4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung

Größe: px
Ab Seite anzeigen:

Download "4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung"

Transkript

1 43 Permutationen Definition Eine Permutation der Elementen {,, n} ist eine bijektive Abbildung σ : {,,n} {,,n} Es ist leicht zu sehen, dass die Hintereinanderführung zweier Permutationen ergibt wieder eine Permutation Man definiert dadurch das Produkt zweier Permutationen σ, π σπ = π σ, dh σπ(k) = π σ(k) = π(σ(k)) Beachte hier die umgekehrte Reihenfolge! Man kann Permutationen so vorstellen, wie Umordnung der Elementen {,,n} Es ist bequem also eine Permutation als n σ() σ() σ(n) zu notieren Beispiel Die Permutation σ ( 3 ) vertauscht und, und lässt 3 und 4 fest Also σ() =, σ() =, σ(3) = 3, σ(4) = 4 Das Produkt rechnet man so aus: Also σσ =die identische Permutation Bezeichne mit S n die Menge aller Permutationen auf n Elementen Versehen mit dem obigen Produkt wird S n zu einer Gruppe, die so genannte Symmetrische Gruppe Die Anzahl der Elementen in S n ist n! = n Die Inverse einer Permutation ist die Inverse der bijektiven Abbildung σ Das neutrale Element S n ist die identische Abbildung, dh (k) = k für jedes k =,,n 3 Es ist möglich, dass eine Permutation eine Teilmenge M {,,n} invariant lässt Wenn M invariant ist und keine weitere, nichtleere invariante Mengen erhält nennen wir es eine Zyklus Anders gesagt eine Zyklus in einer Permutation ist eine Folge von unterschiedlichen Elementen n,,n k mit σ(n i ) = n i+ für i k und σ(n k ) = n Ein solcher Zyklus können wir als (n n n k ) notieren Wir nennen die Permutation n n n n n k n k n n 3 n k n = n k n 3 n k auch eine Zyklus Hier heißt k die Länge des Zyklus Eine Zyklus von Länge heißt auch Transposition Die Inverse einer Transposition ist dieselbe Transposition (warum?) In dem obigen Beispiel is also () eine Zyklus (sogar eine Transposition), sowie (3) und (4) sind auch Zyklen Eine bequeme Notation ist also für das obige σ: ()(3)(4) Ein Zyklus von Länge is ein Element das auf sich 8

2 gebildet wird, also ein Fixpunkt der Permutation Im obigen Beispiel sind 3 und 4 Fixpunkte 4 Sei σ die Permutation von 6 Elementen (in Zyklus-Notation) (34)(56) und sei σ die Permutation ()(35)(46) Wir sehen also, σ und σ keinen Fixpunkt haben 3 4 σ : 3 5 σ : Das Produkt von σ und σ ist σ σ = (34)(56)()(35)(46) = (5463), also σ σ besteht aus nur einer Zyklus, ist also eine zyklische Permutation σ σ : Satz Jede Permutation lässt sich eindeutigerweise als Produkt von disjunkten Zyklen schreiben Beweis Fange mit an: σ() σ(σ()) so müssen wir irgendwann zurück zu dem Element in dieser Kette kommen (es gibt nähmlich endlich viele Elemente): so haben wir eine Zyklus gefunden Wiederhole die ganze Prozedere mit den restlichen Elementen (solange es noch welche gibt) Satz Jede Permutation σ S n läßt sich als Produkt von (nicht notwendigerwiese diskjunkten) Transpositionen schreiben Beweis Es reicht ein Zyklus als Produkt von Transpositionen schreiben (wegen Satz ; schreibe σ als Produkt von disjunkten Zyklen) Sei also σ S n und Es gilt Somit ist der Beweis fertig (n n n k ) eine Zyklus von σ (n n )(n n 3 ) (n k ) = (n n n k ) Beispiel A C H T U N G : Ein typischer Fehler: ()(3) (3) sondern ()(3) = (3)! Die Transposition-Zerlegung is nicht eindeutig: (34) = (3)(4)() und (34) = (3)(34)(34)(4)() Wir merken aber, dass in diesem Beispiel die Anzahl der Transpositionen in beiden Zerlegungen ungerade ist Das ist keine Ausnahme Um dies zu sehen führen wir den folgenden Begriff ein: 9

3 Definition Sei σ S n Eine Inversion in σ, ist ein Paar i, j {,,n} mit i < j und σ(j) > σ(i) (In diesem Fall sagt man auch, dass die Elemente i und j in σ in falscher (inverser) Reihenfolge, oder in Inversion stehen) Beispiel Fïr die identische Permutation ( 3 ) ist diese Anzahl 0 Für σ = (34), also für ( 3 ) gilt: σ() > σ(), σ() > σ(4), σ(3) > σ(4) Also diese Anzahl is 3, ungerade Definition Sei N die Anzahl der Inversionen in σ So heißt das Signum (oder Vorzeichen) von σ Sign(σ) = ( ) N, Satz 3 Ist σ S n, so ist die Parität der Anzahl der Transpositionen in einer Transposition-Zerlegung von σ gleich die Parität der Anzahl der Inversionen in σ (Also sie ist immer dieselbe, egal welche Transposition-Zerlegung wir betrachten) Beweis Sei σ S n Es reicht zu zeigen, dass, wenn wir σ mit einer Transposition τ multiplizieren das Vorzeichen wird mit Multipliziert, also Sign(σ) = Sign(στ) Wir haben also τ = (i j ), eine Transposition mit i = σ(i), j = σ(j), und i j n σ = σ() σ() σ(i) σ(j) σ(n) Damit ist das Produkt στ = i j n σ() σ() σ(j) σ(i) σ(n) Wir notieren die Änderung in der Anzahl der Inversionen Waren i und j in Inversion so sind sie nicht mehr (oder waren sie nicht in einer Inversion, so sind sie doch jetzt) Dies ändert die Anzahl der Inversionen um ± Ab jetzt OBdA i < j Ist k < i oder k > j so sind i und k (j und k) genau dann in inverser Position in στ, wenn sie in inverser Position in σ stehen Sei also i < k < j, so gilt i k j n σ = σ() σ(i) σ(k) σ(j) σ(n) i k j n und στ = σ() σ(j) σ(k) σ(i) σ(n) Es gibt drei Möglichkeiten für σ: ) k steht mit i und j in Inversion ) k steht mit keinem der beiden (i oder j) in Inversion 3) steht mit einer der beiden (i oder j) in Inversion Fall ) bedeutet σ(k) < σ(i), σ(j) < σ(k), und somit στ(k) = σ(k) > σ(j) = στ(i) und στ(k) = σ(k) < σ(i) = στ(j) Dabei ändert sich die Anzahl der Inversionen um Fall ) geht ähnlich, und die Änderung in der Anzahl der Inversionen ist wieder um Fall 3) bedeutet σ(k) < σ(i), σ(k) < σ(j) (oder σ(i) < σ(k), σ(j) < σ(k)), und somit στ(k) = σ(k) < σ(i) = στ(j), στ(k) = σ(k) < σ(j) = στ(i) (oder στ(k) = σ(k) > σ(i) = στ(j), στ(k) = σ(k) > σ(j) = στ(i)) Dabei ändert sich die Anzahl der Inversionen um 0 Bemerkung Sei σ S n gegebene Permutation, und schreibe sie als Produkt von Zyklen Sei N die Anzahl der Zyklen die gerade Länge haben So gilt Sign(σ) = ( ) N 0

4 44 Permutationsmatrizen Sei E = {e,,e n } die kanonische Basis in K n, und sei σ eine Permutation Die Vektoren e σ(),,e σ(n) bilden wieder eine Basis in K n, und es gibt eine bijektive lineare Abbildung T σ mit T σ (e j ) = e σ(j) Sei P σ die Matrix von T σ bezüglich E, dh P σ = M E,E T σ Für den obigen Beispiel σ = ()(3)(4) sieht es so aus: P σ = Die Matrix P σ heißt eine Permutationsmatrix Satz Eine Matrix P ist genau dann eine Permutationsmatrix, wenn in jeder Spalte und in jeder Zeile genau eine steht, sonst sind die Einträge 0 Für σ, σ S n gilt P σ σ = P σσ = P σ P σ 3 Multiplikation mit P σ von links führt zu Vertauschung der Zeilen von A Genauer (in Zeilenvektornotation): P σ a a σ() a = a σ() a n a σ(n) 4 Multiplikation mit P σ von rechts führt zu Vertauschung der Spalten von A Genauer (in Spaltenvektornotation): ( a a a n ) Pσ = ( a σ() a σ() a σ(n) ) Beweis Eine Permutationsmatrix hat offensichtlich in jeder Spalte und Zeile genau eine Sei also P eine Matrix, so dass in jeder Spalte und in jeder Zeile genau eine steht sonst seien die Einträge 0 Jede kanonische Basisvektor e,,e n also taucht als Spaltenvektor von P auf (und genau einmal), in welcher Reihenfolge dies geschieht definiert σ Für j n gilt T σ σ e j = e σ σ (j) = T σ e σ(j) = T σ T σ e j Daraus folgt T σ σ = T σ T σ, und somit die Behauptung 3, 4: Siehe elementare Umformungen von Typ III Satz P σ läßt sich durch Zeilenvertauschungen auf die Einheitsmatrix bringen Für eine Permutation σ ist det(p σ ) = Sign(σ) Beweis Klar Bis jetzt haben wir angenommen, dass die Determinante definiert werden kann, und haben aus den definierenden Eigenschaften ganz viele Information hergeleitet Nun können wir die Determinant eigentlich definieren Definition (Leibniz) Für A M n,n (K) setze Satz 3 Es gilt det(a) = det(a) = σ S n Sign(σ)α σ() α σ() α nσ(n) = σ S n Sign(σ)α σ() α σ() α nσ(n) = σ S n Sign(σ) n α iσ(i) i= π S n Sign(π)α π() α π() α π(n)n Die so definierte Funktion det hat die Eigenschaften (D), (D) und (D3)

5 Beweis Es gilt det(a) = n Sign(σ) α iσ(i) = n Sign(σ) α σ σ(i)σ(i) σ S n i= σ S n i= = n Sign(σ ) α σ (i)i = n Sign(σ) α σ(i)i σ S n i= σ S n i= (D3) ist trivial (setze ein!) Um (D) zu sehen, sei τ S n eine Transposition, so ist det(p τ A) = n Sign(σ) α σ(τ(i))i = n Sign(τ σ) α σ(i)i σ S n i= σ S n i= = n Sign(σ) α σ(i)i = det(a) σ S n i= (D) folgt aus Nachrechnen 45 Wieder Gleichungssysteme Satz (Die Cramersche Regel) Sei A M n,n (K) eine invertierbare Matrix (also det(a) 0) Für b K n sei x K n eine Lösung der Gleichung So gilt Ax = b x i = det(a i) det(a), wobei für i =,,n ist a a (i ) b a (i+ a n a a (i ) b a (i+ a n A i =, a n a n(i ) b n a n(i+ a nn i-te Spalte dh A i = A mit die i-te Spalte durch b ersetzt Beweis Sie x die eindeutige Lösung x = A b, und betrachte die Matrix 0 x x i 0 B i = 0 x i 0 0 x i x n 0 Dann gilt und somit i-te Spalte AB i = A i, det(ab i ) = det(a) det(b i ) = det(a i )

6 Die Determinante von B i rechnet man mithilfe des Laplace scen Entwicklungssatzes (nach i-ter Zeile): Die Behauptung folgt daraus det(b i ) = x i Diese Method, um die Lösung zu finden, ist sehr zeitaufwendig, vor Allem wenn man mit der gleichen Matrix A aber mit vielen unterschiedlichen rechten Seiten die Gleichung lösen möchte Hier ist eine andere Methode, welche genau für solchen Situationen geeignet ist: Die LU-Zerlegung Wir wissen bereits das Gleichungen Ax = b mit A obere oder untere Dreickesmatrizen leicht zu lösen sind (einfach einsetzen!) Die Idee ist also eine allgemeine Matrix A als Produkt solcher Matrizen zu schreiben, also A = LU mit L unteren und U oberen Dreiecksmatrizen Dies ist leider nicht immer möglich, aber wenn doch, dann kann man Ax = b dadurch lösen, dass man die leichte Gleichungen löst Uy = b und Lx = y Beispiel Sei 3 A = Wir wollen A als Produkt A = LU zerlegen, mit L unteren und U oberen Dreiecksmatrizen Wir bringen A auf Zeilenstufenform durch elementaren Umformungen von Typ II und wir machen es so, dass vielfacher von Zeilen immer zu darunterliegenden Zeilen addiert werden (wir hoffen das es machbar ist!) Diese elementaren Umformungen entsprechen Multiplikation von Links mit Matrizen von Typ S II Sei also U die so entstandene Zeilenstufenform von A und S N S A = U Auf diesem Beispiel sieht es so aus: 0 0 S = 0 addiere erste Zeile zu der zweiten; S = 0 0 addiere erste Zeile zu der dritten; 0 3 S S A = S 3 = 0 0 addiere 0 zweite Zeile zu der dritten; 3 S 3 S S A = 0 = U 0 0 Die Matrix L bekommt man aus S 3 S S A = U, also L = (S 3 S S ) : L = S S S 3 = = Wir überprüfen diese Zerlegung: LU = 0 0 = 0 4 = A, also stimmt! 3

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

Definition Sei R ein kommutativer Ring mit multiplikativ neutralem Element 1. Eine Abbildung D : R (n,n) R heißt n-linear, wenn gilt

Definition Sei R ein kommutativer Ring mit multiplikativ neutralem Element 1. Eine Abbildung D : R (n,n) R heißt n-linear, wenn gilt Kapitel 5 Determinanten 51 Definition und Existenz Definition 511 Sei R ein kommutativer Ring mit multiplikativ neutralem Element 1 Eine Abbildung D : R (n,n) R heißt n-linear, wenn gilt [D1] D ist linear

Mehr

14 Determinanten. 70 II. Lineare Gleichungssysteme. a b c d

14 Determinanten. 70 II. Lineare Gleichungssysteme. a b c d 70 II. Lineare Gleichungssysteme 14 Determinanten Aufgabe: Zeigen Sie, daß die Regularität einer quadratischen Matrix stabil gegen kleine Störungen ist: Es sei A K n n regulär. Finden Sie δ > 0, so daß

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

a 1 a 1 A = a n . det = λ det a i

a 1 a 1 A = a n . det = λ det a i 49 Determinanten Für gegebene Vektoren a 1,,a n K n, betrachte die Matrix deren Zeilenvektoren a 1,,a n sind, also A = Ab sofort benutzen wir diese bequeme Schreibweise Definition Sei M : K n K }{{ n K

Mehr

6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66

6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66 6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66 6 Determinanten 6.1 Symmetrische Gruppe Definition: Eine bijektive Abbildung von einer Menge X auf sich selbst heisst eine Permutation von X. Satz-Definition:

Mehr

Determinanten - II. Falls n = 1, gibt es offenbar nur die identische Permutation, und für eine 1 1 Matrix A = (a) gilt det A = a.

Determinanten - II. Falls n = 1, gibt es offenbar nur die identische Permutation, und für eine 1 1 Matrix A = (a) gilt det A = a. Determinanten - II. Berechnung von Determinanten Wir erinnern, dass für A M(n n; K) gilt : det A = σ S n signσ a σ() a 2σ(2)...a nσ(n). Falls n =, gibt es offenbar nur die identische Permutation, und für

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 0 Olga Holtz MA 378 Sprechstunde Fr 4-6 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do -4 und nv jokar@mathtu-berlinde Kapitel Die Determinante

Mehr

Lineare Algebra I, Musterlösung zu Blatt 9

Lineare Algebra I, Musterlösung zu Blatt 9 Lineare Algebra I, Musterlösung zu Blatt 9 Wintersemester 2007/08 1. Untersuchen Sie, ob die folgenden Matrizen invertierbar sind und bestimmen Sie gegebenenfalls die Inverse. 8 1 3 1 a) A = 3 3 1 1 11

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 97 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

Wir lernen nun einen ganz wichtigen Ring kennen, den Polynomring: γ i = α j β k.

Wir lernen nun einen ganz wichtigen Ring kennen, den Polynomring: γ i = α j β k. 2.4 Polynomringe Wir lernen nun einen ganz wichtigen Ring kennen, den Polynomring: Definition 2.56. Sei R ein kommutativer Ring mit 1 (in den meisten Fällen wird R ein Körper sein). Wir betrachten die

Mehr

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Klausur: voraussichtlich Mittwoch,

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Klausur: voraussichtlich Mittwoch, Lineare Algebra I - 2. Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Klausur: voraussichtlich Mittwoch, 4.2. 4:3 Uhr, A3 A 2 Mat(n, n; K) Dann ist 7 A : Mat(n, ; K)! Mat(n, ; K) b! A b ein Endomorphismus.

Mehr

7. DETERMINANTEN 111. y 1. ; x, y R 2 definieren wir die Determinante. x1 y := x 2 y 2. x 1 y 1 := x 1y 2 x 2 y 1. x 2 λx 1 x 2 λx 2 x 1 = 0.

7. DETERMINANTEN 111. y 1. ; x, y R 2 definieren wir die Determinante. x1 y := x 2 y 2. x 1 y 1 := x 1y 2 x 2 y 1. x 2 λx 1 x 2 λx 2 x 1 = 0. 7 DETERMINANTEN 7 Determinanten Vorbereitungen Für zwei Vektoren x provisorisch als ( x x 2 ), y ( y y 2 ) ; x, y R 2 definieren wir die Determinante ( ) x y det(x, y) : det : x 2 y 2 x y x 2 y 2 : x y

Mehr

Permutationen und symmetrische Gruppe

Permutationen und symmetrische Gruppe Permutationen und symmetrische Gruppe Für eine beliebige Menge M bilden die Bijektionen von M in M, versehen mit der Komposition von Abbildungen als Operation, eine Gruppe, die sogenannte symmetrische

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Determinanten. Kapitel Permutationen

Determinanten. Kapitel Permutationen Kapitel 5 Determinanten 51 Permutationen Die Permutationen einer Menge M, d h die bijektiven Abbildungen von M auf M, bilden bekanntlich eine Gruppe S(M) Im Folgenden benötigen wir nur die Permutationen

Mehr

7 Determinanten. D ist alternierend g.d.w. für alle i j gilt:

7 Determinanten. D ist alternierend g.d.w. für alle i j gilt: 7 Determinanten Im folgenden betrachten wir quadratische Matrizen Wir schreiben dabei eine n n Matrix A (über dem Körper K) primär als Zeilenvektor, dessen Elemente die Spalten von A sind; also A = (a

Mehr

Definition 1 Sei π ein Element aus der symmetrischen Gruppe S n der Permutationen aller natürlichen Zahlen von 1 bis n.

Definition 1 Sei π ein Element aus der symmetrischen Gruppe S n der Permutationen aller natürlichen Zahlen von 1 bis n. 1 Die Determinante Definition 1 Sei π ein Element aus der symmetrischen Gruppe S n der Permutationen aller natürlichen Zahlen von 1 bis n. a) Ein Fehlstand von π ist ein Paar (i, j) mit 1 i < j n und π(i)

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 95 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

6.2 Rechnen mit Matrizen

6.2 Rechnen mit Matrizen 62 Rechnen mit Matrizen 62 Rechnen mit Matrizen 103 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

Permutationen. ... identische Abbildung

Permutationen. ... identische Abbildung Permutationen n > 0 sei S n {σ : {1, 2,..., n} {1, 2,..., n} : σ ist bijektiv}. Dann ist S n eine Gruppe bzgl. der Verknüpfung von Abbildungen (vgl. früher) und heißt symmetrische Gruppe (vom Index n).

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

7 Determinanten. f i : Mat n n (K) K. j=1 ( 1)i+j a ij D(A ij )

7 Determinanten. f i : Mat n n (K) K. j=1 ( 1)i+j a ij D(A ij ) 7 Determinanten Im folgenden betrachten wir quadratische Matrizen. Wir schreiben dabei eine n n Matrix A (über dem Körper K) primär als Zeilenvektor, dessen Elemente die Spalten von A sind; also A = (a

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

Anzahl der Fehlstände von σ

Anzahl der Fehlstände von σ Grassmann-Algebra (äußere Algebra) Alternierende multilineare Abbildung Multiplikation der Basiselemente (R 2 ) und (R 3 ) Determinanten Determinanten, anschaulich Verkettungseigenschaft für sgn(σ) Anzahl

Mehr

Die Determinante einer Matrix

Die Determinante einer Matrix Chr.Nelius, Lineare Algebra II (SS 2005) 6 Die Determinante einer Matrix Wir betrachten im folgenden Determinantenformen auf dem Vektorraum V = K n. Eine solche Form ist eine Abbildung von n Spaltenvektoren

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Determinante. Die Determinante. einer quadratischen Matrix A mit Spalten a j kann durch folgende Eigenschaften definiert werden.

Determinante. Die Determinante. einer quadratischen Matrix A mit Spalten a j kann durch folgende Eigenschaften definiert werden. Determinante Die Determinante det A = det(a 1,..., a n ) einer quadratischen Matrix A mit Spalten a j kann durch folgende Eigenschaften definiert werden. Multilineariät: det(..., αa j + βb j,...) = α det(...,

Mehr

Lösung Serie 13: Determinanten (Teil 2)

Lösung Serie 13: Determinanten (Teil 2) D-MATH/D-PHYS Lineare Algebra I HS 2017 Dr Meike Akveld Lösung Serie 13: Determinanten (Teil 2 1 a Wir zeigen die gewünschten Eigenschaften: 1 Es ist 2 Es ist ε(τ σ ε(id ( ε(σ id(j id(i τ(σ(j τ(σ(i ( τ(σ(j

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Kapitel IV. Determinanten

Kapitel IV. Determinanten Inhalt der Vorlesung LAAG I Prof Dr Arno Fehm TU Dresden WS2017/18 Kapitel IV Determinanten In diesem ganzen Kapitel sei K ein Körper und R ein kommutativer Ring mit Einselement 1 Das Vorzeichen einer

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Prüfung Lineare Algebra , B := ( ), C := 1 1 0

Prüfung Lineare Algebra , B := ( ), C := 1 1 0 1. Es seien 1 0 2 0 0 1 3 0 A :=, B := ( 1 2 3 4 ), C := 1 1 0 0 1 0. 0 0 0 1 0 0 1 0 0 0 0 Welche der folgenden Aussagen ist richtig? A. A und C haben Stufenform, B nicht. B. A und B haben Stufenform,

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

Kapitel 4. Multilineare Algebra. 4.1 Determinantenfunktionen

Kapitel 4. Multilineare Algebra. 4.1 Determinantenfunktionen 92 Kapitel 4 Multilineare Algebra 4. Determinantenfunktionen Wir fixieren wieder einen Körper K, etwa IR oder C. Aus dem Vorkurs kennen wir das Spatprodukt dreier Vektoren des IR 3 v 3 v 2 λ v Sind v,

Mehr

4 Determinanten. 4.1 Eigenschaften der Determinante. ME Lineare Algebra HT

4 Determinanten. 4.1 Eigenschaften der Determinante. ME Lineare Algebra HT ME Lineare Algebra HT 2008 86 4 Determinanten 4. Eigenschaften der Determinante Anstatt die Determinante als eine Funktion IC n n IC durch eine explizite Formel zu definieren, bringen wir zunächst eine

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

$Id: det.tex,v /01/13 14:27:14 hk Exp $ 8.2 Definition und Grundeigenschaften der Determinante D 2. oder A = D r

$Id: det.tex,v /01/13 14:27:14 hk Exp $ 8.2 Definition und Grundeigenschaften der Determinante D 2. oder A = D r $Id: dettex,v 126 2017/01/13 14:27:14 hk Exp $ 8 Determinanten 82 Definition und Grundeigenschaften der Determinante In der letzten Sitzung haben wir die Determinante einer allgemeinen n n-matrix definiert

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

4. Übungsblatt zur Mathematik II für Inf, WInf

4. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof Dr Streicher Dr Sergiy Nesenenko Pavol Safarik SS 010 11 15 Mai 4 Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G13 (Basistransformation) ( ) 15 05 Die lineare

Mehr

Die Determinante. Lineare Algebra I. Kapitel Mai 2013

Die Determinante. Lineare Algebra I. Kapitel Mai 2013 Die Determinante Lineare Algebra I Kapitel 7 21. Mai 2013 Logistik Dozent: Olga Holtz, MA 417, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de Assistent:

Mehr

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Dreizehnte Woche,

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Dreizehnte Woche, Fakultät für Mathematik PD Dr Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Lineare Algebra 1 Dreizehnte Woche, 272014 9 Der Gauß-Algorithmus (Ende) estimmung des Inversen einer

Mehr

Die Determinante ist nur für beliebige quadratische Matrizen (n = m) definiert: a 11 a 12 a a 1n a 21 a 22. det. a nn.

Die Determinante ist nur für beliebige quadratische Matrizen (n = m) definiert: a 11 a 12 a a 1n a 21 a 22. det. a nn. Die Determinante ist nur für beliebige quadratische Matrizen (n = m) definiert: Definition 1.2 (Leibniz-Formel) Die Determinante einer n n-matrix ist a 11 a 12 a 13... a 1n a 11 a 12 a 13... a 1n a 21

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 2. Symmetrische Gruppen 15 2. Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht. Wir wollen nun eine neue wichtige Klasse von Beispielen

Mehr

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen Lineare Algebra I Tutorium Inverse Matrizen und Gruppen Fachbereich Mathematik WS / Prof Dr Kollross November Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Die zweite Variante des Gauß-Algorithmus)

Mehr

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt

Mehr

2.9. DER DUALRAUM 115

2.9. DER DUALRAUM 115 2.9. DER DUALRAUM 115 Abbildungsmatrizen und die duale Abbildung Seien nun V und W endlich-dimensionale K-Vektorräume. Wir fixieren Basen b 1,..., b n von V und c 1,...,c m von W. Seien X 1,..., X n und

Mehr

, c d. f + e + d. ae + bg a f + bh. ce + dg c f + dh

, c d. f + e + d. ae + bg a f + bh. ce + dg c f + dh Die Determinante Blockmatrizen Bemerkung: Für zwei 2 2-Matrizen gilt a b e f a b c d g h c d e g a b, c d f h a c b e + d a g, c f + ae + bg a f + bh ce + dg c f + dh b d h Sind die Einträge der obigen

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218

Mehr

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen 1 Zum Aufwärmen 1.1 Notationen In diesem Teil der Vorlesung bezeichnen wir Körper mit K, Matrizen mit Buchstaben A,B,..., Vektoren mit u,v,w,... und Skalare mit λ,µ,... Die Menge der m n Matrizen bezeichnen

Mehr

$Id: det.tex,v /01/08 13:59:24 hk Exp $ A = 1 3

$Id: det.tex,v /01/08 13:59:24 hk Exp $ A = 1 3 $Id: det.tex,v 1.28 2018/01/08 13:59:24 hk Exp $ 8 Determinanten Wir kommen jetzt zum Begriff der Determinante. Determinanten sind merkwürdigerweise über hundert Jahre älter als Matrizen, und sie wurden

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V.

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V. Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung falls und nur falls ist bijektiv, d.h. ihre Matrix ist invertierbar, (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Lösung Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Um zu zeigen, dass es sich bei den gegebenen Vektoren um Basen handelt,

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

1 Lineare Unabhängigkeit Äquivalente Definition Geometrische Interpretation Vektorräume und Basen 6

1 Lineare Unabhängigkeit Äquivalente Definition Geometrische Interpretation Vektorräume und Basen 6 Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik Dr. Thomas Zehrt Vektorräume und Rang einer Matrix Inhaltsverzeichnis Lineare Unabhängigkeit. Äquivalente Definition.............................

Mehr

Wir verallgemeinern jetzt den Begriff bilinear zu multilinear. Unser Ziel ist dabei insbesondere die Einführung der sogenannten Determinante.

Wir verallgemeinern jetzt den Begriff bilinear zu multilinear. Unser Ziel ist dabei insbesondere die Einführung der sogenannten Determinante. 118 36 Determinanten Wir verallgemeinern jetzt den Begriff bilinear zu multilinear Unser Ziel ist dabei insbesondere die Einführung der sogenannten Determinante 361 Definition (alternierend, symmetrisch,

Mehr

7 Lineare Gleichungssysteme und Determinanten. Lineare Gleichungssysteme Gauß-Algorithmus Anwendungen Determinanten

7 Lineare Gleichungssysteme und Determinanten. Lineare Gleichungssysteme Gauß-Algorithmus Anwendungen Determinanten 7 Lineare Gleichungssysteme und Determinanten Lineare Gleichungssysteme Gauß-Algorithmus Anwendungen Determinanten 7.1 Dreiecks- und Diagonalmatrizen Linke untere bzw. rechte obere Dreiecksmatrizen sind

Mehr

Lineare Algebra 6. Übungsblatt

Lineare Algebra 6. Übungsblatt Lineare Algebra 6. Übungsblatt Fachbereich Mathematik M. Schneider 16.05.01 Konstantin Pertschik, Daniel Körnlein Gruppenübung Aufgabe G19 Berechnen Sie das inverse Element bzgl. Multiplikation in der

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) 1 Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 14: Vektorräume und lineare Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 6. Oktober 2009) Vektorräume

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( ) Ferienkurs Mathematik für Physiker I WS 2016/17 Ferienkurs Mathematik für Physiker I Skript Teil 3 (29032017) 1 Lineare Gleichungssysteme Oft hat man es in der Physik mit unbekannten Größen zu tun, für

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

5.4 Basis, Lineare Abhängigkeit

5.4 Basis, Lineare Abhängigkeit die allgemeine Lösung des homogenen Systems. Wieder ist 2 0 L i = L h + 0 1 Wir fassen noch einmal zusammen: Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbekannten hat n Rang(A)

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 22/3 Institut für Analysis 28..23 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 4. Übungsblatt (letztes Blatt)

Mehr

1 Matrizen und Determinanten

1 Matrizen und Determinanten 1 Matrizen und Determinanten 11 Lineare Gleichungssysteme Ein Beispiel eines Gleichungssystems ist x 4 3x 2 + y 2 + xy + 6 = 0 4x 2 3y 2 3xy 10 = 0 Eine Lösung dieses Systems besteht aus zwei reelle Zahlen

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Lineare Algebra und Geometrie für LehramtskandidatInnen. Andreas Čap

Lineare Algebra und Geometrie für LehramtskandidatInnen. Andreas Čap Lineare Algebra und Geometrie für LehramtskandidatInnen (Kapitel 6 9) Wintersemester 2010/11 Andreas Čap Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A 1090 Wien E-mail address: Andreas.Cap@esi.ac.at

Mehr

Copyright, Page 1 of 5 Die Determinante

Copyright, Page 1 of 5 Die Determinante wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist

Mehr

Vortragsskript Einführung in die Algebra

Vortragsskript Einführung in die Algebra Vortragsskript Einführung in die Algebra TeamTUM - Das Wettbewerbsteam Mathematik Technische Universität München Fakultät für Mathematik Vortragender: Vu Phan Thanh Datum: 26.11.12 iii Inhaltsverzeichnis

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 3 und lineare Gleichungssysteme und

Mehr

2.5 Smith-Normalform für Matrizen über Euklidischen Ringen

2.5 Smith-Normalform für Matrizen über Euklidischen Ringen 2.5. SMITH-NORMALFORM FÜR MATRIZEN ÜBER EUKLIDISCHEN RINGEN73 2.5 Smith-Normalform für Matrizen über Euklidischen Ringen Bemerkung 2.74. Sei K ein Körper und A K n m, b K n 1. Das lineare Gleichungssystem

Mehr

Zur Zykelschreibweise von Permutationen

Zur Zykelschreibweise von Permutationen Zur Zykelschreibweise von Permutationen Olivier Sète 16. Juni 2010 1 Grundlagen Definition 1.1. Eine Permutation von {1, 2,..., n} ist eine bijektive Abbildung σ : {1, 2,..., n} {1, 2,..., n}, i σ(i).

Mehr

Lineare Algebra 2013 Lösungen für Test und Zusatzfragen

Lineare Algebra 2013 Lösungen für Test und Zusatzfragen Lineare Algebra 3 Lösungen für Test und Zusatzfragen Test Multiple Choice. Seien Für die Lösung x x x x 3 A, b des Systems Ax b gilt x 3 5 x 3 x 3 3 x 3 / Mit elementaren Zeilenoperationen erhalten wir

Mehr

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME In diesem Abschnitt wiederholen wir zunächst grundlegende Definitionen und Eigenschaften im Bereich der Matrizenrechnung, die wahrscheinlich bereits in Ansätzen

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

7 Lineare Gleichungssysteme und Determinanten

7 Lineare Gleichungssysteme und Determinanten 7 Lineare Gleichungssysteme und Determinanten 7 Dreiecks- und Diagonalmatrizen Linke untere bzw rechte obere Dreiecksmatrizen sind quadratische Matrizen der Gestalt L =, R = Genauer heißt eine quadratische

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

6 Permutationen. Beispiele: a) f : R R, f(x) = x 2. b) f : R R, f(x) = e x. c) f : R 2 R, x (Projektion auf die x Achse) y

6 Permutationen. Beispiele: a) f : R R, f(x) = x 2. b) f : R R, f(x) = e x. c) f : R 2 R, x (Projektion auf die x Achse) y 6 Permutationen Seien und B Mengen. Eine bbildung von nach B ist eine Vorschrift f, die jedem Element x ein eindeutig bestimmtes Element y = f(x) B zuordnet. Schreibe f : B, x f(x) Beispiele: a) f : R

Mehr

Permutationsgruppen. 1 Zykelzerlegung und Signum. Jesko Hüttenhain. Winter 2013

Permutationsgruppen. 1 Zykelzerlegung und Signum. Jesko Hüttenhain. Winter 2013 Permutationsgruppen Jesko Hüttenhain Winter 2013 Sei N eine endliche Menge. Dann bezeichnen wir mit S N := {σ : N N σ bijektiv} die symmetrische Gruppe auf N. Für n N sei [n] := {1,..., n}. Wir schreiben

Mehr

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle. Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:

Mehr

Die Permutationsgruppe

Die Permutationsgruppe Die Permutationsgruppe und ihre Bedeutung für die Theorie endlicher Gruppen Christian Gogolin 10.01.2008 Inhaltsverzeichnis 1 Einführung der Permutationsgruppe 1 1.1 Die Permutationsgruppe................................

Mehr

1 Rechnen mit 2 2 Matrizen

1 Rechnen mit 2 2 Matrizen 1 Rechnen mit 2 2 Matrizen 11 Produkt Wir berechnen das allgemeine Produkt von A = Für das Produkt gilt AB = a11 a 12 a 21 a 22 a11 b 11 + a 12 b 21 a 11 b 12 + a 12 b 22 a 21 b 11 + a 22 b 21 a 21 b 12

Mehr

4 Determinanten, Eigenwerte, Diagonalisierung, Jordansche Normalform

4 Determinanten, Eigenwerte, Diagonalisierung, Jordansche Normalform Technische Universität München Florian Ettlinger Ferienkurs Lineare Algebra Vorlesung Donnerstag WS 2/2 4 Determinanten, Eigenwerte, Diagonalisierung, Jordansche Normalform 4 Determinanten 4 Definition

Mehr

$Id: det.tex,v /12/19 13:21:08 hk Exp $ A = 1 3

$Id: det.tex,v /12/19 13:21:08 hk Exp $ A = 1 3 $Id: det.tex,v 1.24 2016/12/19 13:21:08 hk Exp $ 8 Determinanten Wir kommen jetzt zum Begriff der Determinante. Determinanten sind merkwürdigerweise über hundert Jahre älter als Matrizen, und sie wurden

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Wir stellen uns das Ziel, wesentliche Information über. Determinanten haben auch eine geometrische Bedeutung: Volumenbestimmung eines Parallelepipeds

Wir stellen uns das Ziel, wesentliche Information über. Determinanten haben auch eine geometrische Bedeutung: Volumenbestimmung eines Parallelepipeds 39 Determinanten 391 Motivation Wir stellen uns das Ziel, wesentliche Information über die Invertierbarkeit einer n n-matrix das Lösungsverhalten zugehöriger linearer Gleichungssysteme möglichst kompakt

Mehr

Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I Lösungsvorschlag

Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS 207/8 Blatt 5 20207 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I Lösungsvorschlag 7 Der Nachweis, daß (M, ) und (N,

Mehr

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,... Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den

Mehr

Lineare Algebra I Klausur. Klausur - Musterlösung

Lineare Algebra I Klausur. Klausur - Musterlösung Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra I Klausur Klausur - Musterlösung 20. Februar 203 Aufgabe - Lösung Aussage wahr falsch (Z, +, 0) ist eine abelsche Gruppe. Der Ring Z/24Z ist nullteilerfrei.

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10 D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler Lösungen Serie 10 1. Für a 1 : 1 1 0, a 2 : 1 1, a 3 : 1 1 1, b : 2 2 2 1 und A : (a 1, a 2, a 3 ) gelten welche der folgenden Aussagen? (a) det(a)

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 9 Das Signum einer Permutation Definition 9.1. Sei M = {1,...,n} und sei σ eine Permutation auf M. Dann heißt die Zahl sgn(σ)

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften Modul 212 Determinanten Hans Walser: Modul 212, Determinanten ii Modul 212 für die Lehrveranstaltung Mathematik 2 für Naturwissenschaften Sommer 2003 Probeausgabe

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr