01. Gruppen, Ringe, Körper
|
|
|
- Paulina Liane Schuler
- vor 9 Jahren
- Abrufe
Transkript
1 01. Gruppen, Ringe, Körper Gruppen, Ringe bzw. Körper sind wichtige abstrakte algebraische Strukturen. Sie entstehen dadurch, dass auf einer Menge M eine oder mehrere sogenannte Verknüpfungen definiert werden, i.e. zwei Elementen der Menge wird ein weiteres Element zugeordnet. Diese Verknüpfungen können streng genommen als Abbildungen M M M geschrieben werden, obwohl in der Praxis zumeist eine andere Schreibweise gewählt wird. Definition. Eine Gruppe ist ein Paar (G, ), bestehend aus einer nichtleeren Menge G und einer Verknüpfung auf G, d.h. einer Abbildung : G G G, (a, b) a b sodass folgende Eigenschaften erfüllt sind. (G1) a, b, c G : (a b) c = a (b c) (Assoziativgesetz) (G2) e G (neutrales Element von G) mit e a = a a G (G3) a G a G (inverses Element zu a) mit a a = e Definition. Eine Gruppe (G, ) heißt abelsch (oder kommutativ) wenn a, b G : a b = b a (Kommutativgesetz) Bemerkung. Falls über die vorliegende Verknüpfung Klarheit herrscht, schreibt man für eine Gruppe oft abgekürzt nur G. Statt a b schreibt man oft auch a b oder ab, bzw. im Falle einer abelschen Gruppe auch a + b. Bemerkung. Sei (G, ) eine Gruppe. Dann gilt 1) Für ein neutrales Element e G gilt a e = a a G. 2) Es gibt genau ein neutrales Element e G. 1
2 3) Ist a inverses Element zu a G, dann gilt a a = e. 4) Zu a G genau ein inverses Element. Dieses wird bei der Schreibweise (G, ) bzw. (G, ) mit a 1, bei der Schreibweise (G, +) mit a bezeichnet. Beweis. ad 3) : Zu a existiert wegen (G3) ein Element a mit a a = e. Damit erhalten wir mit (G1) und (G2) a a = e (a a ) = (a a ) (a a ) = a (a (a a )) = = a ((a a) a ) = a (e a ) = a a = e ad 1) a e = a (a a) = (a a ) a = e a = a ad 2) Sei e ein weiteres neutrales Element. Dann ist e e = e weil e neutral ist, und ebenso e e = e weil e neutral ist. Also e = e. ad 4) Seien a, a inverse Elemente zu a G. Dann ist unter Verwendung des bereits Bewiesenen a = a e = a (a a ) = (a a) a = e a = a. Bemerkung. (Beweis zur Übung) a, b G : (a 1 ) 1 = a und (a b) 1 = b 1 a 1. Beispiel. Die Menge Z der ganzen Zahlen bildet bezüglich der üblichen Addition die abelsche Gruppe (Z, +). Neutrales Element ist 0, inverses Element zu m Z ist m. Analog erhalten wir die abelschen Gruppen (Q, +), (R, +) und (C, +). Beispiel. Die Menge N der natürlichen Zahlen ist bezüglich der Addition keine Gruppe, weil kein neutrales Element und kein inverses Element existiert. 2
3 Beispiel. Q \ {0} ist bezüglich der üblichen Multiplikation eine abelsche Gruppe. Neutrales Element ist 1, inverses Element zu q Q \ {0} ist 1 q. Analog erhalten wir die bezüglich der Multiplikation abelschen Gruppen (R \ {0}, ) und (C \ {0}, ), sowie (Q +, ) und (R +, ). Beispiel. (Z \ {0}, ) ist keine Gruppe, da es zwar ein neutrales Element gibt, aber nicht immer ein inverses Element. Beispiel. Sei M eine Menge und S(M) = {f : M M : f ist bijektiv}. Dann ist S(M) bezüglich der Verknüpfung von Abbildungen eine Gruppe. Neutrales Element ist die identische Abbildung id M : M M, x id M (x) = x. Das inverse Element zu f S(M) ist die inverse Abbildung f 1. S(M) ist im allgemeinen nicht abelsch, und heißt die symmetrische Gruppe der Menge M. Ist speziell M = {1, 2,..., n}, dann schreibt man kurz S n für S(M). Ein Element σ S n heißt Permutation der Zahlen 1, 2,..., n. Definition. Ein Ring ist ein Tripel (R, +, ) bestehend aus einer nichtleeren Menge R und zwei Verknüpfungen + und sodass folgende Eigenschaften erfüllt sind. (R1) (R, +) ist abelsche Gruppe mit neutralem Element 0 (R2) α, β, γ R gilt (α β) γ = α (β γ) α (β + γ) = (α β) + (α γ), (β + γ) α = (β α) + (γ α) Bemerkung. (R, +, ) ist ein kommutativer Ring wenn α β = β α α, β R (R, +, ) ist ein Ring mit Einselement wenn 1 R sodass 1 α = α α R 3
4 Beispiel. (Z, +, ) mit der üblichen Addition und Multiplikation ganzer Zahlen ist ein kommutativer Ring mit Einselement. Beispiel. Sei M eine Menge und sei F (M, R) die Menge aller Abbildungen M R. Zu f, g : M R seien die Abbildungen f + g, f g wie folgt erklärt (f + g)(x) = f(x) + g(x) x M (f g)(x) = f(x) g(x) x M (Dabei sind auf den rechten Seiten jeweils die übliche Addition und Multiplikation reeller Zahlen zu verstehen) Dann ist F (M, R) ein kommutativer Ring mit Einselement. Neutrales Element bzgl. der Addition ist die Nullabbildung 0 : M R mit 0(x) = 0 R x M. Einselement bzgl. der Multiplikation ist die Abbildung 1 : M R mit 1(x) = 1 R x M. Definition. Ein Körper ist ein Tripel (K, +, ) bestehend aus einer nichtleeren Menge K und zwei Verknüpfungen + und sodass folgende Eigenschaften erfüllt sind. (K1) (K, +) ist abelsche Gruppe mit neutralem Element 0, das zu a K inverse Element wird mit a bezeichnet (K2) (K \ {0}, ) ist abelsche Gruppe mit neutralem Element 1, das zu a K \ {0} inverse Element wird mit a 1 oder mit 1 a bezeichnet (K3) a (b + c) = (a b) + (a c), (a + b) c = (a c) + (b c) Bemerkung. Oft schreibt man nur K, wenn klar ist, welche Verknüpfungen gemeint sind. Statt a b schreibt man oft auch ab und verwendet die Konvention, dass die Multiplikation stärker bindet als die Addition, also etwa a (b + c) = a b + a c. 4
5 Statt a + ( b) schreibt man a b, statt ab 1 auch a b. Beispiel. (Q, +, ), (R, +, ) und (C, +, ) sind bzgl. der üblichen Addition und Multiplikation von Zahlen Körper. Beispiel. (Z, +, ) ist kein Körper. Beispiel. Auf der zweielementigen Menge K = {0, 1} kann eine Körperstruktur wie folgt definiert werden = = 0, = = = 0 1 = 1 0 = 0, 1 1 = 1 5
Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski
Die reellen Zahlen als Dedekindsche Schnitte Iwan Otschkowski 14.12.2016 1 1 Einleitung In dieser Ausarbeitung konstruieren wir einen vollständig geordneten Körper aus gewissen Teilmengen von Q, den Dedekindschen
1.4 Gruppen, Ringe, Körper
14 Gruppen, Ringe, Körper Definition 141 Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M : (a, b a b Die Verknüpfung heißt assoziativ falls gilt: a (b c = (a b c a, b, c M; kommutativ falls
3.4 Algebraische Strukturen
3.4 Algebraische Strukturen 9 3.4 Algebraische Strukturen Man sagt, eine Menge hat eine algebraische Struktur, wenn in ihr eine Operation definiert ist, d.h. eine Verknüpfung von zwei Elementen der Menge,
Gruppe. Unter einer Gruppe (G, ) versteht man eine Menge G, auf der eine binäre Operation definiert ist:
Gruppe Unter einer Gruppe (G, ) versteht man eine Menge G, auf der eine binäre Operation definiert ist: : G G G, d.h. jedem Elementepaar (a, b): a, b G ist ein Element a b G zugeordnet. Gruppe 1-1 Gruppe
2 Grundstrukturen. 2.1 Gruppen. Prof. Dr. Peter Schneider. Vorlesung WS Lineare Algebra 1 2 GRUNDSTRUKTUREN
Vorlesung WS 08 09 Lineare Algebra 1 Prof. Dr. Peter Schneider 2 Grundstrukturen Notation: Sind M und N zwei Mengen, so heißt die Menge M N := {(m, n) : m M, n N} das cartesische Produkt oder auch die
SS 2017 Torsten Schreiber
14 Wenn man mindestens einen Operator mit einer definierten Menge in Verbindung setzt, dann fällt es unter dem Bereich der Strukturen. Bei der kleinsten möglichen Struktur handelt es sich um eine. Eine
02. Vektorräume und Untervektorräume
02. Vektorräume und Untervektorräume Wir kommen nun zur eigentlichen Definition eines K-Vektorraums. Dabei ist K ein Körper (bei uns meist R oder C). Informell ist ein K-Vektorraum eine Menge V, auf der
1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe
1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12
1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe
1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12
1 Algebraische Strukturen
Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen
Lineare Algebra I. Christian Ebert & Fritz Hamm. Gruppen & Körper. Vektorraum, Basis & Dimension. Lineare Algebra I. 18.
18. November 2011 Wozu das alles? Bedeutung von Termen Vektoren in R n Ähnlichkeiten zwischen Termbedeutungen Skalarprodukt/Norm/Metrik in R n Komposition von Termbedeutungen Operationen auf/abbildungen
5. Gruppen, Ringe, Körper
5. Gruppen, Ringe, Körper 5.1. Gruppen Die Gruppentheorie, als mathematische Disziplin im 19. Jahrhundert entstanden, ist ein Wegbereiter der modernen Mathematik. Beispielsweise folgt die Gruppe, die aus
30 Ringe und Körper Motivation Definition: Ring. Addition und eine. Häufig gibt es auf einer Menge zwei Verknüpfungen: eine
30 Ringe und Körper 30.1 Motivation Häufig gibt es auf einer Menge zwei Verknüpfungen: eine Addition und eine Multiplikation. Beispiele: (Z, +, ) hier gibt es sogar noch eine Division mit Rest. (IR, +,
Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober.
Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Im Folgenden
0 Mengen und Abbildungen, Gruppen und Körper
0 Mengen und Abbildungen, Gruppen und Körper In diesem Paragrafen behandeln wir einige für die Lineare Algebra und für die Analysis wichtige Grundbegriffe. Wir beginnen mit dem Begriff der Menge. Auf Cantor
Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein
Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst
Komplexe Zahlen und Allgemeines zu Gruppen
Komplexe Zahlen und Allgemeines zu Gruppen Die komplexen Zahlen sind von der Form z = x + iy mit x, y R, wobei i = 1 als imaginäre Einheit bezeichnet wird. Wir nennen hierbei Re(z = x den Realteil von
MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016
MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/17 MARK HAMILTON LMU MÜNCHEN 1.1. Grundbegriffe zu Mengen. 1. 17. OKTOBER 2016 Definition 1.1 (Mengen und Elemente). Eine Menge ist die Zusammenfassung
Mathematische Strukturen
Mathematische Strukturen Lineare Algebra I Kapitel 3 18. April 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: [email protected]
Neben der Addition tritt nun die Multiplikation als weitere Struktureigenschaft
Kapitel 3 Rationale Zahlen 31 Die rationalen Zahlen (Körper, Abzählbarkeit) Was ist mit der Gleichung z q = w in Z? Für gegebene z, w Z ist diese Gleichung in der Menge der ganzen Zahlen im Allgemeinen
Kapitel II. Algebraische Grundbegriffe
Kapitel II. Algebraische Grundbegriffe 1 Ringe und Körper Für das Rechnen in Z haben wir in Kap. I, 1 Regeln aufgestellt, welche auch in Q und R gelten. Damit werden Z, Q und R zu Ringen im folgenden Sinn:
Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Algebraische Strukturen
Diskrete Strukturen Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Algebraische Strukturen Verknüpfungen Satz x, y, z N x + (y + z) = (x + y) + z x + y = y + x x (y z) = (x y) z 1
17 Lineare Abbildungen
Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:
1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale
Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen
15. Gruppen, Ringe und Körper
Chr.Nelius: Lineare Algebra II (SS2005) 1 15. Gruppen, Ringe und Körper A) Mengen mit Verknüpfungen (15.1) DEF: Eine Verknüpfung (oder Rechenoperation) auf einer nichtleeren Menge M ordnet je zwei Elementen
Lineare Algebra und analytische Geometrie I
Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 3 Gruppen In der linearen Algebra wird im Allgemeinen ein Grundkörper K zugrunde gelegt, über den sich
Algebraische Strukturen
Algebraische Strukturen Eine kommutative Gruppe (G, ) ist eine Menge G, auf der eine Verknüpfung (ein zweistelliger Operator) deniert ist (d. h. zu a, b G ist a b G deniert), welche bestimmten Regeln genügt
2. Symmetrische Gruppen
14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen
Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 11
Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 11 Für die Abgabe der Bearbeitungen
Eine Menge K, auf der eine Addition. + und eine Multiplikation definiert sind, nennt man einen Körper, wenn folgende Eigenschaften gelten: Körper 1-1
Körper Eine Menge K, auf der eine Addition + und eine Multiplikation definiert sind, nennt man einen Körper, wenn folgende Eigenschaften gelten: Körper 1-1 Körper Eine Menge K, auf der eine Addition +
Satz 2.8 V sei ein endlichdimensionaler euklidischer Vektorraum. Für jeden Unterraum
Orthogonalität 123 Dienstag, 27. April 04 Satz 2.8 V sei ein endlichdimensionaler euklidischer Vektorraum. Für jeden Unterraum U von V gilt dann (a) U + U = V, U U = {0}, U, U = 0. (b) (U ) = U. Wir sagen
Vorlesung. Funktionen/Abbildungen
Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.
für alle a, b, x, y R.
Algebra I 13. April 2008 c Rudolf Scharlau, 2002 2008 33 1.5 Ringe Definition 1.5.1 Ein Ring ist eine Menge R zusammen mit zwei Verknüpfungen + und, genannt Addition und Multiplikation, für die folgendes
Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)
Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar
Mathematik für Informatiker I,
Teil II Algebra 70 Kapitel 8 Gruppen 8.1 Bedeutung in der Informatik Gruppen sind abstrakte Modelle für Mengen, auf denen eine Verknüpfung (etwa Addition oder Multiplikation) definiert ist. Allgemeine
Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion)
Kapitel 2: Multiplikative Funktionen 3 Multiplikative Funktionen Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) (a) Eine Funktion α : Z >0 C heißt arithmetisch (oder zahlentheoretisch).
Halbgruppen, Gruppen, Ringe
Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die
Lineare Algebra 6. Übungsblatt
Lineare Algebra 6. Übungsblatt Fachbereich Mathematik M. Schneider 16.05.01 Konstantin Pertschik, Daniel Körnlein Gruppenübung Aufgabe G19 Berechnen Sie das inverse Element bzgl. Multiplikation in der
Grundkurs Mathematik I
Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 19 Kommutative Ringe Wir erfassen die in der letzten Vorlesung etablierten algebraischen Eigenschaften der ganzen Zahlen mit
Surjektive, injektive und bijektive Funktionen.
Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens
Konstruktion der reellen Zahlen
Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert
Man kann die natürlichen Zahlen in verschiedenen Klassen einteilen:
A.1.1 Zahlenmengen Die Menge der natürlichen Zahlen, die mit N bezeichnet werden N = {1, 2, 3, 4, 5,... } benutzen wir im Alltag, um mehrere gleichartige Gegenstände zu zählen. Es gibt unendlich viele
σ-algebren, Definition des Maßraums
σ-algebren, Definition des Maßraums Ziel der Maßtheorie ist es, Teilmengen einer Grundmenge X auf sinnvolle Weise einen Inhalt zuzuordnen. Diese Zuordnung soll so beschaffen sein, dass dabei die intuitiven
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,
Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel
γ(a, γ(b, c)) = γ(γ(a, b), c)). γ(e, x) = γ(x, e) = x.
Algebraische Strukturen, insbesondere Gruppen 1 Verknüpfungen M sei eine Menge. Dann heißt jede Abbildung γ : M M M eine Verknüpfung (jedem Paar von Elementen aus M wird auf eindeutige Weise ein Element
Denition 1 (Die Peanoschen Axiome). Es gibt eine Menge N und eine sogenannte Nachfolgefunktion S mit folgenden Eigenschaften.
In dieser Ausarbeitung handelt es sich es um die Menge der natürlichen Zahlen und deren Eigenschaften. In der Analysis werden häug zunächst die reellen Zahlen als vollständig geordneter Körper betrachtet
Teilbarkeitslehre und Restklassenarithmetik
Vorlesung Teilbarkeitslehre und Restklassenarithmetik.1 Gruppentheorie WiewirinVorlesung2gesehenhaben,hatdieMengeZmitderAdditiongewisse Eigenschaften. Wir fassen nun bestimmte Eigenschaften zusammen und
Algebraische Strukturen und Verbände
KAPITEL 4 Algebraische Strukturen und Verbände Definition 4.1. Sei M eine Menge. Eine Abbildung : M M M nennt man eine (zweistellige) Verknüpfung in M. Man schreibt dafür auch a b := (a, b) mit a, b M.
Lineare Algebra und analytische Geometrie I
Sei G eine Gruppe. Zeige, dass ( 1 ) 1 = Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Arbeitsblatt 3 Die Pausenaufgabe Aufgabe 3.1. Formuliere die binomischen
5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch
5.9 Permutationsgruppen Definition 103 Eine Permutation ist eine bijektive Abbildung einer endlichen Menge auf sich selbst; o. B. d. A. sei dies die Menge U := {1, 2,..., n}. S n (Symmetrische Gruppe für
Vollständigkeit. 1 Konstruktion der reellen Zahlen
Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente
Mathematik für Anwender I
Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren
2 Die Menge der ganzen Zahlen. von Peter Franzke in Berlin
Die Menge der ganzen Zahlen von Peter Franzke in Berlin Das System der natürlichen Zahlen weist einen schwerwiegenden Mangel auf: Es gibt Zahlen mn, derart, dass die lineare Gleichung der Form mx n keine
Formelsammlung: Mathematik für Informatiker I
25. März 2008 Inhaltsverzeichnis 1 Komplexe Zahlen 2 1.1 Allgemeines................................................ 2 1.2 Rechenregeln............................................... 2 1.3 Potenzen.................................................
Kapitel 1. Erste algebraische Strukturen. 1.2 Ringe und Körper
Kapitel 1 Lineare Algebra individuell M. Roczen und H. Wolter, W. Pohl, D.Popescu, R. Laza Erste algebraische Strukturen Hier werden die grundlegenden Begriffe eingeführt; sie abstrahieren vom historisch
6 Permutationen. Beispiele: a) f : R R, f(x) = x 2. b) f : R R, f(x) = e x. c) f : R 2 R, x (Projektion auf die x Achse) y
6 Permutationen Seien und B Mengen. Eine bbildung von nach B ist eine Vorschrift f, die jedem Element x ein eindeutig bestimmtes Element y = f(x) B zuordnet. Schreibe f : B, x f(x) Beispiele: a) f : R
FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4)
FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5 Aufgabe 18 (siehe Musterlösung Zettel 4) Aufgabe 20 In der Menge R der reellen Zahlen sei die Relation 2 R 2 definiert durch: x 2 y :
Seminar zum Thema Kryptographie
Seminar zum Thema Kryptographie Michael Hampton 11. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 1.1 Konventionen.................................. 3 1.2 Wiederholung.................................. 3
Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie
Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,
Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe
Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:
Determinanten. I. Permutationen
Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch
Vorlesung Algebra I. Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen Einleitung
Vorlesung Algebra I Christian Lehn Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen 5 1.1. Vorkenntnisse Gruppen 1. Einleitung Definition. Es sei G eine Menge. Eine Verknüpfung auf G ist eine Abbildung :
Serie 3: Ringe, Körper, Vektorräume
D-MATH Lineare Algebra I HS 2016 Dr. Meike Akveld Serie 3: Ringe, Körper, Vektorräume 1. Im Folgenden sei n N und Z n bezeichne die Menge der Äquivalenzklassen von Z bezüglich der Relation: k n l n k l
Mathematik für Anwender I
Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren
35 Matrixschreibweise für lineare Abbildungen
35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir
Algebraische Strukturen. Idee. Gruppen, Ringe, Körper... (Teschl/Teschl Abschnitt 3.2, siehe auch Kap. 4)
Algebraische Strukturen Gruppen, Ringe, Körper... (Teschl/Teschl Abschnitt 3.2, siehe auch Kap. 4) Idee Formalisierung von Strukturen, die in verschiedenen Bereichen der Mathematik und ihrer Anwendungen
Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }
Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird
2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).
17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften
Hausaufgabenüberprüfung 1 zu Mathematische Strukturen Hagen Knaf, SS 2016
Hausaufgabenüberprüfung 1 zu Mathematische Strukturen Hagen Knaf, SS 2016 Lösungen Aufgabe 1: Betrachten Sie die Menge H aller Abbildungen f : R 2 R 2 der Form f(x) = Ax + b, A R 2 2, b R 2. (1) Zeigen
Determinanten. I. Permutationen
Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch
1 Mengen und Abbildungen
1 MENGEN UND ABBILDUNGEN 1 1 Mengen und Abbildungen Wir starten mit einigen einführenden Definitionen und Ergebnissen aus der Theorie der Mengen und Abbildungen, die nicht nur Grundlage der Linearen Algebra
3. Algebra und Begriffsverbände. Algebraische Strukturen
3. Algebra und Begriffsverbände Algebraische Strukturen Def.: Eine n-stellige (n-äre) [algebraische] Operation [auch: Verknüpfung] auf einer Menge A ist eine Abbildung f : A n A. Der Spezialfall n = 0:
Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.
Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr 14-16 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 12-14 und nv jokar@mathtu-berlinde Kapitel
Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 5. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11
Mathematik für Informatiker I Christoph Eisinger Wintersemester 2010/11 Musterlösungen zum Hausübungsblatt 5 Aufgabe 1 (a) Additionstafel in Z 7 : + [0] [1] [2] [3] [4] [5] [6] [0] [0] [1] [2] [3] [4]
4. Übung zur Linearen Algebra I -
4. Übung zur Linearen Algebra I - en Kommentare an [email protected] FU Berlin. WS 2009-10. Aufgabe 13 Auf dem Cartesischen Produkt Z Z werden 2 Verknüpfungen, definiert durch: Man zeige: (a
2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen
2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen bezüglich der Addition und Multiplikation: a, b N mit
Die natürlichen Zahlen
Mathematik I für Informatiker Zahlen p. 1 Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}. Damit kann man, beginnend mit der leeren Menge Ø, eine unendliche
Tutorium: Diskrete Mathematik
Tutorium: Diskrete Mathematik Steven Köhler [email protected] mathe.stevenkoehler.de 2 I Eine algebraische Struktur ist ein Paar A; (f i ) ; bestehend aus einer nichtleeren Menge A, der TrÄagermenge
Körperaxiome und Anordnungsaxiome. Analysis I. Guofang Wang. Universität Freiburg
Universität Freiburg 25.10.2011 Körperaxiome Wir setzen in dieser Vorlesung die reellen Zaheln als gegeben aus. Mit R bezeichnen wir die Menge aller reellen Zahlen, auf der folgende Strukturen gegeben
Übungen zu Algebra, WS 2015/16
Übungen zu Algebra, WS 2015/16 Christoph Baxa 1) Es seien G 1,..., G n Gruppen. Beweisen Sie: Ist σ S n, so ist G σ(1) G σ(n) = G1 G n. 2) Beweisen Sie: Sind G 1,..., G n und H 1,..., H n Gruppen mit der
1 Der Ring der ganzen Zahlen
1 Der Ring der ganzen Zahlen Letztendlich wird die Addition und Multiplikation in endlichen Körpern auf die Addition und Multiplikation von ganzen Zahlen zurückgeführt. Deswegen müssen wir die an sich
Vektorräume und lineare Abbildungen
Kapitel 11. Vektorräume und lineare Abbildungen 1 11.1 Vektorräume Sei K ein Körper. Definition. Ein Vektorraum über K (K-Vektorraum) ist eine Menge V zusammen mit einer binären Operation + einem ausgezeichneten
Klassische Algebra. Gesucht sind die Lösungsmengen der folgenden Gleichungen: x n + a n 1 x n a 1 x + a 0 = 0 (a 0,...
Klassische Algebra Gesucht sind die Lösungsmengen der folgenden Gleichungen: x n + a n 1 x n 1 + + a 1 x + a 0 = 0 (a 0,..., a n 1 Q) Formeln für n {1, 2, 3, 4} sind bekannt. Abel, Galois: Für n N mit
$Id: gruppen.tex,v /04/24 15:25:02 hk Exp $ $Id: ring.tex,v /04/24 15:35:17 hk Exp $
$Id: gruppen.tex,v 1.13 2012/04/24 15:25:02 hk Exp $ $Id: ring.tex,v 1.11 2012/04/24 15:35:17 hk Exp $ 2 Gruppen 2.3 Zyklische Gruppen Wir hatten am Ende der letzten Sitzung bewiesen, dass in einer endlichen
1 Algebraische Strukturen
1 Algebraische Strukturen 1.1 Innere Verknüpfungen 1.1.1 Grundbegriffe und Beispiele In der Analysis wie auch in der linearen Algebra kommen verschiedene Arten von Rechenoperationen vor, bei denen man
Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr
Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen
Stefan Ruzika. 24. April 2016
Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers
Lösungen 5 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren
Lösungen 5 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren µfsr, TU Dresden Version vom 26. September 2016, Fehler und Verbesserungsvorschläge bitte an [email protected]
Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v
Kap 1: VEKTORRÄUME Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung ϕ : I X, i ϕ(i) = x i, wobei die Menge I in diesem Zusammenhang auch Indexmenge genannt wird. Man schreibt vereinfacht
7. Ringe und Körper. 7. Ringe und Körper 51
7. Ringe und Körper 51 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich
Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen
Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die
Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden
Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}.
Blatt 0: Mathematik I für Ingenieure (B) Abbildungen und Kompositionen. apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch
Blatt 0: Mathematik I für Ingenieure (B) apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch 10.10.016 Abbildungen und Kompositionen Allgemeine Erklärungen: Siehe Seite 1 zu Anmerkungen zu Mengen und Abbildungen!
Zahlen und metrische Räume
Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,
Aufgabe aus der linearen Algebra I
Aufgabe aus der linearen Algebra I ÜBUNG [01]: Es sei ein beliebiger Körper Kreuzen Sie bei den folgenden Fragen "Ja" nur an, wenn die Aussage für jeden Körper gilt Wenn es auch nur einen Körper gibt,
