WS 2009/10. Diskrete Strukturen
|
|
|
- Teresa Meyer
- vor 8 Jahren
- Abrufe
Transkript
1 WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München
2 Kapitel II Grundlagen Mathematische und notationelle Grundlagen Mengen Relationen und Abbildungen Aussagen- und Prädikatenlogik Beweismethoden Wachstum von Funktionen 2
3 Die Bedeutung von Beweisen und Beweistechniken Informell verstehen wir unter einem Beweis eine korrekte und vollständige (lückenlose) Argumentation, aus der sich unbestreitbar die Wahrheit einer Aussage folgern lässt. Korrektheit schützt uns davor, Fehler zu machen. Vollständigkeit ermöglicht es jedem, das Resultat zu verifizieren. Erst durch den Beweis einer Aussage können wir in allen Situationen auf ihre Korrektheit vertrauen und sie anwenden. 3
4 Terminologie (aus der Mathematik) Axiome, Postulate, Hypothesen, Prämissen Aussagen, von denen man annimmt, dass sie wahr sind. Theorem/Satz Eine Aussage, die aus den Axiomen folgt. Beweis (eines Satzes) Die Argumentation, die zeigt, dass der Satz tatsächlich aus den Axiomen folgt. Lemma Ein Hilfssatz (Theorem) im Beweis eines wichtigen Theorems. Korollar Ein weniger bedeutendes Theorem, das leicht als Konsequenz eines wichtigen Theorems bewiesen werden kann. 4
5 Formale Beweise Problem: wann ist eine Argumentation korrekt und lückenlos? Lösung: formale Definition von Beweis. Die Axiome werden als eine Sequenz A von Formeln der Prädikatenlogik formalisiert, bezüglich einer geeigneten Basisstruktur. Die Aussage des Satzes (normalerweise der Gestalt F ) G) ebenfalls. Eine Menge von gültigen Inferenzregeln (bezüglich der Basisstruktur) wird festgelegt. Ein formaler Beweis ist eine Herleitung von A ` F ) G. 5
6 In der Praxis: Formale Beweise zu konstruieren ist extrem aufwendig. Mit Hilfe von Theorembeweisern ist diese Aufgabe inzwischen für viele Sätze möglich. Neue Sätze werden jedoch erst informell in einer Mischung aus natürlicher Sprache und Prädikatenlogik bewiesen. Der Beweis wird akzeptiert, wenn andere Mathematiker der Meinung sind, der Beweis ließe sich formalisieren, wenn genug Zeit investiert würde. Wenn ein Teil des Beweises bezweifelt wird, muss der Autor diesen Teil näher an einen formalen Beweis bringen. 6
7 Beweistypen. Direkter Beweis Um F ) G zu beweisen, nimm F an, und zeige G. Entspricht der Regel A, F ` G A ` F ) G Indirekter Beweis Widerspruchsbeweis Induktionsbeweis 7
8 Beispiel direkter Beweis Theorem: Sei n N ungerade, dann ist auch n 2 ungerade. 8
9 Beispiel direkter Beweis Theorem: Sei n 2 N 0 ungerade, dann ist auch n 2 ungerade. Beweis: Sei n eine beliebiges ungerades Element von N 0. Aus der Definition von ungerade folgt: es gibt m 2 N 0 mit n=2m +1. Aus der Definition von Quadrat folgt: n 2 = (2m+1)(2m+1). Aus den Eigenschaften der Multiplikation und der Summe folgt: n 2 = 4m 2 + 4m +1= 2(2m 2 + 2m) +1, d.h., n 2 = 2l +1 für l=(2m 2 + 2m). Aus der Definition von ungerade folgt: n 2 ist ungerade. 9
10 Beispiel direkter Beweis Theorem: Sei n 2 N ungerade. Dann lässt sich n als Differenz zweier Quadratzahlen aus N 0 darstellen. Beweis: Sei n eine beliebige ungerade Zahl aus N (d.h., n > 0). Mit n ungerade gilt: (n+1) ist gerade. Mit n ungerade und n > 0 gilt: (n-1) 2 N 0 und (n-1) ist gerade. Mit (n+1) und (n-1) gerade gilt: (n+1)/2, (n-1)/2 2 N 0 10
11 Beispiel direkter Beweis Theorem: Sei n 2 N ungerade. Dann lässt sich n als Differenz zweier Quadratzahlen aus N 0 darstellen. Beweis: Aus der Definition von Quadrat, aus den Eigenschaften des Produkts und der Summe folgt: µ 2 µ 2 n + 1 n 1 = n2 + 2n 1 n2 2n 1 = 4n = n So n ist die Differenz der Quadrate von (n+1)/2 und (n-1)/2. 11
12 Beweistypen. Indirekter Beweis Um F ) G zu beweisen, nimm : G an, und zeige : F. Entspricht der Regel 12 A, : G ` : F A ` F ) G Korrekt weil: (F ) G) (: G ) : F) Nutzlich wenn G die Gestalt G = 8x H hat. Dann :G 9x:H und man kann über das Element, für das : H gilt, argumentieren.
13 Beispiel indirekter Beweis Theorem: Sei n Beweis: N 0. Falls n 2 gerade, dann ist auch n gerade. Die Aussage ist äquivalent zu Wenn n N 0 ungerade, dann ist auch n 2 ungerade Diese Aussage wurde bereits bewiesen. 13
14 Beispiel indirekter Beweis Theorem: Sei f: R! R die Funktion mit f(x) = x 2 5x + 6. Wenn k < 0, dann f(k) 0. Beweis: Die Aussage ist äquivalent zu ``wenn f(k)=0, dann k 0. Sei k eine beliebige Zahl mit f(k) = 0. Aus der Definition von f folgt k 2 5k + 6 =0. Mit k 2 5k + 6 = (k-3)(k-2) gilt k=3 oder k=2. In beiden Fällen gilt k 0. 14
15 Widerspruchsbeweis (reductio ad absurdum) Um F zu beweisen, zeige, dass aus : F einen Widerspruch folgt Entspricht dem Beweisschema A, : F ` G A, : F ` : G A, : F ` false A ` F oder die Äquivalenz F : F ) (G Æ : G) 15
16 Beispiel Widerspruchsbeweis Theorem: Gegeben sei ein Dreieck mit den Seitenlängen a,b,c mit a,b c. Wenn a 2 +b 2 = c 2 gilt, so ist der Winkel zwischen a und b ein rechter Winkel. Beweis: Annahme: Das Dreieck mit den Seiten a,b,c (a,b c, a 2 +b 2 = c 2 ) hat keinen rechten Winkel zwischen a und b. Wir konstruieren ein zweites Dreieck mit Seiten a,b und e, so dass zwischen den Seiten a und b ein rechter Winkel entsteht. 16
17 Beispiel Widerspruchsbeweis. Beweis (Forts.): Da das ursprüngliche Dreieck keinen rechten Winkel enthält gilt: c e (kann weiter argumentiert werden). Mit dem Satz des Pythagoras gilt für das zweite Dreieck: a 2 + b 2 = e 2. Da auch a 2 + b 2 = c 2 folgt: c 2 = a 2 + b 2 = e 2 also c 2 = e 2. Und daher ist c = e, was im Widerspruch zur obigen Aussage ist, dass c e ist. 17
18 Beispiel Widerspruchsbeweis 18 Theorem: p 2 ist irrational. Beweis: p Annahme: 2 2 Q. p Dann gibt es teilerfremde Zahlen n, m 2 N mit 2 = n. m Es folgt n 2 = 2m 2. Damit sind n 2 und n gerade. Da n gerade ist, gibt es eine Zahl k mit 2k = n. Es folgt 4k 2 = 2m 2 und so 2k 2 = m 2. Damit sind m 2 und m gerade, und so nicht teilerfremd. Widerspruch.
19 Vollständige Induktion Eine Beweistechnik um zu zeigen, dass alle natürlichen Zahlen eine Eigenschaft P haben. Mit P(n) bezeichnen wir, dass die Zahl n die Eigenschaft P hat. Um zu zeigen, dass P(n) für jede natürliche Zahl n 0 gilt, geht man wie folgt vor: Man zeigt, dass P(0) gilt (Basis, Verankerung) Man zeigt, dass für jede natürliche Zahl n gilt: Wenn P(n) gilt, dann gilt auch P(n+1). P(n) wird als Induktionsanahme bezeichnet. 19
20 Beispiel Vollständige Induktion Theorem: n i 0 i n ( n 1) 2 20
21 Beispiel Vollständige Induktion Theorem: Für alle n 0 gilt: Beweis: Induktionsbasis. Fall n=0. Induktionsschritt. Sei n 0 und es gelte. Wir zeigen: n+1 X i=0 i = nx i = i=0 n(n + 1) 2 0X i = 0 = i=0 (n + 1)((n + 1) + 1) 2 0(0 + 1) 2 nx i = = i=0 n(n + 1) 2 (n + 1)(n + 2) 2 21
22 Beispiel Vollständige Induktion Theorem: Für alle n 0 gilt: Beweis: Es gilt i=0 i=0 nx i = i=0 n(n + 1) 2 Aus der Induktionsannahme folgt: n+1 X i=0 Ã n+1 X n! X i = i + (n + 1) i = n(n + 1) 2 ³ n 1 + (n + 1) = (n + 1) 2 + = (n + 1)(n + 2) 2 22
23 Beispiel Vollständige Induktion Theorem: n x, n : x 1 ist durch x 1 ohne Rest teilbar. 23
24 Beispiel Vollständige Induktion Theorem: n x, n, x 1 : x 1 ist durch x 1 ohne Rest teilbar. Beweis: 24 Induktionsanfang: n 1 trivial ( x 1) /( x 1) 1 Rest 0 Induktionsannahme: P( n), also Satz richtig für n Induktionsschluss: sei ( x 1) /( x 1) k n 1 n n n x 1 x( x 1) ( x 1) x( x 1) x 1 xk 1 x 1 x 1 x 1 x 1 Dies ist P( n 1), die Behauptung für n 1.
25 Mengenoperationen - Die Potenzmenge Theorem: Sei n N 0 und sei M eine Menge der Kardinalität n. Dann enthält die Potenzmenge P(M) genau 2 n Elemente. Beweis: Durch Induktion über n. Basis. Sei n=0. Wir müssen zeigen, dass P(M) genau ein Element enthält. Da M = ; gilt P(M) = {;}. Fertig. Schritt. Sei n N 0 beliebig und sei M ={a 1,, a n+1 } eine beliebige Menge der Kardinalität n+1. Sei M = {a 1,, a n }. Aus der Induktionsannahme folgt P(M ) = 2 n. 25
26 Mengenoperationen - Die Potenzmenge 26 Theorem: Sei n N 0 und sei M eine Menge der Kardinalität n. Dann enthält die Potenzmenge P(M) genau 2 n Elemente. Beweis (Fortsetzung): Seien MIT = {L µ M j a n+1 2 L} OHNE = {L µ M j a n+1 L}. Aus der Definition von Potenzmenge folgt MIT [ OHNE = P(M). Da MIT und OHNE disjunkt sind, gilt P(M) = MIT + OHNE. Wir zeigen MIT = 2 n und OHNE = 2 n. OHNE = 2 n. Es gilt OHNE = P(M ) und so OHNE = 2 n. MIT = 2 n. Es gilt: L 2 MIT gdw. Ln {a n+1 } 2 OHNE. Es folgt MIT = OHNE = 2 n.
27 Transitive Hülle (R µ A A) Theorem: R + = n 1 R n Beweis: Wir zeigen R + µ n 1 R n und R + n 1 R n. Beweis von R + µ n 1 R n. Wir zeigen zuerst, dass n 1 R n transitiv ist. Seien x,y,z beliebige Elemente von A mit (x,y),(y,z)2 n 1 R n. Es gibt i, j 1 mit (x,y)2 R i und (y,z)2 R j. Mit R i+j = R i ± R j gilt (x,z) 2 R (i+j) und so (x,z) 2 n 1 R n. Aus R=R 1 folgt R µ n 1 R n. Wir haben also: n 1 R n ist transitiv und enthält R. Da R + die kleinste Relation ist, die transitiv ist und R enthält, gilt 27 R + µ n 1 R n.
28 Transitive Hülle (R A A) Theorem: R + = n 1 R n Beweis (Fortsetzung): Beweis von R + n 1 R n. Sei T µ A A eine beliebige transitive Relation mit R µ T. Wir zeigen n 1 R n µ T. Damit ist n 1 R n die kleinste transitive Relation, die R enthält, d.h. R + = n 1 R n. Es reicht zu zeigen, dass R n µ T für alle n 1 gilt. Wir beweisen es durch Induktion über n. 28
29 Transitive Hülle (R A A) Theorem: R + = n 1 R n 29 Beweis (Fortsetzung): Basis. Sei n=1. R 1 µ T folgt aus R 1 =R und R µ T. Schritt. Sei n 1 beliebig und nehmen wir an, dass R n µ T gilt. Wir zeigen R n+1 µ T. Sei (x,y) 2 R n+1 beliebig. Wir zeigen (x,y) 2 T. Mit R n+1 = R n ± R gilt: es gibt z 2 A mit (x,z)2r n und (z,y)2r. Mit R n µ T und R µ T gilt: es gibt z 2 A mit (x,z) 2 T und(z,y)2t. Da T transitiv ist, gilt (x,y) 2 T.
Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)
WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14
Brückenkurs Mathematik
Beweise und Beweisstrategien [email protected] Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, September 5, 2015 Hinweis zu den Folien Diese Folien sind
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau
Logik für Informatiker 1. Grundlegende Beweisstrategien Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Mathematisches Beweisen Mathematische ussagen - haben oft
Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den
Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Inhaltsverzeichnis. Inhaltsverzeichnis
Inhaltsverzeichnis Inhaltsverzeichnis 1 Beweistechniken 1.1 Prädikatenlogik..................................... 1. Direkter Beweis.................................... 3 1.3 Indirekter Beweis....................................
Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)
WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16
Elementare Beweismethoden
Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe
3 Vollständige Induktion
3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon
Formale Sprachen und Automaten
Mengen Eine Menge ist eine Gruppe von Elementen, die eine Einheit bilden (siehe z.b. Halmos 1976). Formale Sprachen und Automaten Mathematisches Rüstzeug Mengen können verschiedene Typen von Elementen
Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.
Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht
Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion
Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten
Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)
WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16
De Morgan sche Regeln
De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil
Brückenkurs Mathematik. Dienstag Freitag
Brückenkurs Mathematik Dienstag 29.09. - Freitag 9.10.2015 Vorlesung 2 Mengen, Zahlen, Logik Kai Rothe Technische Universität Hamburg-Harburg Mittwoch 30.09.2015 Mengen.................................
WS 2008/09. Diskrete Strukturen
WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809
Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung
Mathematisches Institut II.06.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 3: Elementare Beweismethoden: Direkter Beweis,
Fachwissenschaftliche Grundlagen
Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 8. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 8. Vorlesung 1 / 25 Themen
Handout zu Beweistechniken
Handout zu Beweistechniken erstellt vom Lernzentrum Informatik auf Basis von [Kre13],[Bün] Inhaltsverzeichnis 1 Was ist ein Beweis? 2 2 Was ist Vorraussetzung, was ist Behauptung? 2 3 Beweisarten 3 3.1
TU8 Beweismethoden. Daniela Andrade
TU8 Beweismethoden Daniela Andrade [email protected] 12.12.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2
Kapitel 11 Beweisführung. Mathematischer Vorkurs TU Dortmund Seite 125 / 254
Kapitel 11 Beweisführung Kapitel 11 Beweisführung Mathematischer Vorkurs TU Dortmund Seite 125 / 254 Kapitel 11 Beweisführung Grundsätzlich: ein mathematischer Satz ist eine Aussage der Form wenn... gilt,
Hilbert-Kalkül (Einführung)
Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle
Fachwissenschaftliche Grundlagen
Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 9. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 9. Vorlesung 1 / 17 Themen
Kapitel 3. Natürliche Zahlen und vollständige Induktion
Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine
40. Österreichische Mathematik-Olympiade Kurswettbewerb Lösungen
40. Österreichische Mathematik-Olympiade Kurswettbewerb Lösungen TU Graz, 29. Mai 2009 1. Für welche Primzahlen p ist 2p + 1 die dritte Potenz einer natürlichen Zahl? Lösung. Es soll also gelten 2p + 1
Brückenkurs Mathematik
Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume
Brückenkurs. Beweise. Anja Haußen Brückenkurs, Seite 1/23
Brückenkurs Beweise Anja Haußen 30.09.2016 Brückenkurs, 30.09.2016 Seite 1/23 Inhalt 1 Einführung 2 Sätze 3 Beweise 4 direkter Beweis Brückenkurs, 30.09.2016 Seite 2/23 Einführung Die höchste Form des
A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )
Institut für Analysis und Scientific Computing TU Wien W. Auzinger WS 05/6 A N A L Y S I S I F Ü R T P H, U E (03.088). Übungstest (FR, 6..05) (mit Lösung ) Aufgabe. a ) Wandeln Sie die periodische Dezimalzahl
Mathematische Grundlagen der Computerlinguistik
Mengen und Mengenoperationen (Teil II) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents 1 2 3 Definition Mengenfamilie Eine Menge, deren sämtliche Elemente selbst wiederum
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
ANALYSIS I FÜR TPH WS 2016/17 1. Übung Übersicht
. Übung Übersicht Aufgaben zu Kapitel und 2 Aufgabe : Drei klassische Ungleichungen Aufgabe 2: ) Beweis einer Summenformel Induktion) Aufgabe : ) Teleskopsummen Aufgabe 4: Noch etwas Formelmanipulation
Induktion und Rekursion
Induktion und Rekursion Induktion und Rekursion Vorkurs Informatik Theoretischer Teil WS 013/14. Oktober 013 Vorkurs Informatik WS 013/14 1/1 Vollständige Induktion Vorkurs Informatik WS 013/14 /1 Ziel
Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann
Reihen/Partialsummenfolgen und vollständige Induktion Robert Klinzmann 3. Mai 00 Reihen / Partialsummen 1 Inhaltsverzeichnis 1 Vorwort Das Prinzip der vollständigen Induktion 3 3 Herleitung der Gauß schen
6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen
6. Zahlen 6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen 6. Zahlen GM 6-1 6.1 Natürliche Zahlen Vom lieben Gott gemacht Menschenwerk:
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
Induktive Beweise und rekursive Definitionen
Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1
Kapitel 1. Körper und Zahlen. 1.1 Mengen
Kapitel 1 Körper und Zahlen 11 Mengen 12 Das Prinzip der vollständigen Induktion 13 Körper 14 Geordneter Körper 15 Reelle Zahlen 16 Komplexe Zahlen 11 Mengen Dieser Abschnitt gibt eine kurze Einführung
Mathematik und Logik
Mathematik und Logik 5. Übungsaufgaben 2006-11-21 1. Beweisen Sie, daß die Aussage allgemeingültig ist. A = A Beweis. Dies ist ein Spezialfall von (((A = B) = B) = B) = (A = B), was wir wie folgt beweisen.
Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.
Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )
1 Das Prinzip der vollständigen Induktion
1 1 Das Prinzip der vollständigen Induktion 1.1 Etwas Logik Wir nennen eine Formel oder einen Satz der Alltagssprache eine Aussage, wenn sie wahr oder falsch sein kann. Die Formeln 2 = 3, 2 4, 5 5 sind
Vorlesung Mathematik I für Wirtschaftswissenschaftler. Universität Leipzig, WS 16/17
Vorlesung Mathematik I für Wirtschaftswissenschaftler Universität Leipzig, WS 16/17 Prof. Dr. Bernd Kirchheim Mathematisches Institut [email protected] 1 / 1 Kapitel 1: Grundlagen 4 / 1 Kap.1
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Also kann nur A ist roter Südler und B ist grüner Nordler gelten.
Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf
Übungen Mathematik I, M
Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0) 09.0.0. Kommissar K hat 3 Tatverdächtige P, Q und R. Er weiß: (a) Wenn sich Q oder R als Täter herausstellen, dann ist P unschuldig.
mathe plus Aussagenlogik Seite 1
mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet
Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen
Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 18.4. 2012 176 Automatentheorie und formale Sprachen VL 5 Reguläre und nichtreguläre Sprachen Kathrin Hoffmann 18. Aptil 2012 Hoffmann (HAW
Beweistechniken. Beweistechniken. Vorsemesterkurs Informatik Theoretischer Teil Wintersemester 2013/ Oktober Vorsemesterkurs WS 2013/1
Beweistechniken Beweistechniken Vorsemesterkurs Informatik Theoretischer Teil Wintersemester 2013/14 7. Oktober 2013 Beweistechniken > Motivation Wozu Beweise in der Informatik?... um Aussagen wie 1 Das
Kapitel 1. Grundlagen Mengen
Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig
WS 2014/15 Diskrete Strukturen Kapitel 3: Kombinatorik (2)
WS 2014/15 Diskrete Strukturen Kapitel 3: Kombinatorik (2) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14
5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56
5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten
Grundlagen der Mathematik
Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Grundlagen der Mathematik Lösungsskizzen 2 Präsenzaufgaben (P2) Wir betrachten drei Teilmengen der natürlichen Zahlen: - A = {n
Induktive Beweise und rekursive Definitionen
Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1
Induktion und Rekursion
Mathematische Beweistechniken Vorkurs Informatik SoSe13 10. April 013 Mathematische Beweistechniken Ziel Mathematische Beweistechniken Ziel beweise, dass eine Aussage A(n) für alle n N gilt. Beispiel Für
Zirkel und Zahlen, Julius-Maximilians-Universität Würzburg, Juli 07. Zirkel und Zahlen
Protokoll der Projektgruppe Zirkel und Zahlen, Julius-Maximilians-Universität Würzburg, Juli 07 Zirkel und Zahlen Team: Nancy Seckel, Hans Christian Döring, Eugenio Buzzoni, Anna Thurmayer, Maximilian
Rhetorik und Argumentationstheorie.
Rhetorik und Argumentationstheorie 2 [[email protected]] Teil 2 Was ist ein Beweis? 2 Wichtige Grundlagen Tautologie nennt man eine zusammengesetzte Aussage, die wahr ist, unabhängig vom
Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit
Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900
2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).
17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften
5 Teilmengen von R und von R n
5 Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,...,x n ) : x i R} = R }... {{ R }. n mal Für x R ist x der Abstand zum Nullpunkt. Die entsprechende Verallgemeinerung
1 Mengen und Aussagen
Mathematik für Physiker I, WS 010/011 Montag 01.11 $Id: mengen.tex,v 1.4 010/11/01 14:19:48 hk Exp $ $Id: beweise.tex,v 1.3 010/11/05 06:40:11 hk Exp $ 1 Mengen und Aussagen Wir haben jetzt Allaussagen
3 Vom Zählen zur Induktion
7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,
WS 2008/09. Diskrete Strukturen
WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe
Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld
Westfählische Wilhelms-Universität Eulersche Graphen Autor: 21. Mai 2015 Inhaltsverzeichnis 1 Das Königsberger Brückenproblem 1 2 Eulertouren und Eulersche Graphen 2 3 Auffinden eines eulerschen Zyklus
Rechenregeln für Summen
Rechenregeln für Summen Im Umgang mit Summen sind gewisse Regeln zu beachten. 1 Summe gleicher Summanden Betrachten wir folgende Summe: x Hier enthält x keinen Summationsindex, d.h. es wird x einfach n-mal
Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016
Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe16 Ronja Düffel 21. März 2016 Logik und Beweise Wozu Beweise in der Informatik?... um Aussagen wie 1 Das Programm erfüllt die gewünschte Aufgabe.
1. Gruppen. 1. Gruppen 7
1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.
Aufgabe 24 Die Wahrheitswerte von A A B und B sind immer gleich:
Lösungen zu den Aufgaben von Anfang August Aufgabe 24 Die Wahrheitswerte von A A B und B sind immer gleich: Der Wahrheitswert von A A ist immer wahr, da immer entweder A oder A den Wahrheitswert wahr hat.
1.2 Eigenschaften der ganzen Zahlen
Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen
Vorsemesterkurs Informatik
Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung
Diskrete Mathematik für Informatiker
Universität Siegen Lehrstuhl Theoretische Informatik Carl Philipp Reh Daniel König Diskrete Mathematik für Informatiker WS 016/017 Übung 7 1. Gegeben sei folgender Graph und das Matching M = {{h, f}, {c,
Kapitel III. Aufbau des Zahlensystems
Kapitel III. Aufbau des Zahlensystems 1 Addition und Multiplikation natürlicher Zahlen Wir wollen erklären, wie man natürliche Zahlen addiert und multipliziert und dabei nur den Begriff das Zählens verwenden.
w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2
1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba
Lösung zur Übung für Analysis einer Variablen WS 2016/17
Blatt Nr. 3 Prof. F. Merkl Lösung zur Übung für Analysis einer Variablen WS 206/7 Aufgabe Das Guthaben G setzt sich zusammen aus der Summe aller bisherigen Einzahlungen multipliziert mit ( + p) k, wobei
2. Symmetrische Gruppen
14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen
Einführung in die Mathematik (Vorkurs 1 )
Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2015/16 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagenlogik 4 2
Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt
Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden
Informatik I. Informatik I Iteration vs. Rekursion. Iteration vs. Rekursion Iteration vs. Rekursion. 20. Iteration vs.
Informatik I 1. Februar 2011 20. Informatik I 20. Jan-Georg Smaus 20.1 Albert-Ludwigs-Universität Freiburg 1. Februar 2011 Jan-Georg Smaus (Universität Freiburg) Informatik I 1. Februar 2011 1 / 31 Jan-Georg
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Große Übung #2 Phillip Keldenich, Arne Schmidt 10.11.2016 Organisatorisches Fragen? Checkliste: Anmeldung kleine Übungen Anmeldung Mailingliste Dies ersetzt nicht die Prüfungsanmeldung!
Folgen. Kapitel 2. Folgen. Peter Becker (H-BRS) Analysis Sommersemester / 543
Kapitel 2 Folgen Peter Becker (H-BRS) Analysis Sommersemester 2016 89 / 543 Inhalt Inhalt 1 Folgen Definition kriterien in C, R d und C d Peter Becker (H-BRS) Analysis Sommersemester 2016 90 / 543 Definition
Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen.
Vorlesung 4 Universität Münster 13. September 2007 1 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische) Produkt
Wie beweise ich etwas? 9. Juli 2012
Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Wie beweise ich etwas? 9. Juli 2012 1 Was ist ein Beweis? 1.1 Ein Beispiel Nimm einen Stift und ein Blatt Papier und zeichne fünf
Kapitel 1. Grundlagen
Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig
Kettenbrüche. dar, und allgemein: a 1 + 1
Kettenbrüche Um die Verfahren der höheren Mathematik besser verstehen zu können, ist es ratsam, sich über die verwendeten Zahlen Gedanken zu machen. Der Grieche Hippasos (5. Jahrh. v. Chr.) entdeckte,
Prüfungsaufgaben. Aufgabe 2 (TP1 Frühjahr 2006) ( ) logisch
Aufgabe 1 (TP1 Februar 2007) Prüfungsaufgaben Bestimmen Sie zu den nachstehenden aussagenlogischen Aussageformen je eine möglichst einfache logisch äquivalente Aussageform. Weisen Sie die Äquivalenzen
Vorlesung. Vollständige Induktion 1
WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen
Vorkurs Mathematik für Informatiker 6 Logik, Teil 2
6 Logik, Teil 2 Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 6: Logik, Teil 2 1 Aussagenformen Aussage mit Parameter (zum Beispiel x) Aussage wahr oder falsch abhängig vom Parameter
Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln
Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November 2009 1 Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt
Die Sprache der Mathematik
Die Sprache der Mathematik Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] Diese Lehrveranstaltung...... ist Pflicht für alle Studenten der Informatik und
Der Drei-Quadrate-Satz von Gauß
Der Drei-Quadrate-Satz von Gauß Bekanntlich ist eine ungerade Primzahl p genau dann Summe zweier Quadratzahlen, wenn p 1 mod 4. Daraus folgt, dass eine positive ganze Zahl n genau dann Summe zweier Quadratzahlen
Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler
Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante
Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal
3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition
