ANALYSIS I FÜR TPH WS 2016/17 1. Übung Übersicht

Größe: px
Ab Seite anzeigen:

Download "ANALYSIS I FÜR TPH WS 2016/17 1. Übung Übersicht"

Transkript

1 . Übung Übersicht Aufgaben zu Kapitel und 2 Aufgabe : Drei klassische Ungleichungen Aufgabe 2: ) Beweis einer Summenformel Induktion) Aufgabe : ) Teleskopsummen Aufgabe 4: Noch etwas Formelmanipulation Aufgabe 5: Mengenoperationen, kartesisches Produkt Aufgabe 6: Eine weitere Ungleichug Aufgabe 7: ) Der Multinomialsatz Aufgabe 8: ) Ein Beispiel zu Mengen und kombinatorischen Abbildungen Aufgabe 9: Unendlicher Durchschnitt Aufgabe 0: Ein bisschen Populationsdynamik

2 . Übung [zur Übersicht] Aufgabe / Beweisen Sie die Ungleichungen a) [L] x y 2 δ x 2 + δ y 2), δ > 0 b) [L] x y x+y 2, x, y 0 c) [L] x y + x 2 y 2 x 2 + x2 2 y 2 + y2 2 Hinweis zu a) : Bringen Sie alles auf eine Seite. Hinweis zu b), c) : Quadrieren geht über Studieren. a) Die Ungleichung ist äquivalent zu wir setzen δ : ε) : 0 δ x 2 2 xy + δ y 2 ε 2 x 2 2 εx ε y + ε 2 y 2 ε x ε y) 2 b) Die Ungleichung ist äquivalent zu 4 x y x + y) 2 x x y + y 2 0 x 2 2 x y + y 2 x y) 2 b) besagt: Das geometrische Mittel x y geom. Interpretation!) ist nie größer als das arithmetische Mittel x+y 2. c) Die Ungleichung ist äquivalent zu x y + x 2 y 2 ) 2 x 2 + x 2 2) y 2 + y 2 2 ) x 2 y x y x 2 y 2 + x 2 2 y2 2 x 2 y 2 + x 2 y2 2 + x 2 2 y 2 + x 2 2 y2 2 2 x y 2 ) x 2 y ) x 2 y x 2 2 y 2 0 x y 2 x 2 y ) 2 Anmerkung: c) ist ein Spezialfall der Cauchy-Schwarz schen Ungleichung siehe Lineare Algebra).

3 . Übung [zur Übersicht] Aufgabe 2/ ) Beweisen Sie mittels vollständiger Induktion. 4k n n + für alle n N 0 Anmerkung: Der Induktionsschluss erfordert etwas Rechenarbeit. Schauen Sie sich auch einige Summenglieder an, um zu verstehen, wieso die Summe immer positiv ist. n 0 Induktionsanfang): 0 4k n n + Induktionsschluss): n+ 4k 2 4k n + ) 2 IND n + 2 n n + ) 2 n + 2 n + 4 n n + Um dies auf gleichen Nenner zu bringen, faktorisieren wir: 4 n n + 4 n n + 4 ) 4 n ) 2 n + ) 2 n + ) mit nochmaliger Faktorisierung): n + 2 n + 4 n n + n + 2 n + 2 n + ) 2 n + ) n + )2 n + ) 2 n + ) 2 n + ) 2 n2 + 5 n n + ) 2 n + ) 2 n ) + 2 n + ) 2 n + ) 2 n + ) + Die Summe: bleibt immer > 0.

4 . Übung [zur Übersicht] Aufgabe / ) Eine Teleskopsumme ist eine Summe der Gestalt a k+ a k ) a a 0 ) + a 2 a ) a n+ a n ) a n+ a 0 oder ähnlich eine Summe von Differenzen.) a) [L] Fortsetzung von Aufgabe 2): Beweisen Sie 4k n n + in direkter Weise, indem Sie diese als Teleskopsumme identifizieren. D.h., versuchen Sie a k so zu bestimmen dass für alle k die Identität a k+ a k 4k 2 gilt. b) [L] Analog wie a), für die geometrische Summe q k q ). Anmerkung: Die Bestimmung der a k ist nicht ganz straightforward man muss ein wenig herumprobieren. Wissen Sie, was eine Partialbruchzerlegung ist? In VO: später.) Das hilft für a); ansonsten ist das etwa mühsam. a) Mit der Identität Partialbruchzerlegung!) 4k 2 2 2k + ) 2 2k ) 4 k + 2 ) 4 k 2 ) 4 k + ) }{{ 2 } ) 4 k }{{ 2 } ) a k+ a k folgt 4k 2 a n+ a 0 4 n + ) 2 ) ) 4 n + 2 ) + 2 n + 2 n +

5 . Übung [zur Übersicht] Aufgabe /2 b) Mit der Identität q ; kleiner Trick!) q k qk q ) q qk+ q k q qk+ q k } q {{ }} q {{ } a k+ a k folgt q k a n+ a 0 qn+ q q0 q qn+ q Man sieht, dass die Aufgabenstellung, eine Summe als Teleskopsumme zu identifizieren und damit elementar berechenbar zu machen was nicht immer möglich ist) tatsächlich nicht unmittelbar straightforward ist. Diese Problematik ist verwandt zum Aufsuchen einer Stammfunktion in der Integralrechnung.)

6 . Übung [zur Übersicht] Aufgabe 4/ Zeigen Sie: + + N für alle n N Anmerkung: Dies funktioniert am besten mittels direkter Vereinfachung ohne Induktion). Wie wird man wohl mit ± umgehen? Verwende Binomi : + n k k k n k ) k k + + Hier ist + ) k weil k/2 N für k gerade. k/2 k ) k k/2 k + ) k ) k/2 k { 0, k ungerade 2, k gerade... n k gerade k/2 N k Beispiel: n 2 + ) 2 + ) ) ) 8 Anmerkung: Der Beweis zeigt, dass die Aussage offenbar allgemeiner gilt: + m + m N für alle n N für beliebige m N. Notation für Summe: Hier sollte klar sein, wie es gemeint ist.

7 . Übung [zur Übersicht] Aufgabe 5/ a) [L] Sei A eine nichtleere Menge. Wie sieht A { } aus? b) [L] Seien A und B beliebige Mengen. Zeigen Sie A B) 2 A 2 A B) B A) B 2 c) [L] Unter welcher Bedingung an A und B gilt A B B A? d) [L] Falls A und B disjunkte Mengen sind, d.h. falls sie kein gemeinsames Element haben A B { }), schreibt man für die Vereinigungsmenge manchmal auch A B : A + B. Zeigen Sie für diesen Fall A B) 2 A 2 + A B) + B A) + B 2 als Spezialfall von b), d.h., zu zeigen ist dass tatsächlich alle vier rechts auftretenden kartesischen Produkte paarweise disjunkt sind. Visualisieren Sie dies in geeigneter Weise anhand zweier einfacher Mengen. a) A { } { a, b): a A b { } } { } b) A B) 2 A B) A B) {x, y): x A B y A B} {x, y): x A x B) y A y B)} {x, y): x A y A} {x, y): x A y B} {x, y): x B y A} {x, y): x B y B} A 2 A B) B A) B 2 c) 2 Fälle: A B A B A 2 B A A B x A mit x B oder umgekehrt) Für b B gilt x, b) A B, jedoch b, x) A B. A B B A

8 . Übung [zur Übersicht] Aufgabe 5/2 d) Vgl. b)) Für A B { } sind die Mengen A 2, A B, B A, B 2 paarweise disjunkt: sie können paarweise betrachtet) keine gemeinsamen Elemente enthalten. Einfaches Beispiel, visualisiert in Form einer Tabelle: A {, 2}, B {} A 2 A B A + B) 2 B A B 2, ), 2), ) 2, ) 2, 2) 2, ), ), 2), )

9 . Übung [zur Übersicht] Aufgabe 6/ a) [L] Sei q > eine reelle Zahl. Beweisen Sie mittels vollständiger Induktion: q n + n q ) für alle n N 0 b) [L] Beweisen Sie die Aussage aus a) direkt mit Hilfe eines aus der Vorlesung bekannten Satzes. Hinweis: Setzen Sie q + δ mit δ > 0). a) Mit q + δ δ > 0) ist zu zeigen: + δ + n δ für alle n N 0 Diese Ungleichung wird als Bernoulli-Ungleichung bezeichnet. Induktionsanfang: n 0 Induktionsschluss: n n + : + δ) δ + δ+ + δ + δ) IND + n δ) + δ) + n + ) δ + n δ 2 + n + ) δ b) Verwende Binomi : + δ + n δ + + n δ n k δ k k nn ) δ } 2 {{} 0

10 . Übung [zur Übersicht] Aufgabe 7/ ) Eine Verallgemeinerung des Binomischen Lehrsatzes ist der Multinomialsatz:. Für alle m, n N gilt a + + a m n ) k,..., k m k + +k m n a k ak 2 2 ak m m, mit ) n : k,..., k }{{ m } Multinomialkoeffizient n! k! k m! Dabei ist die Summe k + +k m n... so zu verstehen, dass alle möglichen geordneten Tupel Multi-Indizes) k,..., k m ) mit k l {0,,..., n} berücksichtigt werden, deren Summe k + + k m gleich n ist. a) [L] Zeigen Sie, dass sich für m 2 genau der Binomische Lehrsatz ergibt. b) [L] Tabellieren Sie für den Fall m die Multinomialkoeffizienten zu n, 2,. a) Für m 2 : a + a 2 k, k 2 k +k 2 n k 0 mit k 2 n k ) ) a k ak 2 n 2, mit k, k 2 n! k! n k )! } {{ ) } n k a k an k 2 n! k! k 2!

11 . Übung [zur Übersicht] Aufgabe 7/2 b) m : n k k2 k ) Multinomialkoeffizient ) 0 0 ) 0 0 ) a + a 2 + a ) a + a 2 + a n 2 k k2 k ) Multinomialkoeffizient ) ) ) 0 ) 2 0 ) 2 0 ) 2 a + a 2 + a ) 2 ) ) a 2 + a a a a 2 + a 2 a + a a n k k2 k ) Multinomialkoeffizient ) 0 0 ) 0 0 ) 2 0 ) 0 2 ) 0 2 ) 2 0 ) 0 2 ) 2 0 ) ) 6 a + a 2 + a ) ) a + a 2 + a + ) a 2 a 2 + a 2 2 a + a 2 a + a a a 2 a 2 + a a a a 2 a

12 . Übung [zur Übersicht] Aufgabe 8/ ) Seien M, N Mengen bestehend aus m bzw. n Elementen, wobei n > m. Weiters sei f : N M eine Abbildung. a) [L] Zeigen Sie: Für jede derartige Abbildung f gibt es zwei verschiedene n, n 2 N mit fn ) fn 2 ). Wie haben wir eine derartige Eigenschaft einer Abbildung bezeichnet? b) [L] Die Eigenschaft a) ist elementar und sehr einfach und kann trotzdem sehr nützlich sein. Beispiel: Beweisen Sie: In einem Seminar mit n 2 Teilnehmern gibt es zwei Teilnehmer, die mit einer gleichen Anzahl von Teilnehmern befreundet sind. Hinweis: Identifizieren Sie N, M und f. Jeder kann zwischen 0 und n Freunde haben. Wichtig ist hier: Befreundet ist eine symmetrische Relation, d.h. A ist mit B befreundet genau dann wenn B mit A befreundet ist.) a) Die Behauptung besagt genau, dass f nicht injektiv sein kann. Beweis indirekt): Angenommen, f ist injektiv. Dann besteht ihr Bild fn) {fx): x N} aus n Elementen, was jedoch wegen fn) M mit M m < n nicht möglich ist. Die Aussage wird oft als Schubfachprinzip bezeichnet: Wenn n > m Objekte in m Schubfächern unterzubringen sind, ist es unmöglich, dass in jedem Schubfach nur ein einziges Objekt zu liegen kommt. b) In Anwendungen besteht die Hauptproblematik darin, Objekte die Menge N) und Schubfächer die Menge M) geeignet zu identifizieren. Lösung des Beispiels: Die Objekte sind die n Personen Menge N; nennen wir sie lieber P ), und Schubfächer sind die möglichen Anzahlen von Freunden 0 bis n ) Menge M; nennen wir sie lieber F ). Also: f : P F, fp) : Anzahl von Freunden der Person p.

13 . Übung [zur Übersicht] Aufgabe 8/2 Dann gibt es aber genau so viele Schubfächer wie Teilnehmer, m n, und das Schubfachprinzip ist nicht direkt anwendbar. Jedoch ist es wegen der Symmetrie der Freundschaftsrelation!icht möglich, dass zugleich jemand teilnimmt, der mit jedem anderen befreundet ist also n Freunde) und jemand, der gar keine 0) Freunde hat. Die Schubfächer 0 und n können also nicht beide belegt sein, und damit können wir m n setzen, d.h. BildP ) F besteht aus maximal m n Elementen. Also ist das Schubfachprinzip auf die Abbildung f : P BildP ) anwendbar und die Aussage somit bewiesen.

14 . Übung [zur Übersicht] Aufgabe 9/ Beweisen Sie in formal sauberer Weise: 0, ) n n N { } Notation: a, b) : {x R: a < x < b}.) Beweis indirekt: Angenommen es gilt 0, ) { } n Es gibt ein x > 0 mit n N x < n für alle n N. Letzteres ist ein Widerspruch zu x > 0. Beachte: Für ein beliebiges x > 0 gilt x > /n für hinreichend großes n N.)

15 . Übung [zur Übersicht] Aufgabe 0/ a) [L] Für eine Population p n, n 0,, 2,... gelte p n+ w p n, n 0,, 2,... wobei der Anfangswert p 0 > 0 vorgegeben ist. Dabei sei w > eine gegebene Wachstumsrate; die n 0,, 2,... entsprechen diskreten Zeitpunkten. Geben Sie für p n in Abhängigkeit von n einen expliziten Formelausdruck an. Eigentlich ist das ein Induktionsargument, allerdings ein sehr einfaches.) b) [L] Sei ˆp n eine weitere Population, charakterisiert durch ˆp n+ ŵ ˆp n mit ŵ > w und gegebenem ˆp 0 > 0. Zeigen Sie: Egal wie klein ˆp 0 auch im Vergleich zu p 0 ist, für hinreichend große n wird gelten ˆp n > p n. Wie verhält sich ˆp n /p n konkret für n? c) [L] Sei w 2. Zeigen Sie: n p k < p n für alle n N d) [L] Ist die Aussage aus c) auch richtig für < w < 2? Begründung!) Hinweis: Leiten Sie eine Ungleichung der Gestalt w n... her, die für alle n gelten muss, damit die Aussage richtig ist. a) Offensichtlich ist p n eine geometrische Progression: p n w n p 0, n 0,, 2,... b) Mit ˆp n ŵ n ˆp 0, n 0,, 2,... gilt ˆp n ŵn ˆp ŵ ) 0 ˆp 0 n : q n ˆp 0 p n w n p 0 w p 0 p 0 wobei laut Annahme q ŵ w > qn + n q ) für n. Hier wurde die Bernoulli-Ungleichung verwendet.)

16 . Übung [zur Übersicht] Aufgabe 0/2 c) Geometrische Summe für w 2 p n 2 n p 0 ) : n p k n p 0 2 k p 0 2 n 2 < p 0 2 n p n d) Für allgemeines w : n p k n p 0 w k p 0 w n w? <? p n p 0 w n Also: Zu klären ist, ob für < w < 2 folgende Ungleichung für alle n besteht: w n w wn w n w ) w n 2 w w w w n 2 w w Dies ist nicht möglich für alle n, da w n für n.

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung ) Institut für Analysis und Scientific Computing TU Wien W. Auzinger WS 05/6 A N A L Y S I S I F Ü R T P H, U E (03.088). Übungstest (FR, 6..05) (mit Lösung ) Aufgabe. a ) Wandeln Sie die periodische Dezimalzahl

Mehr

Beispiel 27 (Beweis durch Widerspruch) Satz 28 3 ist irrational, d. h. Beweis: Widerspruchsannahme: 3 Q.

Beispiel 27 (Beweis durch Widerspruch) Satz 28 3 ist irrational, d. h. Beweis: Widerspruchsannahme: 3 Q. Beispiel 27 (Beweis durch Widerspruch) Wir nehmen an, dass die zu zeigende Aussage falsch ist und führen diese Annahme zu einem Widerspruch. Satz 28 3 ist irrational, d. h. 3 / Q. Beweis: Widerspruchsannahme:

Mehr

ANALYSIS I FÜR TPH WS 2018/19 3. Übung Übersicht

ANALYSIS I FÜR TPH WS 2018/19 3. Übung Übersicht ANALYSIS I FÜR TPH WS 208/9 3. Übung Übersicht Aufgaben zu Kapitel 5 und 6 Aufgabe : Konvergenz von Reihen (i) Aufgabe 2: Konvergenz von Reihen (ii) Aufgabe 3: ( ) Konvergenz von Reihen (iii) Aufgabe 4:

Mehr

aus der Bedingung/Annahme A folgt ein Widerspruch ), so ist A falsch!

aus der Bedingung/Annahme A folgt ein Widerspruch ), so ist A falsch! Bemerkungen: 1 Die Bedeutung von (und damit ) ist klar. wird oft, vor allem in Beweisen, auch als geschrieben (im Englischen: iff, if and only if). 2 Für zwei boolesche Aussagen A und B ist A B falsch

Mehr

4.6 Beweistechniken Die meisten mathematischen Behauptungen sind von der Form

4.6 Beweistechniken Die meisten mathematischen Behauptungen sind von der Form 4.6 Beweistechniken Die meisten mathematischen Behauptungen sind von der Form A B bzw. (A 1 A k ) B. Um A B zu beweisen, können wir zeigen: 1 Unter der Annahme A können wir B zeigen (direkter Beweis).

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 08.11.2018 Dr. Markus Lange Analysis 1 Aufgabenzettel 4 Abgabe bis 14. November 2018, 19:00 Uhr Erinnerung: Die Anmeldung für den Übungsschein

Mehr

Folgen und Reihen Folgen

Folgen und Reihen Folgen Folgen und Reihen 30307 Folgen Einstieg: Wir beginnen mit einigen Beispielen für reelle Folgen: (i),, 4, 8, 6, (ii) 4,, 6, 3, 7, (iii) 0,,,, 3,, (iv), 3, 7,,, Aufgabe : Setzt die Zahlenfolgen logisch fort

Mehr

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen

Mehr

2. Grundlagen. A) Mengen

2. Grundlagen. A) Mengen Chr.Nelius: Zahlentheorie (SoSe 2019) 5 A) Mengen 2. Grundlagen Eine Menge ist durch Angabe ihrer Elemente bestimmt. Man kann eine Menge aufzählend oder beschreibend definieren. Im ersten Falle werden

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1 Musterlösung zum Weihnahchtsübungsblatt Teil von Martin Fabricius Aufgabe a) Diese Aufgabe kann z. B. durch ausmultiplizieren gelöst werden: (433) 7 = 4 7 3 +3 7 + 7 +3 7 0 = 4 343+3 49+ 7+3 = 37+47+4+3

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

: das Bild von ) unter der Funktion ist gegeben durch

: das Bild von ) unter der Funktion ist gegeben durch % 1.3 Funktionen Seien und Mengen nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. Bezeichnungen: : Definitionsbereich : Bildbereich (Zielmenge) von Der Graph einer Funktion: graph!

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )

Mehr

2.1 Definitionen Sätze und Beweise Erklärungen zu den Definitionen... 15

2.1 Definitionen Sätze und Beweise Erklärungen zu den Definitionen... 15 Mengen Übersicht.1 Definitionen................................................. 11. Sätze und Beweise............................................ 14.3 Erklärungen zu den Definitionen...............................

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen Aufgaben mit Musterlösung 21. März 2011 Tanja Geib 1 Aufgabe 1 Geben Sie zu B = {0, 2, 4} und

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 12. November 2015 Satz 3.16 (Binomischer Lehrsatz) Seien a, b R. Dann gilt für alle

Mehr

Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise

Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 15. November 2010 http://www.mathematik.uni-trier.de/

Mehr

Alternativ kann man auch die Differenz a n+1 a n betrachten:

Alternativ kann man auch die Differenz a n+1 a n betrachten: Aufgabe 1 Folgen auf Monotonie und Beschränktheit prüfen. a) Beschränktheit? Die Folge ( ) n N mit = n + ( 1) n ist nach unten beschränkt, denn es gilt n + ( 1) n n 1 1 für alle n N. Allerdings ist die

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 30.11.2016 5. Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,..., x n ) : x i R} = } R. {{.. R }. n mal Für x R ist x der Abstand zum

Mehr

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen 1. Grundlagen Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen Peter Buchholz 2016 MafI 2 Grundlagen 7 1.1 Was ist Analysis? Analysis ist

Mehr

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen . Grundlagen Gliederung. Was ist Analysis?.2 Aussagen und Mengen.3 Natürliche Zahlen.4 Ganze Zahlen, rationale Zahlen. Was ist Analysis? Analysis ist neben der linearen Algebra ein Grundpfeiler der Mathematik!

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Vorkurs Mathematik. Prof. Udo Hebisch WS 2017/18

Vorkurs Mathematik. Prof. Udo Hebisch WS 2017/18 Vorkurs Mathematik Prof. Udo Hebisch WS 2017/18 1 1 Logik 2 1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Elementare Beweistechniken

Elementare Beweistechniken Elementare Beweistechniken Beispiel: Satzform (Pythagoras) Voraussetzung: Gegeben sei ein beliebiges rechtwinkeliges Dreieck, die Länge der Hypothenuse sei c und die Längen der anderen Seiten seien a und

Mehr

ANALYSIS I FÜR TPH WS 2016/17 3. Übung Übersicht

ANALYSIS I FÜR TPH WS 2016/17 3. Übung Übersicht ANALYSIS I FÜR TPH WS 206/7 3. Übung Übersicht Aufgaben zu Kapitel 5 und 6 Aufgabe : Untersuchung von Reihen mittels Konvergenzkriterien Aufgabe 2: Konvergenz und Berechnung von Reihen I Aufgabe 3: ( )

Mehr

Mengenlehre und vollständige Induktion

Mengenlehre und vollständige Induktion Fachschaft MathPhys Heidelberg Mengenlehre und vollständige Induktion Vladislav Olkhovskiy Vorkurs 018 Inhaltsverzeichnis 1 Motivation 1 Mengen.1 Grundbegriffe.................................. Kostruktionen

Mehr

Über die so definierten Potenzen beweisen wir nun einige einfache Aussagen. = a m+n a Def.

Über die so definierten Potenzen beweisen wir nun einige einfache Aussagen. = a m+n a Def. 4 NATÜRLICHE ZAHLEN UND VOLLSTÄNDIGE INDUKTION 15 der Eigenschaften von N streng begründen, was hier aber nicht geschehen soll. (Statt Zahlen önnen die a n auch Elemente irgendwelcher Mengen sein.) Über

Mehr

Die Mengenlehre ist ein Grundelement der Sprache der Mathematik und geht als

Die Mengenlehre ist ein Grundelement der Sprache der Mathematik und geht als Kapitel 1 Naive Mengenlehre 1.1 Mengen (Mengenalgebra; kartesisches Produkt) Die Mengenlehre ist ein Grundelement der Sprache der Mathematik und geht als naive Mengenlehre (im Gegensatz zur strengen Axiomatik)

Mehr

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN 24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN x 2 = 0+x 2 = ( a+a)+x 2 = a+(a+x 2 ) = a+(a+x 1 ) = ( a+a)+x 1 = x 1. Daraus folgt dann, wegen x 1 = x 2 die Eindeutigkeit. Im zweiten Fall kann man für a 0 schreiben

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 1

Zusatzmaterial zur Mathematik I für E-Techniker Übung 1 Mathematik I für E-Techniker C. Erdmann WS 011/1, Universität Rostock, 1. Vorlesungswoche Zusatzmaterial zur Mathematik I für E-Techniker Übung 1 Wiederholung - Theorie: Mengen Der grundlegende Begriff

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26 Kombinatorik Dr. Lucia Draque Penso Universität Ulm Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26 Erste Vorlesung Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 2 / 26 Formales Vorlesung:

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 01.12.2017 (Teil 1) 22. November 2017 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler 22. November 2017

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Lennéstraße 43, 1. OG pinger@uni-bonn.de September/Oktober 2017 JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Vorkurs Mathematik September/Oktober

Mehr

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Definition 1.1 (Menge) Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen.

Mehr

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen Kapitel 1 Mengen und Abbildungen 1.1 Mengen Die Objekte der modernen Mathematik sind die Mengen. Obwohl die Logik einen axiomatischen Zugang zur Mengenlehre bietet, wollen wir uns in dieser Vorlesung auf

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 08/9 c Dr. K. Rothe Analysis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt Mengen Darstellung durch: a) Aufzählung

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 2. Oktober 2015 Vorsemesterkurs Informatik Inhalt 1 Relationen 2 Funktionen 3 Beweistechniken Motivation Direkter Beweis Beweis

Mehr

Analysis I - Notizen 1. Daniel Lenz Jena - Wintersemester 2016

Analysis I - Notizen 1. Daniel Lenz Jena - Wintersemester 2016 Analysis I - Notizen 1 Daniel Lenz Jena - Wintersemester 2016 1 Es handelt sich nicht um ein Skriptum zur Vorlesung. Besten Dank an alle, die zu Verbesserungen früherer Notizen zur Analysis I beigetragen

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: Lösung 1. Übung Elemente der Algebra WS017/18 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 3x+4y 1}.

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.11.2016 (Teil 2) 23. November 2016 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016

Mehr

Dr. Regula Krapf Sommersemester Beweismethoden

Dr. Regula Krapf Sommersemester Beweismethoden Vorkurs Mathematik Dr. Regula Krapf Sommersemester 2018 Beweismethoden Aufgabe 1. Überlegen Sie sich folgende zwei Fragen: (1) Was ist ein Beweis? (2) Was ist die Funktion von Beweisen? Direkte Beweise

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

WS 20013/14. Diskrete Strukturen

WS 20013/14. Diskrete Strukturen WS 20013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Kommutativität. De Morgansche Regeln

Kommutativität. De Morgansche Regeln 1. Formale Logik Proposition 1.1. Die logischen Elementarverknüpfungen gehorchen folgenden Äquivalenzen: (1.1) (1.2) p p p p p p Idempotenz (1.3) (1.4) p q q p p q q p Kommutativität (1.5) (1.6) (p q)

Mehr

Übungen zur Vorlesung Einführung in die Mathematik

Übungen zur Vorlesung Einführung in die Mathematik Übungen zur Vorlesung Einführung in die Mathematik von G. Greschonig und L. Summerer, WS 2017/18 Aufgabe 1. Zeige, dass das Quadrat einer ungeraden Zahl, vermindert um 1, stets durch 4 teilbar ist. Folgere

Mehr

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter. 7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der

Mehr

Grundlegendes der Mathematik

Grundlegendes der Mathematik Kapitel 2 Grundlegendes der Mathematik (Prof. Udo Hebisch) 2.1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:

Mehr

Kombinatorik von Zahlenfolgen

Kombinatorik von Zahlenfolgen 6. April 2006 Vorlesung in der Orientierungswoche 1 Kombinatorik von Zahlenfolgen Einige Beispiele Jeder kennt die Fragen aus Intelligenztests, in denen man Zahlenfolgen fortsetzen soll. Zum Beispiel könnten

Mehr

Vorkurs Beweisführung

Vorkurs Beweisführung Vorkurs Beweisführung Fachschaft Mathematik und Informatik 30.08.2013 Agenda 1 Einleitung 2 Direkter Beweis 3 Widerspruchsbeweis 4 Vollständige Induktion 5 Aussagen widerlegen 6 Gleichheit von Mengen 7

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4 D-MATH, D-PHYS, D-CHAB Analysis I HS 017 Prof. Manfred Einsiedler Lösung 4 Hinweise 1. Zeigen Sie, dass inf X die kleinste obere Schranke von X ist.. Dass z 1, z Lösungen sind, kann man durch Einsetzen

Mehr

Der mathematische Beweis

Der mathematische Beweis Der mathematische Beweis Im Studium wird man wesentlich häufiger als in der Schule Beweise führen müssen. Deshalb empfiehlt es sich, verschiedene Beweisverfahren intensiv zu trainieren. Beweisstruktur

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Ein fundamentales mathematisches Beweisprinzip p ist die vollständige Induktion: Sei p : Falls

Ein fundamentales mathematisches Beweisprinzip p ist die vollständige Induktion: Sei p : Falls Beweisprinzip der vollständigen Induktion Ein fundamentales mathematisches Beweisprinzip p ist die vollständige Induktion: Sei p : Falls ein totales Prädikat. 1. p(0) (Induktionsanfang) und 2. für beliebiges

Mehr

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

Ordinalzahlen. Sei (X, ) eine total geordnete Menge und a X. Dann

Ordinalzahlen. Sei (X, ) eine total geordnete Menge und a X. Dann Ordinalzahlen Im Rahmen der Ordnungsrelationen wurden bisher die Begriffe Partialordnung und Totalordnung (lineare Ordnung) erwähnt. Ein weiterer wichtiger Ordnungsbegriff ist die Wohlordnung. Wohlgeordnete

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

Kapitel 1. Grundlegendes

Kapitel 1. Grundlegendes Kapitel 1 Grundlegendes Abschnitt 1.4 Vollständige Induktion Charakterisierung der natürlichen Zahlen Die Menge N 0 = {0, 1, 2, 3,...} der natürlichen Zahlen läßt sich wie folgt charakterisieren: 1. 0

Mehr

Wiederholung. Operationen auf Mengen. Relationen, Abbildungen/Funktionen. Beweistechniken: Landau-Notation A B, A Å B, A B, A \ B, P(A)

Wiederholung. Operationen auf Mengen. Relationen, Abbildungen/Funktionen. Beweistechniken: Landau-Notation A B, A Å B, A B, A \ B, P(A) Wiederholung Operationen auf Mengen A B, A Å B, A B, A \ B, P(A) Relationen, Abbildungen/Funktionen Reflexiv, symmetrisch, antisymmetrisch, transitiv Injektiv, surjektiv, bijektiv Beweistechniken: Indirekter

Mehr

(a) Welche der folgenden Funktionen ist injektiv, surjektiv beziehungsweise bijektiv? x 1 + x

(a) Welche der folgenden Funktionen ist injektiv, surjektiv beziehungsweise bijektiv? x 1 + x Aufgabe Injektiv und Surjektiv) a) Welche der folgenden Funktionen ist injektiv, surjektiv beziehungsweise bijektiv?. f : Z N; x x 2. 2. f : R R; x x x.. f : R [, ]; x sin x. 4. f : C C; z z 4. b) Zeigen

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 2

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 2 D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler Lösung 2 Hinweise 1. Eine Möglichkeit ist, auf diese Forderungen massgeschneiderte Relationen explizit anzugeben. Dies ist aber nicht

Mehr

5 Teilmengen von R und von R n

5 Teilmengen von R und von R n 5 Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,...,x n ) : x i R} = R }... {{ R }. n mal Für x R ist x der Abstand zum Nullpunkt. Die entsprechende Verallgemeinerung

Mehr

8 Summen von Quadraten

8 Summen von Quadraten 8 Summen von Quadraten A. Summen von zwei Quadraten. Sei p eine Primzahl. Beispiele. = 1 + 1, 5 = 1 +, 13 = + 3 Aber 3 und 7 sind nicht Summen von zwei Quadraten. 8.1 Satz. Genau dann ist p Summe von zwei

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufgabe 45. Polynome sind stets stetig. Höhere Mathematik für Informatiker II (Sommersemester

Mehr

Kapitel 2 Mathematische Grundlagen

Kapitel 2 Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Aufgaben zur Verbandstheorie

Aufgaben zur Verbandstheorie TU Bergakademie Freiberg WS 2005/06 Institut für Diskrete Mathematik & Algebra Prof. Dr. Udo Hebisch Aufgaben zur Verbandstheorie 1. Für ein beliebiges n IN sei X n die Menge aller Teiler von n. Definiert

Mehr

Serie 1 Lösungsvorschläge

Serie 1 Lösungsvorschläge D-Math Mass und Integral FS 2014 Prof. Dr. D. A. Salamon Serie 1 Lösungsvorschläge 1. a) Seien A, B X zwei Mengen, so dass keine der Mengen A \ B, B \ A, A B und X \ (A B) leer ist. Bestimmen Sie die Kardinalität

Mehr

Grundlagen. Kapitel Mengen

Grundlagen. Kapitel Mengen Kapitel 1 Grundlagen 1.1 Mengen Grundobjekte mathematischer Theorien sind Mengen. Zwar stellt man sich darunter Gesamtheiten von gewissen Dingen (den Elementen der Menge) vor, doch führt die uneingeschränkte

Mehr

Anmerkungen zu Mengen und Abbildungen

Anmerkungen zu Mengen und Abbildungen Anmerkungen zu Mengen und Abbildungen Kartesisches Produkt von n Mengen und n-stellige Relationen Sind M 1, M,, M n nichtleere Mengen, so ist ihr kartesisches Produkt erklärt als Menge aller geordneter

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

Universität Innsbruck WS 2013/2014. Brückenkurs. Formale Konzepte. 3. Auflage. Harald Zankl. 15. Januar 2014

Universität Innsbruck WS 2013/2014. Brückenkurs. Formale Konzepte. 3. Auflage. Harald Zankl. 15. Januar 2014 Universität Innsbruck WS 013/014 Brückenkurs Formale Konzepte 3. Auflage Harald Zankl 15. Januar 014 Institut für Informatik Innsbruck, Österreich Inhaltsverzeichnis 1 Definition, Satz, Beweis 1.1 Aufgaben................................

Mehr

5 Der Transzendenzgrad

5 Der Transzendenzgrad $Id: trgrad.tex,v 1.6 2009/05/11 14:48:57 hk Exp $ 5 Der Transzendenzgrad Wir stellen nun einige der Tatsachen über die Mächtigkeit von Mengen zusammen, die Ihnen wahrscheinlich aus den ersten Semester

Mehr

Kapitel 2. Folgen und ihre Konvergenz

Kapitel 2. Folgen und ihre Konvergenz Kapitel 2 Folgen und ihre Konvergenz Zur Erinnerung Denition. Eine Folge (reeller Zahlen) ist eine Funktion von N 0 nach R. Schreibweisen. Im Falle einer Folge f : N 0 R schreibt man an Stelle von f (n)

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion)

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) Kapitel 2: Multiplikative Funktionen 3 Multiplikative Funktionen Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) (a) Eine Funktion α : Z >0 C heißt arithmetisch (oder zahlentheoretisch).

Mehr

15. September 2010 Prof. Dr. W. Bley. Universität Kassel Klausur SS 2010 Diskrete Strukturen I (Informatik) Name:... Matr.-Nr.:... Viel Erfolg!

15. September 2010 Prof. Dr. W. Bley. Universität Kassel Klausur SS 2010 Diskrete Strukturen I (Informatik) Name:... Matr.-Nr.:... Viel Erfolg! 15. September 010 Prof. Dr. W. Bley Universität Kassel Klausur SS 010 Diskrete Strukturen I (Informatik) 1 3 4 5 6 Name:................................................ Matr.-Nr.:............................................

Mehr

13 Auswahlaxiom und Zornsches Lemma

13 Auswahlaxiom und Zornsches Lemma 13 Auswahlaxiom und Zornsches Lemma Handout zur Funktionalanalysis I von H. Glöckner, 25.11.2008 Wichtige Teile der modernen Mathematik beruhen auf dem sogenannten Auswahlaxiom der Mengenlehre. Dieses

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Elizaveta Kovalevskaya WS 2017/18 6. Oktober 2017 Vorkurs Informatik - WS 2017/18 1/44 Vorsemesterkurs Informatik Übersicht 1 Relationen 2 Funktionen

Mehr

Prüfungsfragen zur Theorie

Prüfungsfragen zur Theorie Prüfungsfragen zur Theorie Formulieren Sie die Monotoniegesetze (Rechenregeln für Ungleichungen)! Satz: Für alle a,b,c,d gilt: a b und c.d a+c b+d Satz: Für alle a,b,c,d + o gilt: a b und c d ac bd 1 Satz:

Mehr

2 Lösungen zu Kapitel 2

2 Lösungen zu Kapitel 2 2 Lösungen zu Kapitel 2 2. Lösung. Die Funktion f ist nicht injektiv. So gibt es (unendlich) viele Paare (x, y) mit f(x, y) = 0, etwa (0, 0) und (/2, ). Die Funktion f ist surjektiv. Zum Beispiel gilt

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 16. November 2017 1/35 Modulare Arithmetik Modulare Arithmetik Definition 3.33 Es sei

Mehr

Mengenoperationen, Abbildungen

Mengenoperationen, Abbildungen TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Z6 Rechengesetze für Mengenoperationen Lineare Algebra 1 WS 2006/07 en Blatt 3 06.11.2006 Mengenoperationen,

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

Überblick. 3. Mathematische Grundlagen 3.1 Mengen und Abbildungen 3.2 Boolsche Algebra 3.3 Induktion und Rekursion

Überblick. 3. Mathematische Grundlagen 3.1 Mengen und Abbildungen 3.2 Boolsche Algebra 3.3 Induktion und Rekursion Überblick 3. Mathematische Grundlagen 3.1 Mengen und Abbildungen 3.2 Boolsche Algebra 3.3 Peer Kröger (LMU München) Einführung in die Programmierung WS 16/17 92 / 708 Beweisprinzip der vollständigen Induktion

Mehr