1 Algebraische Grundbegriffe
|
|
|
- Hannelore Hermann
- vor 9 Jahren
- Abrufe
Transkript
1 1 Algebraische Grundbegriffe Eine Algebra besteht aus einer Trägermenge S sowie eineroder mehreren Operationen. Eine Operation ist dabei eine k-stellige Abbildung, d.h. es gilt für eine Operation f f S k }{{} kartesisches Produkt Für k = 1 nennt man f eine unäre, für k = eine binäre, für k = 3 eine ternäre Operation usw. Beispiel für einfache Algebren wären z.b. Z, + also die ganzen Zahlen mit der binären Addition als Verknüpfung. Ein Beispiel für eine unäre Operation wäre die logische Negation über B definiert B,. Für Algebren mit spezifischen Eigenschaften hat man diverse Namen eingeführt Algebra Magma Halbgruppe Monoid Gruppe Abbildung 1: Algebraische Strukturen und ihre Abhängigkeiten Folgende Tabelle soll einen Überblick geben 1
2 Name Erklärung Eigenschaften Beispiel Algebra allg. ein Tupel bestehend abgeschlossen N, + aus einer Trägermenge S und Verknüpfungen f i, genannt Operationen mit f i S k Eine Algebra muss abgeschlossen sein, d.h. die Bilder einer Operation müssen in der Trägermenge S enthalten sein Magma Eine Algebra mit Trägermenge S und einer binären Verknüpfung abgeschlossen, binäre Verknüpfung B, Halbgruppe Ein Magma, deren Verknüpfung assoziativ ist, d.h. a b c = a b c Monoid Gruppe Eine Halbgruppe mit einem Einselement e, d.h. e S : a S : a e = e a = a Ein Monoid bei dem für jedes Element a S eine inverses Element a 1 S existiert, wobei a a 1 = a 1 a = ee sei das Einselement abgeschlossen, binäre Verknüpfung, assoziativ abgeschlossen, binäre Verknüpfung, assoziativ, Einselement abgeschlossen, binäre Verknüpfung, assoziativ, Einselement, Existenz inverser Elemente Eine der interessantesten und am öftesten untersuchten Strukturen ist hierbei die Gruppe. Aus den definierten Eigenschaften lassen sich zwei elementare Aussagen ableiten 1 Das Einselement ist eindeutig bestimmt Das zu einem Element a gehörende inverse Element a 1 ist eindeutig bestimmt Beweis1: Seien e, f zwei Einselemente. Es gilt e f = e e f = f e = f B, Z, + Einselement wäre hier die 0 Z, + Neutrales Element ist e = 0, für a ist a das inverse Element
3 Beweis: Seien a, a zwei zu a inverse Elemente, es folgt a = a }{{} e = a a a a = a }{{} =a a Was für Konsequenzen ergeben sich aus diesen Beobachtungen? Sitzt man vor der Aufgabe eine Verknüpfungstafel für eine Gruppe mit n Elementen zu konstruieren, so ergibt sich, dass in einer Zeile/Spalte jedes Element nur einmal vorkommen darf. Sei z.b. S = {e, a, b}, wobei e das Einselement sei. Wieviele mögliche Gruppen lassen sich konstruieren? Aus der Eigenschaft des Einselement ergibt sich =e e a b e e a b a a b b Mit der Zeilen/Spaltenregel ergibt sich e a b e e a b a a b e b b e a Wieso gilt nun die Zeilen/Spaltenregel? Am einfachsten macht man sich den Sachverhalt mit einem einfachen Beispiel klar. Sei S = {e, a} und folgende Verknüpfungstafel gegeben e a e e a a a a Ist S, mit dieser Tafel eine Gruppe? Laut der Tafel gilt a a = a. Was ist nun aber das inverse Element zu a? Zur Erinnerung, es ist a a 1 = e Wie man erkennt, lässt sich kein inverses Element für a finden, obige Tafel ergibt also keine Gruppe. Eine theoretischere Begründungsmöglichkeit liefert der Satz von Cayley im nächsten Abschnitt. 3
4 Permutationen/Symmetrische Gruppe.1 Allgemeines Sei N = {1,, 3,..., n} eine Menge mit genau n Elementen. Eine Permutation auf der Menge N mit σ : N N ist eine bijektive Selbstabbildung eines Tupels 1,, 3,..., n auf ein beliebiges anderes Tupel σ1, σ, σ3,..., σn. Um die Permutation zu identifizieren kann man entweder explizit eine Permutationsvorschrift σx mit x N angeben oder sich der Schreibweise n σ1 σ σ3... σn bedienen. Für n = 3 sind z.b. alle möglichen Permutationen {,,,,, } Es existieren genau n! verschiedene Permutationen, da für die Festlegung des ersten Elements alle n Elemente zur Verfügung stehen, für das zweite Element nur noch n 1 Elemente usw. Nun lässt sich mit Permutationen auch rechnen. Die Verkettung zweier Permutationen p und q ist dabei wie folgt definiert p q = 1... n σ1... σn mit den jeweiligen Abbildungsvorschriften σ und τ Für p = und q = wäre p q = 1 3 da 1... n 1... n = τ1... τn στ1... στn στ1 = σ = 1 στ = σ1 = 3 στ3 = σ3 = Für die Verkettung zweier Permutationen stellt die Permutation 1... n id = 1... n 4
5 ein neutrales Element dar, da für alle x N gilt, dass σ id x = x ist. Wie oben beschrieben existieren genau n! verschiedene Permutationen. Die Menge aller Permutationen zu einem gegebenen n beschreibt die Symmetrische Gruppe S n mit der Verkettung als Operation und der Identitätspermutation id als neutralem Element. Es ist S n = n!. Statt eine Permutation durch eine zweizeilige Matrix zu repräsentieren, lässt sich jede Permutation auch kürzer darstellen mit 1... n = σ1,..., σn σ1... σn. Zyklenschreibweise Eine weitere kompaktere Darstellungsweise ist die Zyklenschreibweise. Hierbei beginnt man mit einem Element x N und schreibt σx σ x... σ k 1 x wobei σ k x = σx gelte. Für einen Zyklus mit a0... a k 1 gilt σi = a i+1 mod k. D.h. ein Element wird immer auf sein rechtes Nachbarelement abgebildet. Für π = 1 3 ergibt sich π3 = und π = 1. Um eine Permutation wie τ = in die Zyklenschreibweise zu überführen, beginnt am besten mit einem beliebigen Elementhier 1 und stellt eine Abbildungskette auf. Es gilt Somit bekommt man als Ergebis 1, 3 4, 5 Hierbei ist es prinzipiell egal, ob man innerhalb der Zyklen Kommata zur Trennung setzt oder Leerraum. Auch gibt es unter Umständen für Zyklen verschiedene äquivalente Darstellungendie Startposition innerhalb eines Zyklus kann man beliebig vertauschen wie auch die Reihenfolge der Zyklen. So ist 1, 3 4, 5 3, 1 4, 5 5, 4 1, 3 Zyklen der Länge 1 nennt man Fixpunkte, der Länge Transpositionen. 5
6 .3 Satz von Cayley Der Satz von Cayley besagt, dass für jede beliebige Gruppe ein Isomorphismus zu einer Untergruppe der symmetrischen Gruppe existiert bzw. anders ausgedrückt: Jede Gruppe ist isomorph zu einer Untergruppe U der symmetrischen Gruppe S n. Als Konsequenz ergibt sich, dass jede Zeile/Spalte in der Verknüpfungstabelle eine Permutation der Elemente der Trägermenge darstellt. Somit muss jedes Element genau einmal pro Spalte/Zeile vorkommen. Beweis: Sei im folgenden die Operation einer Gruppe G und die Komposition von Permutationen der symmetrischen Gruppe S n, wobei n = G sei. Für ein Gruppenelement a G definiert man σ a x = a x. Dies entspräche in der Verknüpfungstafel der Zeile bzw. Spalte eines Elementes a. Für e a b e e a b a a b e b b e a wäre beispielsweise e a b σ e = e a b e a b σ a = a b e e a b σ b = b e a Wie man sieht wird das neutrale Element e auf die Identitätsabbildung id abgebildet. Um zu zeigen, dass der Satz gilt, muss bewiesen werden, dass U = T, eine Untergruppe der symmetrischen Gruppe ist, wobei T = {σ g : g G}. Dazu setzt man voraus, dass G eine gültige Gruppe ist. Wie man die einzelnen Permutationen σ g konstruiert ist oben gezeigt. Es ist σ g x = g x 6
7 wobei x, g G. U ist abgeschlossen, da für zwei Elemente σ a, σ b U gilt. x G : σ a σ b x = σ a σ b x = σ a b x = a b x = a b x }{{} 1 = σ }{{} a b x 1folgt aus Assoziativität von G liegt in U, da a*b in G liegt, da G abgeschlossen ist Das Einselement von U ist id, wobei id = σ e : idx = x = σ e x = e x = x Jedes Element σ a U hat ein inverses Element σ a 1 U, da x G :σ a x = a x a 1 σ a x = a 1 a x σ a 1σx = x Aus a 1 G folgt σ a 1 U. U ist also eine Gruppe. Es bleibt nur noch nachzuweisen, dass σ g x = g x tatsächlich eine bijektive Selbstabbildung ist. Seien x 1, x G, es ergibt sich Injektivität: σ g x 1 = σ g x g x 1 = g x g 1 g x 1 = g 1 g x x 1 = x Surjektivität: y G : y = σ g x y = g x g 1 y = x Der Umstand, dass U tatsächlich eine Untergruppe von S n ist, ergibt sich daraus, da die Operation die selbe, id auch in der symmetrischen Gruppe neutrales Element ist und U S n gilt. 3 Tutoraufgabe 4 Die Musterlösung ist an sich sehr anschaulich und falls man obige Inhalte gut verstanden hat, so sollte die Lösung trivial sein. 7
8 4 Tutoraufgabe Teilaufgabe 1 Die Lösung sollte keine Schwierigkeiten bereiten, man setzt nur ein und weist die 4 GruppeneigenschaftenAbgeschlossenheit, Assoziativität, Einselement, Inverse Elemente nach. 4. Teilaufgabe Die Aufgabe ist schon etwas schwieriger insbesondere, wenn einem der Begriff des ggt und das Rechnen in Restklassen noch nicht so vertraut ist. Assoziativität und Einselement zu zeigen ist trivial Abgeschlossenheit Die Abgeschlossenheit zeigt man wie folgt. Seien p, q Z n. Liegt p q in Z n? Damit dies erfüllt ist muss gelten ggtp, n = 1 ggtq, n = 1 ggtp q, n = 1 was äquivalent zu der Aussage p q Z n Sei x = ggtp q, n. Laut ggt Definition gilt x p q und x n. Man zerlege x nun in ein Produkt x = x 1 x, wobei x 1, x so gewählt seien, dass x 1 p und x q gelte. Natürlich folgt x 1 n und x n.da jedoch p, q teilerfremd zu n sind, ergibt sich 4.. Inverse x 1 = x = 1 x = 1 Die Bestimmung inverser Elemente in einem Restklassenring erfolgt am besten mit dem erweiterten euklidischen Algorithmus. Dessen theoretische Erklärung sei jedoch auf ein späteres Skript vertagt. Da ggtx 1, n = 1 ggtxmodn, n = 1 gilt, ist ein x 1 in Z n enthaltender Beweis für ggtx, n = 1 ggtxmodn, n = 1 folgt durch Einsetzen aus dem Lemma von Bezout. 8
3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen
TEIL II: GRUPPEN In der modernen Algebra versucht man die Zahlen (Z, Q, R, ) durch die Konzentration auf Rechenoperationen (+,,... ), oder allgemeiner auf strukturelle Eigenschaften dieser Operationen,
Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen
Lineare Algebra I Tutorium Inverse Matrizen und Gruppen Fachbereich Mathematik WS / Prof Dr Kollross November Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Die zweite Variante des Gauß-Algorithmus)
Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 9
Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 9 Satz 3.1.15 Sei N eine Natürliche Zahl. Dann gilt S =! := 1 2. (D.h. -Fakultät Elemente.) Beweis : Um eine bijektive Abbildung σ : {1} {1} zu erhalten,
Permutationen und symmetrische Gruppe
Permutationen und symmetrische Gruppe Für eine beliebige Menge M bilden die Bijektionen von M in M, versehen mit der Komposition von Abbildungen als Operation, eine Gruppe, die sogenannte symmetrische
Lineare Algebra 6. Übungsblatt
Lineare Algebra 6. Übungsblatt Fachbereich Mathematik M. Schneider 16.05.01 Konstantin Pertschik, Daniel Körnlein Gruppenübung Aufgabe G19 Berechnen Sie das inverse Element bzgl. Multiplikation in der
3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen
TEIL II: GRUPPEN In der modernen Algebra versucht man die Zahlen (Z, Q, R, ) durch die Konzentration auf Rechenoperationen (+,,... ), oder allgemeiner auf strukturelle Eigenschaften dieser Operationen,
Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme,
Kapitel 1 Gruppen 1.1 Operationen Lernziele 1. Gruppen und Untergruppen, Erzeugendensysteme, Operationen und Bahnen 1.1.1 Definiton Gruppe, symmetrische Gruppen Definition 1.1. Sei G eine nicht leere Menge
5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch
5.9 Permutationsgruppen Definition 103 Eine Permutation ist eine bijektive Abbildung einer endlichen Menge auf sich selbst; o. B. d. A. sei dies die Menge U := {1, 2,..., n}. S n (Symmetrische Gruppe für
Vortragsskript Einführung in die Algebra
Vortragsskript Einführung in die Algebra TeamTUM - Das Wettbewerbsteam Mathematik Technische Universität München Fakultät für Mathematik Vortragender: Vu Phan Thanh Datum: 26.11.12 iii Inhaltsverzeichnis
3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen
Inhaltsverzeichnis Teil II: Gruppen 2 3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen.................. 2 3.1.1 Gruppen.......................................... 2 3.1.2 Untergruppen.......................................
Permutationen. ... identische Abbildung
Permutationen n > 0 sei S n {σ : {1, 2,..., n} {1, 2,..., n} : σ ist bijektiv}. Dann ist S n eine Gruppe bzgl. der Verknüpfung von Abbildungen (vgl. früher) und heißt symmetrische Gruppe (vom Index n).
2. Symmetrische Gruppen
14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen
Übungsblatt 1: Monoide und Gruppen
Übungsblatt 1: Monoide und Gruppen Die schriftlichen Übungsaufgaben sind durch ein S gekennzeichnet und sollen in der Übung der nächsten Woche abgegeben werden. Die Votieraufgaben sind mit einem V gekennzeichnet.
Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen)
WS 2015/16 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15
Skript und Übungen Teil II
Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen
Die umgekehrte Richtung
Die umgekehrte Richtung Satz 95 Sei n N, n 2. Dann gilt: b n 1 1 mod n für alle b Z n \ {0} = n ist prim. Beweis: [durch Widerspruch] Annahme: r n für ein r N, r > 1. Dann also r n 1 1 (r mod n) n 1 1
Lineare Algebra I. Lösung 3.1:
Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 3 Prof. Dr. Markus Schweighofer 18.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 3.1: (a) Sei
1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,
Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel
KAPITEL 6. Algebra Gruppen
KAPITEL 6 Algebra 6.. Gruppen Bekannt sind die Kongruenzklassen, bijektive Abbildungen, Permutationen. Wir hatten in diesen Fällen eine Verknüpfung auf einer Menge. (Addition bzw. Multiplikation bei den
Mathematik für Informatiker I,
Teil II Algebra 70 Kapitel 8 Gruppen 8.1 Bedeutung in der Informatik Gruppen sind abstrakte Modelle für Mengen, auf denen eine Verknüpfung (etwa Addition oder Multiplikation) definiert ist. Allgemeine
Wiederholungsblatt zur Gruppentheorie
Wiederholungsblatt zur Gruppentheorie von Christian Elsholtz, TU Clausthal, WS 1999/2000 Um Ihnen zu helfen, die Gruppentheorie zu wiederholen, stelle ich hier einige wichtige Beispiele und einige Lösungen
Algebra für Informationssystemtechniker
Algebra für Informationssystemtechniker Prof. Dr. Fachrichtung Mathematik Institut für Algebra www.math.tu-dresden.de/ baumann [email protected] 23.04.2018 9. Vorlesung Halbgruppe Monoid Gruppe
Vorlesung Algebra I. Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen Einleitung
Vorlesung Algebra I Christian Lehn Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen 5 1.1. Vorkenntnisse Gruppen 1. Einleitung Definition. Es sei G eine Menge. Eine Verknüpfung auf G ist eine Abbildung :
3. Algebra und Begriffsverbände. Algebraische Strukturen
3. Algebra und Begriffsverbände Algebraische Strukturen Def.: Eine n-stellige (n-äre) [algebraische] Operation [auch: Verknüpfung] auf einer Menge A ist eine Abbildung f : A n A. Der Spezialfall n = 0:
Klassische Algebra. Gesucht sind die Lösungsmengen der folgenden Gleichungen: x n + a n 1 x n a 1 x + a 0 = 0 (a 0,...
Klassische Algebra Gesucht sind die Lösungsmengen der folgenden Gleichungen: x n + a n 1 x n 1 + + a 1 x + a 0 = 0 (a 0,..., a n 1 Q) Formeln für n {1, 2, 3, 4} sind bekannt. Abel, Galois: Für n N mit
Lineare Algebra I, Musterlösung zu Blatt 9
Lineare Algebra I, Musterlösung zu Blatt 9 Wintersemester 2007/08 1. Untersuchen Sie, ob die folgenden Matrizen invertierbar sind und bestimmen Sie gegebenenfalls die Inverse. 8 1 3 1 a) A = 3 3 1 1 11
4: Algebraische Strukturen / Gruppen
Stefan Lucks Diskrete Strukturen (WS 2009/10) 120 4: Algebraische Strukturen / Gruppen Definition 46 Sei G eine nichtleere Menge. Eine Funktion : G G G bezeichnen wir als Verknüpfung auf G. Das Paar (G,
2. Symmetrische Gruppen
2. Symmetrische Gruppen 15 2. Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht. Wir wollen nun eine neue wichtige Klasse von Beispielen
Übung: Teilmengen. Beweis: Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge)
15 Übung: Teilmengen seien Mengen. Zu zeigen ist: wenn Beweis: dann auch Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge) für alle
2.1. GRUPPEN Definition (Gruppoide, Halbgruppen, Monoide, Gruppen)
21 GRUPPEN 37 21 Gruppen Wir führen jetzt eine Hierarchie von algebraischen Strukturen ein, die für die weiteren Überlegungen sehr wichtig sind Dabei betrachten wir zunächst diejenigen, die aus einer Menge
(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)
3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten
Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr
Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen
1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe
1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12
1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe
1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12
6 Permutationen. Beispiele: a) f : R R, f(x) = x 2. b) f : R R, f(x) = e x. c) f : R 2 R, x (Projektion auf die x Achse) y
6 Permutationen Seien und B Mengen. Eine bbildung von nach B ist eine Vorschrift f, die jedem Element x ein eindeutig bestimmtes Element y = f(x) B zuordnet. Schreibe f : B, x f(x) Beispiele: a) f : R
2. Teil: Diskrete Strukturen
2. Teil: Diskrete Strukturen Kenntnis der Zahlenbereiche N, Z, Q, R, C setzen wir voraus. Axiomatische Einführung von N über Peano-Axiome. Z aus N leicht abzuleiten. Wie wird Q definiert? R ist der erste
4. Übung zur Linearen Algebra I -
4. Übung zur Linearen Algebra I - en Kommentare an [email protected] FU Berlin. WS 2009-10. Aufgabe 13 Auf dem Cartesischen Produkt Z Z werden 2 Verknüpfungen, definiert durch: Man zeige: (a
f ist sowohl injektiv als auch surjektiv.
Bemerkungen: Wir erinnern uns an folgende Definitionen: Eine Funktion f : U V heißt injektiv, wenn gilt: ( x, y U)[x y f(x) f(y)] Eine Funktion f : U V heißt surjektiv, wenn gilt: ( y V x U)[y = f(x)]
Lineare Algebra I 5. Tutorium Die Restklassenringe /n
Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll
TECHNISCHE UNIVERSITÄT MÜNCHEN
TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF DRDR JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 2003/2004) Aufgabenblatt 3 (7
Wie werden die Vorlesungen/Übungen organisiert?
Wie werden die Vorlesungen/Übungen organisiert? Mein Name: Prof. Vladimir Matveev Sprechstunden: nach jeder Vorlesung bzw. in der Pause Homepage der Vorlesung: http: //users.minet.uni-jena.de/ matveev/lehre/la10/
2.1 Eigenschaften und Beispiele von Gruppen Untergruppen Homomorphismen... 25
2 Gruppen Übersicht 2.1 Eigenschaften und Beispiele von Gruppen............................. 17 2.2 Untergruppen...................................................... 21 2.3 Homomorphismen..................................................
Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie
Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Def. Eine Gruppe besteht aus einer nicht leeren Menge G und einer Abbildung : G G G (wir werden a b oder ab statt (a,b) schreiben; die Abbildung
Erweiterter Euklidischer Algorithmus
Erweiterter Euklidischer Algorithmus Algorithmus ERWEITERTER EUKLIDISCHER ALG. (EEA) EINGABE: a, b N 1 If (b = 0) then return (a, 1, 0); 2 (d, x, y) EEA(b, a mod b); 3 (d, x, y) (d, y, x a b y); AUSGABE:
01. Gruppen, Ringe, Körper
01. Gruppen, Ringe, Körper Gruppen, Ringe bzw. Körper sind wichtige abstrakte algebraische Strukturen. Sie entstehen dadurch, dass auf einer Menge M eine oder mehrere sogenannte Verknüpfungen definiert
Operationen. auch durch. ausgedrückt. ist die Trägermenge der Operation. Mathematik I für Informatiker Algebren p.1/21
Operationen Eine Operation auf einer Menge ist eine Abbildung ist dabei die Menge aller -Tupel mit Einträgen aus. Man nennt auch durch die Stelligkeit der Operation ; dies wird ausgedrückt. Die Menge ist
3. Untergruppen. 3. Untergruppen 23
3. Untergruppen 23 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten
Allgemeine Algebren. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden
Allgemeine Algebren Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] Operationen Eine Operation auf einer Menge A ist eine Abbildung f : A n A. A n ist dabei
Skriptum EINFÜHRUNG IN DIE ALGEBRA
Skriptum EINFÜHRUNG IN DIE ALGEBRA 1 Günter Lettl SS 2016 1. Algebraische Grundbegriffe 1.1 Verknüpfungen Definition 1. Es sei M eine nicht leere Menge. a) Eine Verknüpfung (oder (binäre) Operation) auf
Tutorium: Diskrete Mathematik
Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 01.12.2017 (Teil 1) 22. November 2017 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2017 Steven Köhler 22. November 2017
Permutationsgruppen. 1 Zykelzerlegung und Signum. Jesko Hüttenhain. Winter 2013
Permutationsgruppen Jesko Hüttenhain Winter 2013 Sei N eine endliche Menge. Dann bezeichnen wir mit S N := {σ : N N σ bijektiv} die symmetrische Gruppe auf N. Für n N sei [n] := {1,..., n}. Wir schreiben
Thema: Die Einheitengruppe des Restklassenrings /n
RWTH Aachen Lehrstuhl D für Mathematik Betreuer: Prof. U. Schoenwaelder Hausaufsatz zur Vorlesung Algebra I im WS 99/00 Thema: Die Einheitengruppe des Restklassenrings /n Vorgelegt von Sascha Haarkötter
WS 2008/09. Diskrete Strukturen
WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 11. Januar 2018 1/32 Erinnerung: Eine Gruppe ist eine algebraische Struktur (G, )
Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)
Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar
1.4 Gruppen, Ringe, Körper
14 Gruppen, Ringe, Körper Definition 141 Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M : (a, b a b Die Verknüpfung heißt assoziativ falls gilt: a (b c = (a b c a, b, c M; kommutativ falls
4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung
43 Permutationen Definition Eine Permutation der Elementen {,, n} ist eine bijektive Abbildung σ : {,,n} {,,n} Es ist leicht zu sehen, dass die Hintereinanderführung zweier Permutationen ergibt wieder
mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"
Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"
Die Permutationsgruppe
Die Permutationsgruppe und ihre Bedeutung für die Theorie endlicher Gruppen Christian Gogolin 10.01.2008 Inhaltsverzeichnis 1 Einführung der Permutationsgruppe 1 1.1 Die Permutationsgruppe................................
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Algebraische Strukturen und Verbände
KAPITEL 4 Algebraische Strukturen und Verbände Definition 4.1. Sei M eine Menge. Eine Abbildung : M M M nennt man eine (zweistellige) Verknüpfung in M. Man schreibt dafür auch a b := (a, b) mit a, b M.
Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie
Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Def. Eine Gruppe besteht aus einer nicht leeren Menge G und einer Abbildung : G G G (wir werden a b oder ab statt (a,b) schreiben; die Abbildung
Algebra. Eine Menge A heißt abzählbar, wenn A gilt. Insbesondere sind, und abzählbar, und sind nicht abzählbar (überabzählbar).
Algebra 1 Mengen 1.1 Operationen A Anzahl der Elemente von A (Mächtigkeit, Betrag, Kardinalität) (A) Potenzmenge von X ( (A) = 2 A ) A B wenn jedes Element von A auch Element von B ist. A = B (A B und
4. Morphismen. 26 Andreas Gathmann
26 Andreas Gathmann 4 Morphismen Wir haben nun viele Beispiele und Konstruktionen von Gruppen gesehen Natürlich wollen wir diese vielen verschiedenen Gruppen jetzt auch irgendwie miteinander in Beziehung
1.4 Gruppen, Ringe, Körper
14 Gruppen, Ringe, Körper Definition 141 Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M : (a,b) a b Die Verknüpfung heißt assoziativ falls a,b,c M gilt: a (b c) = (a b) c; kommutativ falls
PROSEMINAR LINEARE ALGEBRA
PROSEMINAR LINEARE ALGEBRA von Daniel Cagara Zunächst benötigen wir einige Elemente der Gruppentheorie. Definition 1. Eine Gruppe ist ein Tupel, bestehend aus einer nicht leeren Menge G und einer Verknüpfung,
Determinanten. I. Permutationen
Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch
Modulare Arithmetik. 1. Betrachte für k 2 Z die Menge k + nz:
Modulare Arithmetik Wir rechnen mit den sogenannten Restklassen: Es sei n 2 N, n 1. Betrachte für k 2 Z die Menge k + nz: k + nz = {...,k 2n, k n, k, k + n, k + 2n, k + 3n,...} Beachte: (k + nz) \ (` +
C: Algebraische Strukturen
C: Algebraische Strukturen Algebra: Rechnen. Menge mit Verknüpfungen: (N 0, +), (R, +, ), (P(X),, ), (R n n, +, ) Informatik: Boolsche Algebren Relationenalgebra (Datenbanken) Computeralgebra 29 Gruppen
1. Eine rechtstotale Funktion heißt surjektive Funktion oder Surjektion. 2. Eine linkseindeutige Funktion heißt injektive Funktion oder Injektion
Transitiv-reflexive Hülle Definition 24. Sei R M M eine Relation. Dann ist die transitiv-reflexive Hülle R von R definiert als die kleinste Menge mit folgenden Eigenschaften: 1. a M : (a, a) R 2. R R 3.
3.2 Operationen von Gruppen auf Mengen und Faktorgruppen
Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 16 wohldefiniert, ein Gruppen-Homomorphismus, injektiv und surjektiv ist. ( Dies ist eine Anwendung vom Satz 2.4.1.) Siehe die Aufgaben (Blatt 6). 3.2 Operationen
5. Gruppen, Ringe, Körper
5. Gruppen, Ringe, Körper 5.1. Gruppen Die Gruppentheorie, als mathematische Disziplin im 19. Jahrhundert entstanden, ist ein Wegbereiter der modernen Mathematik. Beispielsweise folgt die Gruppe, die aus
6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66
6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66 6 Determinanten 6.1 Symmetrische Gruppe Definition: Eine bijektive Abbildung von einer Menge X auf sich selbst heisst eine Permutation von X. Satz-Definition:
3.4 Algebraische Strukturen
3.4 Algebraische Strukturen 9 3.4 Algebraische Strukturen Man sagt, eine Menge hat eine algebraische Struktur, wenn in ihr eine Operation definiert ist, d.h. eine Verknüpfung von zwei Elementen der Menge,
4. Morphismen. 30 Andreas Gathmann
30 Andreas Gathmann 4. Morphismen Wir haben nun viele Beispiele und Konstruktionen von Gruppen gesehen. Natürlich wollen wir diese vielen verschiedenen Gruppen jetzt auch irgendwie miteinander in Beziehung
Determinanten. I. Permutationen
Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch
Ein Gruppenkriterium basierend auf der Verknüpfungstabelle. einer algebraischen Struktur
Ein Gruppenkriterium basierend auf der Verknüpfungstabelle einer algebraischen Struktur Wolfgang Windsteiger JKU Linz, A 4040 Linz, Austria Kurzfassung In dieser Arbeit beschreiben wir ein einfaches Kriterium,
Lösung 2: Relationen, Abbildungen, Mächtigkeit, Gruppen
D-MATH Lineare Algebra I HS 2016 Dr. Meike Akveld Lösung 2: Relationen, Abbildungen, Mächtigkeit, Gruppen 1. Gegeben n, m Z schreiben wir m n k Z : n = km Wir sagen m teilt n. Eine Zahl n Z ist gerade,
3-1 Elementare Zahlentheorie
3-1 Elementare Zahlentheorie 3. Der Restklassenring Z/n und seine Einheitengruppe 3.0. Erinnerung: Teilen mit Rest, euklidscher Algorithmus, Bézoutsche Gleichung. Sei n eine feste natürliche Zahl. Sei
1.5 Restklassen, Äquivalenzrelationen und Isomorphie
Lineare Algebra I WS 2015/16 c Rudolf Scharlau 39 1.5 Restklassen, Äquivalenzrelationen und Isomorphie In diesem Abschnitt wird zunächst der mathematische Begriff einer Relation kurz und informell eingeführt.
0 Mengen und Abbildungen, Gruppen und Körper
0 Mengen und Abbildungen, Gruppen und Körper In diesem Paragrafen behandeln wir einige für die Lineare Algebra und für die Analysis wichtige Grundbegriffe. Wir beginnen mit dem Begriff der Menge. Auf Cantor
IT-Security. Teil 9: Einführung in algebraische Strukturen
IT-Security Teil 9: Einführung in algebraische Strukturen 08.05.17 1 Literatur und Videos [9-1] http://www.iti.fh-flensburg.de/lang/krypto [9-2] Forster, Otto: Algorithmische Zahlentheorie. 2. Auflage,
Symmetrische Figuren von Prof. Dr. Frank
Symmetrische Figuren von Prof. Dr. Frank Eckhard Großmann November 3, 2009 1 Mathematische Formeln und Darstellungen vorweggegriffen Dieses Kapitel soll nochmal alle notwendigen mathematischen Grundlagen
SS 2017 Torsten Schreiber
14 Wenn man mindestens einen Operator mit einer definierten Menge in Verbindung setzt, dann fällt es unter dem Bereich der Strukturen. Bei der kleinsten möglichen Struktur handelt es sich um eine. Eine
Einführung in die Theoretische Informatik
Einführung in die Theoretische Informatik Woche 4 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Modus Ponens A B B A MP Axiome für
Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz
Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige
