November 2016

HM I Tutorium 2. Lucas Kunz. 3. November 2016 HM I Tutorium 2 Lucas Kunz 3. November 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Reelle Zahlen.................................. 2 1.2 Intervalle..................................... 2 1.3 Beträge.....................................

Mehr

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}.

Mehr

Brückenkurs Mathematik für Studierende der Chemie

Brückenkurs Mathematik für Studierende der Chemie Brückenkurs Mathematik für Studierende der Chemie PD Dr Dirk Andrae (nach Vorlagen von Dr Werner Gans vom WS 2015/2016) Institut für Chemie und Biochemie Freie Universität Berlin 20 September 2016 1 Teil:

Mehr

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski Die reellen Zahlen als Dedekindsche Schnitte Iwan Otschkowski 14.12.2016 1 1 Einleitung In dieser Ausarbeitung konstruieren wir einen vollständig geordneten Körper aus gewissen Teilmengen von Q, den Dedekindschen

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2. Zahlbereiche Besonderheiten und Rechengesetze Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2.1. Die natürlichen Zahlen * + besitzt abzählbar unendlich viele Elemente

Mehr

Vorkurs Mathematik 1

Vorkurs Mathematik 1 Vorkurs Mathematik 1 Einführung in die mathematische Notation Konstanten i komplexe Einheit i 2 + 1 = 0 e Eulersche Zahl Kreiszahl 2 Einführung in die mathematische Notation Bezeichner Primzahlen, Zähler

Mehr

Wirtschaftsmathematik: Mathematische Grundlagen

Wirtschaftsmathematik: Mathematische Grundlagen Wirtschaftsmathematik: Mathematische Grundlagen 1. Zahlen 2. Potenzen und Wurzeln 3. Rechenregeln und Vereinfachungen 4. Ungleichungen 5. Intervalle 6. Beträge 7. Lösen von Gleichungen 8. Logarithmen 9.

Mehr

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt.

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt. 1 1 Funktionen 1.1 Grundlegende Zahlenmengen Georg Cantor (1845-1918) hat den Begriff der Menge eingeführt. Man versteht darunter die Zusammenfassung einzelner Dinge, welche Elemente genannt werden, zu

Mehr

Aus dem binomischen Lehrsatz ergeben sich sofort interessante Beziehungen zwischen den Binomialkoeffizienten.

Aus dem binomischen Lehrsatz ergeben sich sofort interessante Beziehungen zwischen den Binomialkoeffizienten. 11 Aussagen, Beweise, vollständige Induktion 13 Aus dem binomischen Lehrsatz ergeben sich sofort interessante Beziehungen zwischen den Binomialkoeffizienten 114 Folgerung n ( ) n = (1+1) n = 2 n und k

Mehr

Mathematischer Vorkurs MATH

Mathematischer Vorkurs MATH Mathematischer Vorkurs MATH (01.09.2014 19.09.2014) AOR Dr. Andreas Langer WS 2014-2015 Mathematischer Vorkurs TU Dortmund Seite 1 / 254 Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund

Mehr

4. Kombinatorik *) In der Kombinatorik werden drei wichtige Symbole benötigt: o n! o (n) k o

4. Kombinatorik *) In der Kombinatorik werden drei wichtige Symbole benötigt: o n! o (n) k o *) Die Berechnung der Wahrscheinlichkeit im Laplace-Experiment wirkt zunächst einfach. Man muss einfach die Anzahl der günstigen Fälle durch die Anzahl der möglichen Fälle teilen. Das Feststellen dieser

Mehr

Eine Menge ist die Zusammenfassung von bestimmten unterschiedenen Objekten zu einem Ganzen.

Eine Menge ist die Zusammenfassung von bestimmten unterschiedenen Objekten zu einem Ganzen. 1. Grundlagen Damit wir uns im Gebiet der Zahlen orientieren können, müssen wir uns einer gemeinsam festgelegten Sprache bedienen. In diesem ersten Kapitel erhalten Sie einen kurzen Abriss über die gängigsten

Mehr

Abschnitt 1.2. Rechnen mit reellen Zahlen

Abschnitt 1.2. Rechnen mit reellen Zahlen Abschnitt 1.2 Rechnen mit reellen Zahlen Addition und Multiplikation Zwei reelle Zahlen a und b kann man zu einander addieren, d. h., den beiden Zahlen wird eine dritte Zahl, a + b, zugeordnet, welche

Mehr

1.4 Die rellen Zahlen

1.4 Die rellen Zahlen 1.4 Die rellen Zahlen Die reellen Zahlen R Beobachtung Es gibt physikalische Größen (dh. Abstände, Flächeninhalte... ), die nicht in Q liegen. Beispiele 2 (Diagonale im Quadrat mit Seitenlänge 1) π (Flächeninhalt

Mehr

Neben der Addition tritt nun die Multiplikation als weitere Struktureigenschaft

Neben der Addition tritt nun die Multiplikation als weitere Struktureigenschaft Kapitel 3 Rationale Zahlen 31 Die rationalen Zahlen (Körper, Abzählbarkeit) Was ist mit der Gleichung z q = w in Z? Für gegebene z, w Z ist diese Gleichung in der Menge der ganzen Zahlen im Allgemeinen

Mehr

Zahl und Funktion Grundlagen der Analysis aus der Sek I. Oliver Passon Seminar zur Didaktik der Analysis

Zahl und Funktion Grundlagen der Analysis aus der Sek I. Oliver Passon Seminar zur Didaktik der Analysis Grundlagen der Analysis aus der Sek I Seminar zur Didaktik der Analysis Quellen Lehrpläne und Richtlinien des Landes NRW für Gymnasien und Gesamtschulen Lambacher Schweizer: Mathematik für Gymnasien, Klett

Mehr

Analysis für Informatiker

Analysis für Informatiker Analysis für Informatiker Wintersemester 2017/2018 Carsten.Schneider@risc.jku.at 1 Bemerkung: Dies ist kein Skript, welches den gesamten Inhalt der Vorlesung abdeckt. Es soll den Studierenden aber während

Mehr

Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge.

Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge. Vorkurs Mathematik 17.08.-28.08.15 Dozent: Dipl.-Math. Karsten Runge E-mail: karsten.runge@hs-bochum.de www.hs-bochum.de\imt > Mathematik-Vorkurs > Mathematik-Werkstatt Die Mathematik-Werkstatt bietet

Mehr

Brückenkurs Mathematik für Studierende der Chemie

Brückenkurs Mathematik für Studierende der Chemie Brückenkurs Mathematik für Studierende der Chemie PD Dr Dirk Andrae (nach Vorlagen von Dr Werner Gans vom WS 015/016) Institut für Chemie und Biochemie Freie Universität Berlin 14 Februar 019 1 Teil: Zahlenmengen,

Mehr

Kapitel 2 Die rationalen und die irrationalen Zahlen

Kapitel 2 Die rationalen und die irrationalen Zahlen Kaitel Die rationalen und die irrationalen Zahlen Inhalt.. Was Was sind sind die die rationalen Zahlen?.. Wie Wie rechnet man man mit mit rationalen Zahlen?.. Ordnung in in den den rationalen Zahlen.4.4

Mehr

Mathematik. für das Ingenieurstudium. 1 Grundlagen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 1 Grundlagen. Jürgen Koch Martin Stämpfle. 1 Grundlagen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Werkes,

Mehr

Dezimalzahlen. Analysis 1

Dezimalzahlen. Analysis 1 Dezimalzahlen Definition. Eine endliche Dezimalzahl besteht aus - einem Vorzeichen +,, oder 0 - einer natürlichen Zahl d 0 - einer endlichen Folge von Ziffern d 1,...,d l von 0 bis 9. Die Länge l kann

Mehr

1 Mengen und Mengenoperationen

1 Mengen und Mengenoperationen 1 Mengen und Mengenoperationen Man kann verschiedene Objekte mit gemeinsamen Eigenschaften zu Mengen zusammenfassen. In der Mathematik kann man z.b. Zahlen zu Mengen zusammenfassen. Die Zahlen 0; 1; 2;

Mehr

Körperaxiome und Anordnungsaxiome. Analysis I. Guofang Wang. Universität Freiburg

Körperaxiome und Anordnungsaxiome. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 25.10.2011 Körperaxiome Wir setzen in dieser Vorlesung die reellen Zaheln als gegeben aus. Mit R bezeichnen wir die Menge aller reellen Zahlen, auf der folgende Strukturen gegeben

Mehr

Komplexe Zahlen. Bekannte Zahlenmengen. Natürliche Zahlen. Die Zahlenmenge ist IN = {0, 1, 2, 3,...}. Es gelten die folgenden Gesetze:

Komplexe Zahlen. Bekannte Zahlenmengen. Natürliche Zahlen. Die Zahlenmenge ist IN = {0, 1, 2, 3,...}. Es gelten die folgenden Gesetze: Mathematik/Informatik Gierhardt Komplexe Zahlen Komplexe Zahlen Bekannte Zahlenmengen Natürliche Zahlen Die Zahlenmenge ist IN = {0,,,,} Es gelten die folgenden Gesetze: Addition: a + b IN, wenn a,b IN

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger. April Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger. April Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger Lennéstraße 43, 1. OG pinger@uni-bonn.de April 2017 JProf. Dr. Pia Pinger Vorkurs Mathematik April 2017 1 / 74 Ein paar Tipps vorab Be gritty : Perseverance and

Mehr

Arithmetik ist die Wissenschaft von den Zahlen. Vergessen, was Zahlen sind und

Arithmetik ist die Wissenschaft von den Zahlen. Vergessen, was Zahlen sind und Kapitel 3 Elemente der reellen Arithmetik Arithmetik ist die Wissenschaft von den Zahlen. Vergessen, was Zahlen sind und was man mit denen alles so machen kann? Macht nichts. Die folgenden Abschnitte sind

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger. September/Oktober Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger. September/Oktober Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger Lennéstraße 43, 1. OG pinger@uni-bonn.de September/Oktober 2017 JProf. Dr. Pia Pinger Vorkurs Mathematik September/Oktober 2017 1 / 74 Ein paar Tipps vorab Be gritty

Mehr

Kapitel 1: Grundbegriffe

Kapitel 1: Grundbegriffe Kapitel 1: Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) 1 / 20 Gliederung 1 Logik Ein ganz kurzer Ausflug in die Kombinatorik Stefan Ruzika (KO) 2

Mehr

5. Gruppen, Ringe, Körper

5. Gruppen, Ringe, Körper 5. Gruppen, Ringe, Körper 5.1. Gruppen Die Gruppentheorie, als mathematische Disziplin im 19. Jahrhundert entstanden, ist ein Wegbereiter der modernen Mathematik. Beispielsweise folgt die Gruppe, die aus

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren

Mehr

Kapitel II. Algebraische Grundbegriffe

Kapitel II. Algebraische Grundbegriffe Kapitel II. Algebraische Grundbegriffe 1 Ringe und Körper Für das Rechnen in Z haben wir in Kap. I, 1 Regeln aufgestellt, welche auch in Q und R gelten. Damit werden Z, Q und R zu Ringen im folgenden Sinn:

Mehr

Reelle Zahlen, Termumformungen, Gleichungen und Ungleichungen

Reelle Zahlen, Termumformungen, Gleichungen und Ungleichungen 2. Vorlesung im Brückenkurs Mathematik 2018 Reelle Zahlen, Termumformungen, Gleichungen und Ungleichungen Dr. Markus Herrich Markus Herrich Reelle Zahlen, Gleichungen und Ungleichungen 1 Die Menge der

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

HM I Tutorium 2. Lucas Kunz. 31. Oktober 2018

HM I Tutorium 2. Lucas Kunz. 31. Oktober 2018 HM I Tutorium 2 Lucas Kunz 31. Oktober 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Körper und Gruppen.............................. 2 1.2 Konstruktion der reellen Zahlen........................ 3 1.3 Natürliche

Mehr

2 Zahlen und Zahlensysteme

2 Zahlen und Zahlensysteme 2 ZAHLEN UND ZAHLENSYSTEME 10 2 Zahlen und Zahlensysteme In diesem Kapitel definieren wir zunächst einige wichtige Zahlenmengen und führen dann Strukturen ein, z. B. mittels Operationen wie Addition und

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 Rationale und reelle Zahlen 2.1 Körper Ein Körper ist eine Struktur der Form à = (K,0,1,+, mit einer Grundmenge K, zwei zweistelligen Operationen + und, für die die Körperaxiome gelten: (K1 (K, 0, +

Mehr

01. Gruppen, Ringe, Körper

01. Gruppen, Ringe, Körper 01. Gruppen, Ringe, Körper Gruppen, Ringe bzw. Körper sind wichtige abstrakte algebraische Strukturen. Sie entstehen dadurch, dass auf einer Menge M eine oder mehrere sogenannte Verknüpfungen definiert

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 29.09. - Freitag 9.10.2015 Vorlesung 2 Mengen, Zahlen, Logik Kai Rothe Technische Universität Hamburg-Harburg Mittwoch 30.09.2015 Mengen.................................

Mehr

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

Zahlen und Gleichungen

Zahlen und Gleichungen Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen

Mehr

1 Reelle Zahlen. 2 Potenzen und Wurzeln. 1.1 die reelle Zahl π. Sprungziele innerhalb des Dokumentes Inhaltsverzeichnis

1 Reelle Zahlen. 2 Potenzen und Wurzeln. 1.1 die reelle Zahl π. Sprungziele innerhalb des Dokumentes Inhaltsverzeichnis Sprungziele innerhalb des Dokumentes Inhaltsverzeichnis 1 Reelle Zahlen 1.1 die reelle Zahl π π ist ein Beispiel einer reellen Zahl, die keine rationale Zahl ist: π = 3.141592653589793238462643383279502884197169399375105823197494459

Mehr

Vorlesung Mathematik 1 für Ingenieure (A)

Vorlesung Mathematik 1 für Ingenieure (A) 1 Vorlesung Mathematik 1 für Ingenieure (A) Wintersemester 2016/17 Kapitel 1: Zahlen Prof. Dr. Gerald Warnecke Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg http://fma2.math.uni-magdeburg.de:8001

Mehr

1.1. Aussagen, Beweise, vollständige Induktion 15

1.1. Aussagen, Beweise, vollständige Induktion 15 11 Aussagen, Beweise, vollständige Induktion 15 Man kann die Methode der vollständigen Induktion auch auf vielfältige Weise einsetzen, um geometrische Aussagen zu beweisen Hier ein prominentes Beispiel

Mehr

Gleichungen, Ungleichungen, Beträge

Gleichungen, Ungleichungen, Beträge KAPITEL 2 Gleichungen, Ungleichungen, Beträge Man bestimme alle reellen Lösungen der Gleichung x + 2 x 2 4 = 1. Nach Multiplikation beider Seiten mit x 2 4 ergibt sich die quadratische Gleichung x + 2

Mehr

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Name: Vorname:

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich  Name: Vorname: Mengenlehre ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 21. August 2016 Inhaltsverzeichnis 1 Mengenlehre 1 1.1 Die Menge im mathematischen

Mehr

Zahlenbereiche. 1 Die reellen Zahlen als angeordneter Körper Körperaxiome Anordnungsaxiome Absolutbetrag und Intervalle...

Zahlenbereiche. 1 Die reellen Zahlen als angeordneter Körper Körperaxiome Anordnungsaxiome Absolutbetrag und Intervalle... Goethe-Oberschule Berlin (Gymnasium) A. Mentzendorff Geändert: Januar 010 Zahlenbereiche Inhaltsverzeichnis 1 Die reellen Zahlen als angeordneter Körper 1.1 Körperaxiome....................................

Mehr

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften

Mehr

$Id: mengen.tex,v /11/16 20:09:23 hk Exp $ $Id: komplex.tex,v /11/16 20:12:23 hk Exp hk $

$Id: mengen.tex,v /11/16 20:09:23 hk Exp $ $Id: komplex.tex,v /11/16 20:12:23 hk Exp hk $ $Id: mengen.tex,v.7 2008//6 20:09:23 hk Exp $ $Id: komplex.tex,v.2 2008//6 20:2:23 hk Exp hk $ I. Grundlagen 3 Mengen und Abbildungen 3.4 Vollständige Induktion und endliche Mengen Wir wollen noch ein

Mehr

Mathematik Quadratwurzel und reelle Zahlen

Mathematik Quadratwurzel und reelle Zahlen Mathematik Quadratwurzel und reelle Zahlen Grundwissen und Übungen a : a a Stefan Gärtner 1999 004 Gr Mathematik elementare Algebra Seite Inhalt Inhaltsverzeichnis Seite Grundwissen Definition Quadratwurzel

Mehr

1 Körper. Wir definieren nun, was wir unter einem Körper verstehen, und sehen dann, dass es noch andere, ganz kleine Körper gibt:

1 Körper. Wir definieren nun, was wir unter einem Körper verstehen, und sehen dann, dass es noch andere, ganz kleine Körper gibt: 1 Körper Sie kennen bereits 2 Beispiele von Zahlkörpern: (Q, +, ) (R, +, ) die rationalen Zahlen mit ihrer Addition und Multiplikation die reellen Zahlen mit ihrer Addition und Multiplikation Vielleicht

Mehr

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 2.10. - Freitag 12.10. Vorlesung 1 Logik, Mengen, Zahlen Kai Rothe Technische Universität Hamburg Dienstag 2.10. Tagesablauf 9:00-10:30 Vorlesung Audimax I 10:30-11:00 Pause

Mehr

Brüche, Polynome, Terme

Brüche, Polynome, Terme KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................

Mehr

J Quadratwurzeln Reelle Zahlen

J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden,

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 1: Zahlen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. Oktober 2007) Gliederung 2 Mengen Grundlegende Zahlbereiche

Mehr

ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen

ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität Graz 2.1 Körperstruktur

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) 1 Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Kapitel 1: Zahlen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 12. Oktober 2008) Beispiele für Mengen A = {1, 2, 3}

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 9. November 2017 1/34 Beispiel 3.6 Wir können die rationalen Zahlen wie folgt konstruieren:

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber 14 Wenn man mindestens einen Operator mit einer definierten Menge in Verbindung setzt, dann fällt es unter dem Bereich der Strukturen. Bei der kleinsten möglichen Struktur handelt es sich um eine. Eine

Mehr

Grundwissen Mathematik 6. Klasse

Grundwissen Mathematik 6. Klasse Themen Brüche Eigenschaften Besonderheiten - Beispiele Ein Bruchteil ist stets ein Teil eines Ganzen, zum Beispiel eine Hälfte, ein Drittel oder drei Viertel. Bruchteile stellt man mithilfe von Brüchen

Mehr

Literatur und Videos. ISM WS 2017/18 Teil 4/Algebren

Literatur und Videos. ISM WS 2017/18 Teil 4/Algebren Literatur und Videos [4-1] http://www.iti.fh-flensburg.de/lang/krypto [4-2] Forster, Otto: Algorithmische Zahlentheorie. 2. Auflage, Springer, 2015 [4-3] Teschl, Gerald; Teschl, Susanne: Mathematik für

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Wintersemester 2016 / 2017 Carsten Krupp BBA und IBS Vorkurs Mathematik - Wintersemester 2016 / 2017 Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer,

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Wintersemester 2017/2018 Carsten Krupp Betriebswirtschaftslehre (BBA) und International Business Studies (IBS)) Vorkurs Mathematik - Wintersemester 2017/2018 Seite 1 Literaturhinweise

Mehr

1 Grundlagen. 1.1 Elementare Logik

1 Grundlagen. 1.1 Elementare Logik Höhere Mathematik 7 1 Grundlagen 1.1 Elementare Logik Eine (mathematische) Aussage ist ein Satz, der entweder wahr oder falsch ist (keine Aussage ist sowohl wahr als auch falsch). Der Wahrheitswert v(a)

Mehr

Kapitel 3 Die reellen Zahlen

Kapitel 3 Die reellen Zahlen Kapitel 3 Die reellen Zahlen Inhalt 3.1 3.1 Was Was sind sind reelle Zahlen? 3.2 3.2 Wie Wie viele viele reelle Zahlen gibt gibt es? es? 3.3 3.3 Folgen 3.4 3.4 Was Was sind sind reelle Zahlen? Teil Teil

Mehr

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel II. Die reellen Zahlen

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel II. Die reellen Zahlen Version 23.11. November 2006 MIA Analysis einer reellen Veränderlichen WS 06/07 Kurzfassung Martin Schottenloher Kapitel II. Die reellen Zahlen Die reellen Zahlen werden in diesem Kapitel axiomatisch eingeführt

Mehr

Brückenkurs Mathematik 2017

Brückenkurs Mathematik 2017 1 Technische Universität Dresden Fachrichtung Mathematik, Institut für wissenschaftliches Rechnen PD Dr. Sebastian Franz aufbauend auf dem Material von Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik

Mehr

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem

Mehr

VO Mathematik I für Studierende der Wirtschaftswissenschaften

VO Mathematik I für Studierende der Wirtschaftswissenschaften VO Mathematik I für Studierende der Wirtschaftswissenschaften ao. Univ.-Prof. Mag. Dr. Andreas J. Novák December 3, 015 1 Einleitung 1.1 Mathematische Schreibweisen: für alle es existiert ein/eine n n

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 19 Kommutative Ringe Wir erfassen die in der letzten Vorlesung etablierten algebraischen Eigenschaften der ganzen Zahlen mit

Mehr

Kapitel 3. Reelle Zahlen. Mit reellen Zahlen rechnen können wir im Prinzip schon. Wir können addieren, subtrahieren, multiplizieren und dividieren.

Kapitel 3. Reelle Zahlen. Mit reellen Zahlen rechnen können wir im Prinzip schon. Wir können addieren, subtrahieren, multiplizieren und dividieren. Kapitel 3 Reelle Zahlen Mit reellen Zahlen rechnen können wir im Prinzip schon. Wir können addieren, subtrahieren, multiplizieren und dividieren. Division durch Null ist nicht erlaubt! 3.1 Ergänzungen

Mehr

30 Ringe und Körper Motivation Definition: Ring. Addition und eine. Häufig gibt es auf einer Menge zwei Verknüpfungen: eine

30 Ringe und Körper Motivation Definition: Ring. Addition und eine. Häufig gibt es auf einer Menge zwei Verknüpfungen: eine 30 Ringe und Körper 30.1 Motivation Häufig gibt es auf einer Menge zwei Verknüpfungen: eine Addition und eine Multiplikation. Beispiele: (Z, +, ) hier gibt es sogar noch eine Division mit Rest. (IR, +,

Mehr

IT-Sicherheitsmanagement. Teil 4: Einführung in algebraische Strukturen

IT-Sicherheitsmanagement. Teil 4: Einführung in algebraische Strukturen IT-Sicherheitsmanagement Teil 4: Einführung in algebraische Strukturen 19.09.18 1 Literatur und Videos [4-1] http://www.iti.fh-flensburg.de/lang/krypto [4-2] Forster, Otto: Algorithmische Zahlentheorie.

Mehr

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch Mathematikvorkurs Fachbereich I Sommersemester 2017 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Binomische Formeln Dienstag Potenzen, Wurzeln und Logarithmus Summen-

Mehr