Tutorium: Diskrete Mathematik

Größe: px
Ab Seite anzeigen:

Download "Tutorium: Diskrete Mathematik"

Transkript

1 Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am (Teil 2) 23. November 2016

2 Steven Köhler mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016

3 Mengen 3 c 2016 Steven Köhler 23. November 2016

4 Mengen Mächtigkeit einer Menge Unter der Mächtigkeit M einer (endlichen) Menge M versteht man die Anzahl der in M enthaltenen Elemente. Die Mächtigkeit einer Menge wird auch als Kardinalität bezeichnet. Für die Mächtigkeit einer unendlichen Menge schreibt man häufig. Beispiele: { } A = 11, 13, 17, 19 A = 4 { } B =..., 4, 2, 0, 2, 4,... B = 4 c 2016 Steven Köhler 23. November 2016

5 Mengen Vergleichen von Mengen I Mengen können miteinander verglichen werden. Inklusion: A B Die Menge A ist vollständig in der Menge B enthalten. Es ist außerdem möglich, dass A und B identisch sind. Sprechweise: A ist eine Teilmenge von B. Gleichheit: A = B Die Mengen A und B sind identisch. Dies ist genau dann der Fall, wenn sowohl A B als auch B A gilt. Sprechweise: A ist gleich B. 5 c 2016 Steven Köhler 23. November 2016

6 Mengen Vergleichen von Mengen II strenge Inklusion: A B Die Menge A ist vollständig in der Menge B enthalten. Die Mengen A und B sind jedoch nicht identisch. Jedes Element a A ist folglich in B enthalten, es gibt jedoch mindestens ein Element b B, dass nicht in der Menge A enthalten ist. Sprechweise: A ist eine echte Teilmenge von B. Trifft keine der genannten Eigenschaften zu, so sind die Mengen unvergleichbar. 6 c 2016 Steven Köhler 23. November 2016

7 Mengen Operationen auf Mengen I Vereinigung: A B In der Menge A B sind alle Elemente enthalten, die entweder in der Menge A, in der Menge B oder in beiden Mengen vorkommen: A B = {x } x A oder x B. Die Vereinigungsmenge von n 2 Mengen A 1,..., A n kann auch wie folgt geschrieben werden: n A i = A 1 A 2... A n i=1 = {x x A 1 oder x A 2 oder... oder x A n }. 7 c 2016 Steven Köhler 23. November 2016

8 Mengen Operationen auf Mengen II Schnitt: A B In der Menge A B sind alle Elemente enthalten, die sowohl in der Menge A als auch in der Menge B vorkommen: { A B = x } x A und x B. Die Schnittmenge von n 2 Mengen A 1,..., A n kann auch wie folgt geschrieben werden: n A i = A 1 A 2... A n i=1 = {x x A 1 und x A 2 und... und x A n }. 8 c 2016 Steven Köhler 23. November 2016

9 Mengen Operationen auf Mengen III Exklusion: A \ B In der Menge A \ B sind alle Elemente enthalten, die in der Menge A, aber nicht in der Menge B vorkommen: A \ B = {x } x A und x / B. Symmetrische Differenz: A B In der Menge A B sind alle Elemente enthalten, die entweder nur in der Menge A oder nur in der Menge B vorkommen: ( ) ( ) A B = A \ B B \ A. 9 c 2016 Steven Köhler 23. November 2016

10 Mengen Operationen auf Mengen IV Potenzmenge: P(A) Die Potenzmenge P(A) ist die Menge aller Teilmengen der Menge A. Enthält die Menge A insgesamt A = n Elemente, so enthält die Potenzmenge P(A) insgesamt P(A) = 2 A = 2 n Elemente. 10 c 2016 Steven Köhler 23. November 2016

11 Mengen Operationen auf Mengen V Beispiel: Es seien die Mengen A = { 1, 2, 3 } und B = { 2, 3, 4 } gegeben. Dann gilt: { } A B = 1, 2, 3, 4 { } A B = 2, 3 { } A \ B = 1 { } A B = 1, 4 P(A) = {, { 1 }, { 2 }, { 3 }, { 1, 2 }, { 1, 3 }, { 2, 3 }, { 1, 2, 3 }} 11 c 2016 Steven Köhler 23. November 2016

12 Mengen Operationen auf Mengen VI Es seien A und B zwei Mengen. Das kartesische Produkt dieser Mengen ist wie folgt definiert: { A B = (a, b) } a A und b B. Es seien A, B und C drei Mengen. Das kartesische Produkt dieser Mengen ist wie folgt definiert: { A B C = (a, b, c) } a A, b B und c C. Analog definiert man das kartesische Produkt für eine beliebige Anzahl von Mengen M 1,..., M n : M 1... M n = {(m 1,..., m n ) } m 1 M 1,..., m n M n. 12 c 2016 Steven Köhler 23. November 2016

13 Mengen Aufgabe 1 Es sei M = { 1, 2 }. Welche der folgenden Aussagen sind wahr? Welche sind falsch? (i) 1 P(M) (vi) (ii) 2 P(M) (vii) { {1}, {2} } P(P(M)) { {1}, {2} } P(M) (iii) (iv) (v) { 1, 2 } P(M) (viii) { (1, 2) } P(M) { } 15 ( ) 16 1, 2 P(M) (ix) P(P(M)) = 2 + i i=1 { } 3 ( ) 4 1, {1} P(M) (x) P(P(M)) = 2 + i i=1 13 c 2016 Steven Köhler 23. November 2016

14 Wahrheitswerte 14 c 2016 Steven Köhler 23. November 2016

15 Wahrheitswerte Logische Verknüpfungen I A und B seien Aussagen, die entweder wahr oder falsch sein können. Konjunktion: A B Die Aussage A B ist genau dann wahr, wenn sowohl A als auch B wahr ist. Disjunktion: A B Die Aussage A B ist wahr, wenn entweder A oder B wahr ist; oder natürlich auch beide. 15 c 2016 Steven Köhler 23. November 2016

16 Wahrheitswerte Logische Verknüpfungen II A und B seien Aussagen, die entweder wahr oder falsch sein können. Implikation: A B Die Aussage A B bedeutet, dass immer, wenn A wahr ist, auch B wahr ist. ( B folgt aus A. ) Biimplikation: A B Die Aussage A B bedeutet, dass immer, wenn A wahr ist, auch B wahr ist und umgekehrt. ( genau dann wenn ) 16 c 2016 Steven Köhler 23. November 2016

17 Wahrheitswerte Logische Verknüpfungen III A sei eine Aussage, die entweder wahr oder falsch sein kann. Negation: A Die Aussage A ist genau dann wahr, wenn die Aussage A falsch ist. 17 c 2016 Steven Köhler 23. November 2016

18 Wahrheitswerte Aufgabe 2 Es seien A und B zwei Wahrheitswerte. Zeige mithilfe einer Wahrheitstafel, dass es sich bei A B und (A B) ( A B) um zwei äquivalente Aussagen handelt. 18 c 2016 Steven Köhler 23. November 2016

19 Relationen 19 c 2016 Steven Köhler 23. November 2016

20 Relationen Definition I Bei einer n-stelligen Relation handelt es sich um eine Teilmenge des kartesischen Produkts der Mengen A 1,..., A n. Die Mengen A 1,..., A n müssen hierbei nicht verschieden sein. Bei einer binären oder zweistelligen Relation handelt es sich um eine Teilmenge R A 1 A 2. Bei einer ternären oder dreistelligen Relation handelt es sich um eine Teilmenge R A 1 A 2 A c 2016 Steven Köhler 23. November 2016

21 Relationen Definition II Relationen können auf verschiedene Arten dargestellt werden, z.b. als Menge, als gerichtete Graphen oder mithilfe von Matrizen. Es sei A = { 1, 2, 3, 4 } eine Menge und R A A eine Relation über A: { R = (1, 1), (1, 2), (2, 1), (2, 3), (2, 4), } (3, 2), (3, 3), (3, 4), (4, 2), (4, 3) 21 c 2016 Steven Köhler 23. November 2016

22 Relationen Eigenschaften von Relationen I Es sei R eine Relation über einer Menge A. Die Relation ist symmetrisch, falls gilt: a, b A : (a, b) R (b, a) R. nicht symmetrisch, falls gilt: a, b A : (a, b) R (b, a) R. antisymmetrisch, falls gilt: a, b A, a b : (a, b) R (b, a) R. nicht antisymmetrisch, falls gilt: a, b A, a b : (a, b) R (b, a) R. 22 c 2016 Steven Köhler 23. November 2016

23 Relationen Eigenschaften von Relationen II Es sei R eine Relation über einer Menge A. Die Relation ist reflexiv, falls gilt: a A : (a, a) R. nicht reflexiv, falls gilt: a A : (a, a) R. irreflexiv, falls gilt: a A : (a, a) R. nicht irreflexiv, falls gilt: a A : (a, a) R. 23 c 2016 Steven Köhler 23. November 2016

24 Relationen Eigenschaften von Relationen III Es sei R eine Relation über einer Menge A. Die Relation ist transitiv, falls gilt: a, b, c A : (a, b) R (b, c) R (a, c) R. intransitiv, falls gilt: a, b, c A : (a, b) R (b, c) R (a, c) R. antitransitiv, falls gilt: a, b, c A : (a, b) R (b, c) R (a, c) R. 24 c 2016 Steven Köhler 23. November 2016

25 Relationen Aufgabe 3 Es sei R die folgende auf der Menge A = { a, b, c, d } definierte Relation: { } R = (a, a), (a, b), (b, b), (c, a), (d, a), (b, a), (a, d), (d, d). Entscheide, welche der folgenden Eigenschaften auf die Relation zutreffen. Gib jeweils eine kurze Begründung. (i) symmetrisch (ii) antisymmetrisch (iii) reflexiv (iv) irreflexiv (v) transitiv 25 c 2016 Steven Köhler 23. November 2016

26 Relationen Aufgabe 4 Es sei A = { 1, 2, 3, 4 }. a) Gib eine Relation R a über der Menge A an, die reflexiv, aber nicht transitiv ist. b) Gib eine Relation R b über der Menge A an, die symmetrisch, transitiv und nicht irreflexiv ist. c) Gib eine Relation R c über der Menge A an, die irreflexiv und weder symmetrisch noch antisymmetrisch ist. Dabei soll R c 5 gelten. d) Gib eine Relation R d über der Menge A an, die sowohl symmetrisch als auch antisymmetrisch ist. 26 c 2016 Steven Köhler 23. November 2016

27 Relationen Aufgabe 5 Es seien A = { 1, 2, 3, 4 } und B = { a, b, c, d, e, f } zwei Mengen. a) Wie viele binäre Relationen R a über der Menge A gibt es? b) Wie viele ternäre Relationen R b A B A gibt es? c) Wie viele der Relationen aus a) sind reflexiv? d) Wie viele der Relationen aus a) sind symmetrisch? 27 c 2016 Steven Köhler 23. November 2016

28 Relationen Äquivalenzrelation I Man nennt eine Relation R über einer Menge A eine Äquivalenzrelation, falls gilt: R ist symmetrisch, reflexiv und transitiv. 28 c 2016 Steven Köhler 23. November 2016

29 Relationen Äquivalenzrelation II Zu jeder Äquivalenzrelation gehört eine eindeutig bestimmte Partition, die die Menge A in disjunkte Teilmengen A 1,..., A n aufteilt, so dass gilt: A = A 1... A n A i A j = (für i j). Bei den Teilmengen A 1,..., A n handelt es sich um die Äquivalenzklassen der Relation. Stehen zwei Elemente in Relation, so sind sie in derselben Äquivalenzklasse. Elemente aus verschiedenen Äquivalenzklassen stehen niemals in Relation. 29 c 2016 Steven Köhler 23. November 2016

30 Relationen Aufgabe 6 a) Auf der Menge Z sei eine Relation R erklärt durch (x, y) R xy 0. Ist R eine Äquivalenzrelation? b) Auf der Menge Z\ { 0 } sei eine Relation S erklärt durch (x, y) S xy > 0. Ist S eine Äquivalenzrelation? c) Falls bei a) oder b) eine Äquivalenzrelation vorliegt, so gebe man die zugehörigen Äquivalenzklassen an. 30 c 2016 Steven Köhler 23. November 2016

31 Relationen Reflexive Hülle I Gegeben sei eine Relation R über einer Menge A. Falls R nicht reflexiv ist, so kann man R in eine reflexive Relation R überführen, indem man für alle a A das Paar (a, a) zu R hinzufügt: { } R = R (a, a) : a A. R ist hierbei die kleinste reflexive Relation, die R umfasst. Man bezeichnet R als reflexive Hülle von R. 31 c 2016 Steven Köhler 23. November 2016

32 Relationen Reflexive Hülle II Relation R reflexive Hülle R 32 c 2016 Steven Köhler 23. November 2016

33 Relationen Transitive Hülle I Gegeben sei eine Relation R über einer Menge A. Falls R nicht transitiv ist, so kann man R in eine transitive Relation R + überführen, indem man für a, b, c A mit (a, b) R und (b, c) R das Paar (a, c) zu R hinzufügt und dies solange wiederholt, bis keine weiteren Kanten mehr hinzugefügt werden können. { R + = R (a, b) : Es gibt n 2 und a 1,..., a n A mit a 1 = a, a n = b } und (a 1, a 2 ),..., (a n 1, a n ) R. R + ist hierbei die kleinste transitive Relation, die R umfasst. Man bezeichnet R + als transitive Hülle von R. 33 c 2016 Steven Köhler 23. November 2016

34 Relationen Transitive Hülle II Relation R transitive Hülle R + 34 c 2016 Steven Köhler 23. November 2016

35 Relationen Reflexive, transitive Hülle I Gegeben sei eine Relation R auf einer Menge A. Man nennt die Relation R = R + R die reflexive, transitive Hülle von R. Bei R handelt es sich um die kleinste reflexive und transitive Relation, die R umfasst. 35 c 2016 Steven Köhler 23. November 2016

36 Relationen Reflexive, transitive Hülle II Relation R reflexive, transitive Hülle R 36 c 2016 Steven Köhler 23. November 2016

37 Teilbarkeit & modulare Arithmetik 37 c 2016 Steven Köhler 23. November 2016

38 Teilbarkeit & modulare Arithmetik Definition Man nennt b einen Teiler von a und schreibt b a, falls es ein c gibt, für das a = b c gilt (für a, b, c Z). 38 c 2016 Steven Köhler 23. November 2016

39 Teilbarkeit & modulare Arithmetik Aufgabe 7 Beweise die folgenden Aussagen: a) Gilt a b und b c, so gilt auch a c. b) Aus a 1 b 1 und a 2 b 2 folgt a 1 a 2 b 1 b 2. c) Aus a b 1 und a b 2 folgt für alle c 1, c 2 Z die Beziehung a (c 1 b 1 + c 2 b 2 ). 39 c 2016 Steven Köhler 23. November 2016

40 Teilbarkeit & modulare Arithmetik Aufgabe 8 Was ist von der folgenden Aussage zu halten? Begründe deine Antwort! Aus a 1 b 1 und a 2 b 2 folgt a 1 + a 2 b 1 + b c 2016 Steven Köhler 23. November 2016

41 Teilbarkeit & modulare Arithmetik Aufgabe 9 Wahr oder falsch? Gib jeweils eine kurze Begründung. a) (mod 17) b) (mod 11) c) (mod 47) d) (mod 3) e) (mod 23) 41 c 2016 Steven Köhler 23. November 2016

42 Teilbarkeit & modulare Arithmetik Aufgabe 10 Beweise die folgende Äquivalenz: a b (mod m) m ( a b ). 42 c 2016 Steven Köhler 23. November 2016

43 Teilbarkeit & modulare Arithmetik Euklidischer Algorithmus I Gegeben seien zwei natürliche Zahlen a und b mit b a, deren größter gemeinsamer Teiler ggt(a, b) bestimmt werden soll. Hierzu wird zunächst eine Zerlegung mit Rest bestimmt, d.h., es werden ganze Zahlen q 1, r 1 mit 0 r 1 < b bestimmt, für die gilt: a = q 1 b + r 1. Die Grundidee des Euklidischen Algorithmus beruht auf der Tatsache, dass ggt(a, b) = ggt(b, r 1 ) gilt. Anstelle des größten gemeinsamen Teilers von a und b kann also auch der größte gemeinsame Teiler von r 0 = b und r 1 berechnet werden. Hierzu wird wieder eine Zerlegung mit Rest vorgenommmen: r 0 = q 2 r 1 + r c 2016 Steven Köhler 23. November 2016

44 Teilbarkeit & modulare Arithmetik Euklidischer Algorithmus II Wie zuvor gilt ggt(r 0, r 1 ) = ggt(r 1, r 2 ) und somit auch ggt(a, b) = ggt(r 1, r 2 ). Dieses Verfahren wird nun solange wiederholt, bis der Rest 0 auftritt. r 1 = q 3 r 2 + r 3. r n 1 = q n+1 r n + 0 Die letzte Zeile bedeutet, dass r n 1 ein ganzzahliges Vielfaches von r n ist hieraus folgt direkt ggt(r n 1, r n ) = r n und somit ggt(a, b) = r n. 44 c 2016 Steven Köhler 23. November 2016

45 Teilbarkeit & modulare Arithmetik Aufgabe 11 a) Entscheide, ob die Zahlen 224 und 613 teilerfremd sind. b) Finde Parameter s, t Z, so dass gilt: s t 312 = ggt (247, 312). 45 c 2016 Steven Köhler 23. November 2016

46 Teilbarkeit & modulare Arithmetik Aufgabe 12 Es seien a, b Z zwei ganze Zahlen, für die die folgenden Zerlegungen mit Rest gegeben sind (für m, q a, q b, r a, r b Z mit 0 r a < m und 0 r b < m): a = q a m + r a b = q b m + r b. Beweise oder widerlege, dass die folgende Aussage gilt: a b r a r b (mod m). 46 c 2016 Steven Köhler 23. November 2016

47 Elementare Kombinatorik 47 c 2016 Steven Köhler 23. November 2016

48 Elementare Kombinatorik Aufgabe 13 Es seien A = {a 1,..., a 7 } und B = {b 1,..., b 9 } zwei Mengen mit A = 7 und B = 9. a) Wie viele Abbildungen A B gibt es? b) Wie viele dieser Abbildungen sind injektiv? c) Wie viele dieser Abbildungen sind surjektiv? d) Wie viele dieser Abbildungen sind injektiv, wenn zudem f (a 1 ) = f (a 3 ) gelten soll? e) Wie viele dieser Abbildungen sind injektiv, wenn zudem f (a 1 ) f (a 2 ) gelten soll? f) Wie viele Abbildungen gibt es, für die f (a 1 ) f (a 2 ) sowie f (a 1 ) f (a 3 ) gilt? 48 c 2016 Steven Köhler 23. November 2016

49 Elementare Kombinatorik Binomialkoeffizienten & Binomischer Lehrsatz Es gilt: ( ) n n! = k k! (n k)! ( ) ( ) ( ) n n 1 n 1 = + k k 1 k ( ) ( ) n n = k n k (explizite Formel) (Rekursionsformel) (Symmetrie) Binomischer Lehrsatz: (a + b) n = n i=0 ( ) n a i b n i i 49 c 2016 Steven Köhler 23. November 2016

50 Elementare Kombinatorik Pascalsches Dreieck I ( 6 0 ( 0 ( 1 ) 0) ( 1 ( 0 2 ) ( 2 ) 1) ( 2 ( ) ( 3 ) ( 3 ) 2) ( 3 ( ) ( 4 ) ( 4 ) ( 4 ) 3) ( 4 ( ) ( 5 ) ( 5 ) ( 5 ) ( 5 ) 4) ( 5 ) 0 ( ) ( 6 ) ( 6 ) ( 6 ) ( 6 ) 5) ( ). 50 c 2016 Steven Köhler 23. November 2016

51 Elementare Kombinatorik Pascalsches Dreieck II c 2016 Steven Köhler 23. November 2016

52 Elementare Kombinatorik Aufgabe 14 a-c a) Wie viele Möglichkeiten gibt es, im Lotto exakt 3 richtige Gewinnzahlen anzukreuzen? b) Wie viele Möglichkeiten gibt es, im Lotto mindestens 5 richtige Gewinnzahlen anzukreuzen? c) Welchen Koeffizienten besitzt a 6 b 3 in ( a + b ) 9? 52 c 2016 Steven Köhler 23. November 2016

53 Elementare Kombinatorik Aufgabe 14 d-g d) Wie viele sinnvolle oder sinnlose Wörter lassen sich aus den Buchstaben des Wortes RHABARBERBARBARA bilden? e) Für k, n N: Wie viele Möglichkeiten gibt es, insgesamt n nicht unterscheidbare Bonbons auf k Kinder zu verteilen? f) Für k, n N, n 2k: Wie viele Möglichkeiten gibt es, insgesamt n nicht unterscheidbare Bonbons auf k Kinder zu verteilen, so dass jedes Kind mindestens zwei Bonbons bekommt? g) Welchen Koeffizienten besitzt x 2 yz 5 w 5 in ( x + y + z + w ) 13? 53 c 2016 Steven Köhler 23. November 2016

54 Elementare Kombinatorik Aufgabe 15 Begründe, wieso eine n-elementige Menge M genau 2 n verschiedene Teilmengen besitzt. 54 c 2016 Steven Köhler 23. November 2016

55 Elementare Kombinatorik Aufgabe 16 Zeige mit vollständiger Induktion, dass die folgende Aussage gilt: n i=1 ( ) i = 1 ( ) n + 1. n 1 55 c 2016 Steven Köhler 23. November 2016

56 Viel Erfolg bei der Bonusklausur :) 56 c 2016 Steven Köhler 23. November 2016

Tutorium: Diskrete Mathematik. Vorbereitung der Bonusklausur am Lösungen der Aufgaben (Teil 2)

Tutorium: Diskrete Mathematik. Vorbereitung der Bonusklausur am Lösungen der Aufgaben (Teil 2) Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 20.11.2015 Lösungen der Aufgaben (Teil 2) Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Aufgabe 1 Es sei M = 1; 2 ª.Esgilt

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Grundlagen der Mathematik Übungsaufgaben zu Kapitel 1 Einführung 1.1.1 Für reelle Zahlen a und b gilt (a+b) (a-b) = a 2 -b 2. Was ist die Voraussetzung? Wie lautet die Behauptung? Beweisen Sie die Behauptung.

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

Prüfungsaufgaben. Aufgabe 2 (TP1 Frühjahr 2006) ( ) logisch

Prüfungsaufgaben. Aufgabe 2 (TP1 Frühjahr 2006) ( ) logisch Aufgabe 1 (TP1 Februar 2007) Prüfungsaufgaben Bestimmen Sie zu den nachstehenden aussagenlogischen Aussageformen je eine möglichst einfache logisch äquivalente Aussageform. Weisen Sie die Äquivalenzen

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.10 2012/04/12 12:24:19 hk Exp $ 1 Modulare Arithmetik 1.2 Euklidischer Algorithmus Am Ende der letzten Sitzung hatten wir den größten gemeinsamen Teiler zweier ganzer Zahlen a und b

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen.

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Vorlesung 4 Universität Münster 13. September 2007 1 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische) Produkt

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Grundlagen und Diskrete Strukturen Wiederholungsaufgaben

Grundlagen und Diskrete Strukturen Wiederholungsaufgaben TU Ilmenau Institut für Mathematik Dr. Jens Schreyer Teil 1: Aussagenlogik Aufgabe 1 Grundlagen und Diskrete Strukturen Wiederholungsaufgaben Stellen Sie die Wahrheitstafel für die aussagelogische Formel

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

A B A und B w w w w f f f w f f f f. A B A oder B (A B) w w w w f w f w w f f f

A B A und B w w w w f f f w f f f f. A B A oder B (A B) w w w w f w f w w f f f Kapitel 1 Zum Aufwärmen 1.1 Aussagen Eine Aussage im üblichen Sinn ist nicht unbedingt eine Aussage im mathematischen Sinn. Aussagen wie Mathe ist doof sind keine Aussagen im mathematischen Sinn, weil

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 29.09. - Freitag 9.10.2015 Vorlesung 2 Mengen, Zahlen, Logik Kai Rothe Technische Universität Hamburg-Harburg Mittwoch 30.09.2015 Mengen.................................

Mehr

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Einführung in die Logik - 6 mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Modelltheoretische / Denotationelle Semantik der Prdikatenlogik Ein Modell ist ein künstlich geschaffenes

Mehr

Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion

Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Nehmen wir die Menge A = {,,,,,,,,}, z.b. nummerierte Personen. Unter Berücksichtigung

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

1 Mengen. 1.1 Definition

1 Mengen. 1.1 Definition 1 Mengen 1.1 Definition Eine Menge M ist nach dem Begründer der Mengenlehre Georg Cantor eine Zusammenfassung von wohlunterschiedenen(verschiedenen) Elementen. Eine Menge lässt sich durch verschiedene

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 2 Prof. Dr. Markus Schweighofer 11.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 2.1: Behauptung:

Mehr

Einführung in die Mengenlehre

Einführung in die Mengenlehre Einführung in die Mengenlehre D (Menge von Georg Cantor 845-98) Eine Menge ist eine Zusammenfassung bestimmter wohlunterschiedener Objekte unseres Denkens oder unserer Anschauung zu einem Ganzen wobei

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Klausur zur Vorlesung Mathematische Logik

Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 13. Februar 2014 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik Musterlösung Aufgabe 1 (Aussagenlogik

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Dozentin: Wiebke Petersen 2. Foliensatz Wiebke Petersen math. Grundlagen 25 n-tupel und Cartesisches Produkt Mengen sind ungeordnet,

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Susanna Pohl Vorkurs Mathematik TU Dortmund 10.03.2015 Mengen und Relationen Mengen Motivation Beschreibung von Mengen Mengenoperationen

Mehr

Äquivalenzrelation. Tischler-Problem. Euklidischer Algorithmus. Erweiterter euklidischer Algorithmus. Lineare diophantische Gleichung

Äquivalenzrelation. Tischler-Problem. Euklidischer Algorithmus. Erweiterter euklidischer Algorithmus. Lineare diophantische Gleichung Äquivalenzrelation Tischler-Problem Euklidischer Algorithmus Erweiterter euklidischer Algorithmus Lineare diophantische Gleichung Rechnen mit Resten Restklassen Teilbarkeit in Z Beispiel einer Kongruenzgleichung

Mehr

1.4 Äquivalenzrelationen

1.4 Äquivalenzrelationen 8 1.4 Äquivalenzrelationen achdem nun die axiomatische Grundlage gelegt ist, können wir uns bis zur Einführung der Kategorien das Leben dadurch erleichtern, daß wir bis dorthin, also bis auf weiteres,

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF.

PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF. Zuname: Vorname: Matrikelnummer: PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF. (GITTENBERGER) Wien, am 5. Februar 2013 (Ab hier freilassen!) Arbeitszeit: 100 Minuten 1) 2) 3) 4) 5) 1)(8

Mehr

Brückenkurs Mathematik 2015

Brückenkurs Mathematik 2015 Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass

Mehr

1.2 Eigenschaften der ganzen Zahlen

1.2 Eigenschaften der ganzen Zahlen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Centrum für Informations- und Sprachverarbeitung (CIS) 10. Juni 2014 Table of Contents 1 2 Äquivalenz Der Begriff der Äquivalenz verallgemeinert den Begriff der Gleichheit. Er beinhaltet in einem zu präzisierenden

Mehr

Mathematik I. Arbeitsblatt 2. Aufwärmaufgaben

Mathematik I. Arbeitsblatt 2. Aufwärmaufgaben Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Arbeitsblatt 2 Aufwärmaufgaben Aufgabe 2.1. Welche bijektiven Funktionen f : R R (oder zwischen Teilmengen von R) kennen Sie aus der Schule? Wie

Mehr

In diesem Kapitel wiederholen wir Begriffe und Notationen für grundlegende mathematische

In diesem Kapitel wiederholen wir Begriffe und Notationen für grundlegende mathematische Kapitel 1 Mathematische Objekte In diesem Kapitel wiederholen wir Begriffe und Notationen für grundlegende mathematische Objekte wie Tupel, Mengen, Relationen und Funktionen. Außerdem erklären wir die

Mehr

1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen

1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen 1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen Einleitung 1 Wie der Name schon sagt sind Äquivalenzrelationen besondere Relationen. Deswegen erkläre ich hier ganz allgemein, was Relationen

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 3 Der euklidische Algorithmus Euklid (4. Jahrhundert v. C.) Definition 3.1. Seien zwei Elemente a, b (mit b 0) eines euklidischen Bereichs

Mehr

Kapitel 2 Mathematische Grundlagen

Kapitel 2 Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und

Mehr

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man x / M. Man sagt, M ist Teilmenge von N und schreibt M N, wenn für jedes x M auch x N gilt.

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents 1 2 Ähnlich wie Funktionen besitzen Relationen charakteristische Eigenschaften. Diese Eigenschaften definieren wie

Mehr

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen)

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen) DEPENDABLE SYSTEMS AND SOFTWARE Fachrichtung 6. Informatik Universität des Saarlandes Christian Eisentraut, M.Sc. Julia Krämer Mathematik-Vorkurs für Informatiker (Wintersemester 0/3) Übungsblatt 8 (Relationen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 4 Das Lemma von Bezout Satz 1. (Lemma von Bézout) Jede Menge von ganzen Zahlen a 1,...,a n besitzt einen größten gemeinsamen Teiler

Mehr

Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem:

Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: 4 4 4 4 4 1 1 1 1 2 2 3 3 5 5 5 5 5 5 6 6 6 7 7 8 8 9 9 9 9 9 8 6 Verwenden Sie dazu eine atomare Formel A[n, x, y] für jedes Tripel (n,

Mehr

Vorkurs Mathematik Abbildungen

Vorkurs Mathematik Abbildungen Vorkurs Mathematik Abbildungen Philip Bell 19. September 2016 Diese Arbeit beruht im Wesentlichen auf dem Vortrag Relationen, Partitionen und Abbildungen von Fabian Grünig aus den vorangehenden Jahren.

Mehr

Natürliche, ganze und rationale Zahlen

Natürliche, ganze und rationale Zahlen Natürliche, ganze und rationale Zahlen Zunächst haben die zum Zählen verwendeten natürlichen Zahlen 0, 1, 2, 3,... nichts mit dem reellen Zahlen zu tun. Durch die ausgezeichnete reelle Zahl 1 (Maßeinheit!)

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mathematische Sprache und naive Mengenlehre Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johann-von-Neumann-Haus Fachschaft Menge aller Studenten eines Institutes

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente Universität Basel Wirtschaftswissenschaftliches Zentrum Kombinatorik Dr. Thomas Zehrt Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente 2 Teil 1 Endliche Mengen Eine endliche Menge M ist eine Menge,

Mehr

Aussagenlogik. Aussagen und Aussagenverknüpfungen

Aussagenlogik. Aussagen und Aussagenverknüpfungen Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,

Mehr

Die Sprache der Mathematik

Die Sprache der Mathematik Die Sprache der Mathematik Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Diese Lehrveranstaltung...... ist Pflicht für alle Studenten der Informatik und

Mehr

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4 Syntax der Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Eine atomare Formel hat die Form A i (wobei i = 1, 2, 3,...). Definition (Formel)

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

4.1 Definition. Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn. = y 1. = y 2. xfy 1. xfy 2

4.1 Definition. Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn. = y 1. = y 2. xfy 1. xfy 2 4.1 Definition Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn xfy 1 xfy 2 = y 1 = y 2 Y heißt Zielbereich oder Zielmenge von f. Statt (x, y) f oder xfy schreibt man y = f(x). Vollständige

Mehr

Logik (Teschl/Teschl 1.1 und 1.3)

Logik (Teschl/Teschl 1.1 und 1.3) Logik (Teschl/Teschl 1.1 und 1.3) Eine Aussage ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr (true, = 1) oder falsch (false, = 0) ist. Beispiele a: 1 + 1 = 2 b: Darmstadt liegt in Bayern.

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,

Mehr

R = {(1, 1), (2, 2), (3, 3)} K 1 = {1} K 2 = {2} K 3 = {3}

R = {(1, 1), (2, 2), (3, 3)} K 1 = {1} K 2 = {2} K 3 = {3} Äquivalenzrelationen Aufgabe 1. Lesen Sie im Skript nach was eine Äquivalenzrelation und eine Äquivalenzklasse ist. Gegeben ist die Menge A = {1, 2, 3. Finden Sie 3 Äquivalenzrelationen auf A und geben

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte)

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 007/08 Lösungsblatt 7

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Wissenschaftliches Arbeiten Quantitative Methoden

Wissenschaftliches Arbeiten Quantitative Methoden Wissenschaftliches Arbeiten Quantitative Methoden Prof. Dr. Stefan Nickel WS 2008 / 2009 Gliederung I. Motivation II. III. IV. Lesen mathematischer Symbole Wissenschaftliche Argumentation Matrizenrechnung

Mehr

2 ZAHLEN UND VARIABLE

2 ZAHLEN UND VARIABLE Zahlen und Variable 2 ZAHLEN UND VARIABLE 2.1 Grundlagen der Mengenlehre Unter einer Menge versteht man die Zusammenfassung von unterscheidbaren Objekten zu einem Ganzen. Diese Objekte bezeichnet man als

Mehr

DIE SPRACHE DER WAHRSCHEINLICHKEITEN

DIE SPRACHE DER WAHRSCHEINLICHKEITEN KAPITEL 1 DIE SPRACHE DER WAHRSCHEINLICHKEITEN Es ist die Aufgabe der ersten drei Kapitel, eine vollständige Beschreibung des grundlegenden Tripels (Ω, A, P) und seiner Eigenschaften zu geben, das heutzutage

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Stetige Funktionen, Binomischer Lehrsatz

Stetige Funktionen, Binomischer Lehrsatz Vorlesung 13 Stetige Funktionen, Binomischer Lehrsatz 13.1 Funktionenfolgen Wir verbinden nun den Grenzwertbegriff mit dem Funktionsbegriff. Es seien (a n ) n N eine reelle Folge und f : R R eine Funktion.

Mehr

mathe plus Aussagenlogik Seite 1

mathe plus Aussagenlogik Seite 1 mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet

Mehr

4. Relationen. Beschreibung einer binären Relation

4. Relationen. Beschreibung einer binären Relation 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B

Mehr

Grundlagen der Mengenlehre

Grundlagen der Mengenlehre mathe plus Grundlagen der Mengenlehre Seite 1 1 Grundbegriffe Grundlagen der Mengenlehre Def 1 Mengenbegriff nach Georg Cantor (1845-1918) Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener

Mehr

1 Algebraische Grundbegriffe

1 Algebraische Grundbegriffe 1 Algebraische Grundbegriffe Eine Algebra besteht aus einer Trägermenge S sowie eineroder mehreren Operationen. Eine Operation ist dabei eine k-stellige Abbildung, d.h. es gilt für eine Operation f f S

Mehr

1 Sprechweisen und Symbole der Mathematik

1 Sprechweisen und Symbole der Mathematik 1 Sprechweisen und Symbole der Mathematik Übersicht 1.1 Junktoren......................................................... 1 1.2 Quantoren......................................................... 4 1.3

Mehr

ANALYSIS I FÜR TPH WS 2016/17 1. Übung Übersicht

ANALYSIS I FÜR TPH WS 2016/17 1. Übung Übersicht . Übung Übersicht Aufgaben zu Kapitel und 2 Aufgabe : Drei klassische Ungleichungen Aufgabe 2: ) Beweis einer Summenformel Induktion) Aufgabe : ) Teleskopsummen Aufgabe 4: Noch etwas Formelmanipulation

Mehr

Mathematik 1 für Informatiker und Bioinformatiker

Mathematik 1 für Informatiker und Bioinformatiker Mitschrieb der Vorlesung Mathematik 1 für Informatiker und Bioinformatiker Prof. Dr. Peter Hauck Wintersemester 2006/2007 Mitschrieb in L A TEXvon Rouven Walter Letzte Änderung: 10. Oktober 2010 Lizenz

Mehr

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen.

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Kapitel 1 - Mathematische Grundlagen Seite 1 1 - Mengen Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Definition 1.1 (G. Cantor.

Mehr

Didaktische Grundlagen Arithmetik Vertiefung Übungen 4

Didaktische Grundlagen Arithmetik Vertiefung Übungen 4 Westfälische Wilhelms-Universität Münster Institut für Didaktik der Mathematik und Informatik Dr. Astrid Brinkmann Didaktische Grundlagen Arithmetik Vertiefung Übungen 4 Von allen, die bis jetzt nach Wahrheit

Mehr

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch 1.2 Mengenlehre Grundlagen der Mathematik 1 1.2 Mengenlehre Definition: Menge, Element, Variablenraum Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert

Mehr

4 Elementare Mengentheorie

4 Elementare Mengentheorie 4 Elementare Mengentheorie 4 Elementare Mengentheorie 4.1 Mengen [ Partee 3-11, McCawley 135-140, Chierchia 529-531 ] Die Mengentheorie ist entwickelt worden, um eine asis für den ufbau der gesamten Mathematik

Mehr

Geordnete Mengen. Eine Relation heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist.

Geordnete Mengen. Eine Relation heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist. Geordnete Mengen Eine Relation heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist. Ist eine Ordnungsrelation auf eine geordnete Menge., dann nennt man Die Namensgebung

Mehr

Relationen und Partitionen

Relationen und Partitionen Relationen und Partitionen Ein Vortrag im Rahmen des mathematischen Vorkurses der Fachschaft MathPhys von Fabian Grünig Fragen, Anmerkungen und Korrekturen an fabian@mathphys.fsk.uni-heidelberg.de Inhaltsverzeichnis

Mehr

Kapitel 2 MENGENLEHRE

Kapitel 2 MENGENLEHRE Kapitel 2 MENGENLEHRE In diesem Kapitel geben wir eine kurze Einführung in die Mengenlehre, mit der man die ganze Mathematik begründen kann. Wir werden sehen, daßjedes mathematische Objekt eine Menge ist.

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren

Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren µfsr, TU Dresden Version vom 11. Oktober 2016, Fehler, Ideen, Anmerkungen und Verbesserungsvorschläge bitte an benedikt.bartsch@myfsr.de

Mehr

2.2 der Größenbegriff

2.2 der Größenbegriff (mit Äquivalenzrelationen) Maximilian Geier Institut für Mathematik, Landau Universität Koblenz-Landau Zu Größen gelangt man ausgehend von realen Gegenständen durch einen Abstraktionsvorgang. Man geht

Mehr

Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust!

Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust! Chr.Nelius: Zahlentheorie (SoSe 2016) 1 14. Aufgabenblatt ZAHLENTHEORIE (für Master G und HRG) Lösungen Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor

Mehr

Weitere Eigenschaften

Weitere Eigenschaften Weitere Eigenschaften Erklärung der Subtraktion: x y := x + ( y) (5) Die Gleichung a + x = b hat die eindeutig bestimmte Lösung x = b a. Beweis: (a) Zunächst ist x = b a eine Lösung, denn a + x = a + (b

Mehr

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe 2. Kongruenzen und Restklassenringe Kongruenzen Definition: Wir sagen a ist kongruent zu b modulo m schreiben a b mod m, wenn m die Differenz b-a te Beispiel: Es gilt 2 19 mod 21, 10 0 mod 2. Reflexivität:

Mehr

Theoretische Informatik

Theoretische Informatik Mathematische Grundlagen Patrick Horster Universität Klagenfurt Informatik Systemsicherheit WS-2007-Anhang-1 Allgemeines In diesem einführenden Kapitel werden zunächst elementare Grundlagen kurz aufgezeigt,

Mehr

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen Natürliche und ganze Zahlen Inhalt 2.1 2.1 Teiler 12 12 60 60 2.2 2.2 Primzahlen 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 13, 13,...... 2.3 2.3 Zahldarstellungen 17 17 = (1 (10 0 0 1) 1) 2 2 2.4 2.4 Teilbarkeitsregeln

Mehr

2 Mengenlehre. Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen.

2 Mengenlehre. Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen. Mengenlehre 2 Mengenlehre Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen. Üblicherweise werden Mengen mit Großbuchstaben

Mehr

3. Diskrete Mathematik

3. Diskrete Mathematik Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,

Mehr

Beispiele für Relationen

Beispiele für Relationen Text Relationen 2 Beispiele für Relationen eine Person X ist Mutter von einer Person Y eine Person X ist verheiratet mit einer Person Y eine Person X wohnt am gleichen Ort wie eine Person Y eine Person

Mehr

Euler-Venn-Diagramme

Euler-Venn-Diagramme Euler-Venn-Diagramme Mengendiagramme dienen der graphischen Veranschaulichung der Mengenlehre. 1-E1 1-E2 Mathematische Symbole c leere Menge Folge-Pfeil Äquivalenz-Pfeil Existenzquantor, x für (mindestens)

Mehr

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 3. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 3. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11 Mathematik für Informatiker I Christoph Eisinger Wintersemester 2010/11 Musterlösungen zum Hausübungsblatt 3 Aufgabe 1 Zu überpüfen sind jeweils folgende Eigenschaften: 1. Reflexivität: x R x x S 2. Symmetrie:

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Komplexe Zahlen 5 Lineare Algebra 6 Lineare Programme 2 Grundlegende

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr