Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)"

Transkript

1 1 Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 14: Vektorräume und lineare Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 6. Oktober 2009) Vektorräume 2 Definition 14.1 Eine Menge V mit einem ausgezeichneten Element O V (Nullvektor), einer Additionsoperation v + w (für v, w V ) und einer skalaren Multiplikationsoperation λ v = λv (für v V, λ K) ist ein K-Vektorraum, wenn folgende Axiome für alle v, w, u V und λ, µ K erfüllt sind:

2 Vektorraumaxiome 3 1. v + w V, λv V (Abgeschlossenheit) 2. (u + v) + w = u + (v + w) (Assoziativität) 3. v + O = v (Neutrales Element) 4. Es gibt v V mit v + v = O. (Inverses Element) 5. v + w = w + v (Kommutativität) 6. λ(v + w) = λv + λw (Distributivität) 7. (λ + µ)v = λv + µv (Distributivität) 8. (λµ)v = λ(µv) (Assoziativität) 9. 1v = v (Neutrales Element) Unterräume 4 Definition 14.2 Ein Unterraum (linearer Unterraum, Untervektorraum) eines K-Vektorraums V ist eine Teilmenge U V mit 1. O U 2. v + w U für alle v, w U 3. λv U für alle v U, λ K Bemerkung 14.3 Untervektorräume sind selber Vektorräume.

3 Linearkombinationen 5 Definition 14.4 Ist X V eine beliebige Teilmenge eines K-Vektorraumes V, so heißt die Menge span(x ) = X := { r λ i v (i) : v (1),..., v (r) X, i=1 λ 1,..., λ r K, r N} aller K-Linearkombinationen von endlich vielen Elementen aus X der von X erzeugte/aufgespannte Unterraum von V. Affine Unterräume 6 Definition 14.5 Ein affiner Unterraum eines K-Vektorraums V ist eine Teilmenge der Form v + U = {v + u u U} mit einem Vektor v und einem Unterraum U von V.

4 Linear unabhängige Vektoren 7 Definition 14.6 Paarweise verschiedene Vektoren v (1),..., v (r) V in einem K-Vektorraum V heißen linear unabhängig, wenn jede echte Teilmenge X {v (1),..., v (r) } einen kleineren Unterraum erzeugt als {v (1),..., v (r) }, d.h. es gilt span(x ) span({v (1),..., v (r) }) für alle X {v (1),..., v (r) }. Kriterium für lineare Unabhängigkeit 8 Bemerkung 14.7 Die Vektoren v (1),..., v (r) V sind genau dann linear unabhängig, wenn r λ i v (i) = O i=1 (mit λ 1,..., λ r K) nur für λ 1 = = λ r = 0 gilt.

5 Lineare Unabhängigkeit von Teilmengen 9 Definition 14.8 Eine (möglicherweise unendliche) Teilmenge X V eines K-Vektorraums V ist linear unabhängig, falls jede endliche Teilmenge von X linear unabhängig ist. Erzeugendensysteme / Basen 10 Definition 14.9 Ein Erzeugendensystem eines K-Vektorraums V ist eine Teilmenge X V mit V = span(x ). Eine Basis von V ist ein linear unabhängiges Erzeugendensystem von V.

6 Existenz von Basen 11 Satz Jeder K-Vektorraum V hat (wenigstens) eine Basis. Bemerkung Es gilt sogar für jeden K-Vektorraum V : Jedes Erzeugendensystem von V enthält eine Basis. Jede linear unabhängige Teilmenge kann zu einer Basis von V ergänzt werden. Dimension 12 Satz Hat ein K-Vektorraum V ein endliches Erzeugendensystem, so haben alle Basen von V die gleiche Kardinalität dim(v ) (Dimension von V ). Bemerkung In einem n-dimensionalen Vektorraum bilden n linear unabhängige Vektoren immer eine Basis.

7 Koordinaten 13 Definition Ist B V eine Basis des K-Vektorraums und v V, so heißen die eindeutig bestimmten λ b K (b B) (genauer: die durch b λ b definierte Abildung) mit v = b B λ bb die Koordinaten von v bzgl. B. Koordinatenvektoren 14 Definition Ist B = (b (1),..., b (n) ) eine geordnete Basis von V (d.h. die Menge {b (1),..., b (n) } ist eine Basis von V ), so heißt für jeden Vektor v V das eindeutig bestimmte n-tupel Bv = (λ 1,..., λ n ) K n mit v = i=1 λ iv (i) der Koordinatenvektor von v (bzgl. der geordneten Basis (b (1),..., b (n) )).

8 Lineare Abbildungen 15 Definition Eine lineare Abbildung zwischen zwei K-Vektorräumen V und W ist eine Abbildung ϕ : V W mit: ϕ(v + w) = ϕ(v) + ϕ(w) für alle v, w V ϕ(λv) = λϕ(v) für alle v V, λ K Lineare Fortsetzung 16 Satz Ist B V eine Basis des K-Vektorraums V und σ : B W eine beliebige Abbildung von B in einen K-Vektorraum W, so gibt es genau eine lineare Abbildung ϕ : V W mit ϕ(b) = σ(b) für alle b B.

9 Kern und Bild 17 Definition Für eine lineare Abbildung ϕ : V W zwischen zwei K-Vektorräumen V und W heißen ker (ϕ) := ϕ 1 ({O W }) = {v V ϕ(v) = O W } V der Kern und im (ϕ) := ϕ(v ) = {ϕ(v) v V } W das Bild von ϕ. Kern und Bild sind Unterräume 18 Bemerkung Kern und Bild einer linearen Abbildung ϕ : V W sind Untervektorräume von V bzw. W ; insbesondere enthalten sie O V bzw. O W.

10 Kerne von Matrizen 19 Definition Der Kern einer Matrix A K m n ist ker(a) = {x K n Ax = O m } = ker(ϕ A ). Zeilen- vs. Spaltenvektoren 20 Im Kontext von Matrizenmultiplikationen sind Vektoren v K q immer als Spaltenvektoren v 1 v =. K q 1 v q aufzufassen. Der zugehörige Zeilenvektor ist v T = (v 1,..., v q ) K 1 q.

11 Injektive lineare Abbildungen 21 Satz Eine lineare Abbildung ϕ : V W ist genau dann injektiv (d. h. ϕ(v) ϕ(w) für alle v w), wenn ker (ϕ) = {O V } ist. Die Dimensionsformel 22 Satz Ist V ein endlich-dimensionaler K-Vektorraum und ϕ : V W eine lineare Abbildung, so gilt die Dimensionsformel dim (ker ϕ) + dim (im ϕ) = dim (V ).

12 Der Rang 23 Definition Der Rang rang(a) einer Matrix A K m n ist: Die Dimension des von den Zeilen bzw. Spalten erzeugten Unterraums von K n bzw. K m. Die Anzahl der Nicht-Nullzeilen in einer NZSF von A. n dim (ker A). Bemerkung Für jede Matrix A K m n ist rang(a) = rang(a T ). Darstellungsmatrizen Definition Seien V und W zwei endlich-dimensionale K-Vektorräume mit zwei geordneten Basen B = (b (1),..., b (n) ) von V und C = (c (1),..., c (m) ) von W. Die Darstellungsmatrix einer linearen Abbildung ϕ : V W bzgl. B und C ( ) CM(ϕ) B = Cϕ(b (1) ),..., C ϕ(b (n) ) K m n hat als Spalten die Koordinatenvektoren der Bilder ϕ(b (1) ),..., ϕ(b (n) ) der Basis B bzgl. der Basis C.

13 ... stellen lineare Abbildungen dar 25 Satz Sind V und W endlich-dimensionale K-Vektorräume mit zwei geordneten Basen B von V und C von W, so gilt für jede lineare Abbildung ϕ : V W für alle v V : Cϕ(v) = C M(ϕ) B Bv Verkettung linearer Abbildungen 26 Satz Sind V, W, U endlich-dimensionale K-Vektorräume mit geordneten Basen B, C bzw. D, so gilt DM(ψ ϕ) B = D M(ψ) C CM(ϕ) B für alle linearen Abbildungen ϕ : V W, ψ : W U.

14 Darstellungsmatrizen und Basiswechsel 27 Satz Sind B und C zwei geordnete Basen des endlich-dimensionalen K-Vektorraumes V, so gilt für jede lineare Abbildung ϕ : V V CM(ϕ) C = S 1 BM(ϕ) B S mit S = B M(id V ) C (die Matrix, deren Spalten die Koordinatenvektoren von C bzgl. B sind). Wechsel von der Standardbasis 28 Bemerkung Ist A K n n und ist C = (c (1),..., c (n) ) eine geordnete Basis von K n, so gilt für ϕ A : K n K n mit ϕ A (v) = Av: CM(ϕ A ) C = S 1 AS, wobei S K n n die Matrix mit Spalten c (1),..., c (n) ist.

15 Ähnlichkeit von Matrizen 29 Definition Zwei Matizen A, A K n n heißen ähnlich zueinander, wenn es eine invertierbare Matrix S K n n gibt mit A = S 1 AS. Parallelogramm 30

16 Spate/Parallelepipede 31 Streichungsmatrizen 32 Definition Für A R n n und i, j {1,..., n} sei A (i,j) R (n 1) (n 1) die Matrix, die aus A entsteht, wenn man die i-te Zeile und die j-te Spalte heraus streicht.

17 Definition der Determinante Definition Für beliebige n 1 definieren wir die Determinante det(a) R einer quadratischen Matrix A = (a ij ) R n n rekursiv: 33 Falls n = 1: A = (a 11 ) und det(a) := a 11 Falls n 2: det(a) := n i=1 ( 1) i+1 a i1 det(a (i,1) ) = a 11 det(a (1,1) ) a 21 det(a (2,1) ) + + ( 1) n+1 a n1 det(a (n,1)) Permutationen Definition Eine Permutation von {1,..., n} ist ein bijektive Abbildung σ : {1,..., n} {1,..., n}. Eine Permutation σ repräsentiert also eine Reihenfolge (σ(1), σ(2),..., σ(n)) der Zahlen 1, 2,..., n. Eine Fehlstellung von σ ist ein Paar i < j mit σ(i) > σ(j). Das Signum von σ ist 34 sign(σ) := { +1, gerade viele Fehlstellungen 1, ungerade viele Fehlstellungen. Die Menge der Permutationen von {1,..., n} ist Π n.

18 Leibniz-Formel 35 Satz Für die Determinante von A = (a ij ) R n n gilt: det(a) = σ Π n sign (σ) n j=1 a σ(j),j Die Determinante der Transponierten 36 Satz Für jede Matrix A R n n gilt: det(a) = τ Π n sign (τ) n a i,τ(i) = det(a T ) i=1

19 Nullzeilen und Nullspalten 37 Bemerkung Hat A R n n eine Zeile oder eine Spalte mit lauter Nullen, so ist det (A) = 0. Multilinearität der Determinanten 38 Satz Ist A = (a ij ) R n n mit A k, = a + λa (a, a R n, λ R), so ist det(a) gleich A 1, A 1,.. a + λa = det a +λ det det. A n, Analoges gilt für Spalten.. A n, A 1,. a. A n,.

20 Die Determinante ist alternierend Satz Entsteht à Rn n aus A R n n durch Vertauschung zweier Zeilen (oder zweier Spalten), so ist det (Ã) = det(a). 39 Korollar Hat A R n n zwei gleiche Zeilen (oder zwei gleiche Spalten), so ist det (A) = 0. Laplace-Entwicklung Satz Für A = (a ij ) R n n (n 2), k, l {1,..., n} gilt: 40 det (A) = n ( 1) i+l a il det (A (i,l) ) i=1 (Entwicklung nach der l-ten Spalte) det (A) = n ( 1) k+j a kj det (A (k,j) ) j=1 (Entwicklung nach der k-ten Zeile)

21 Zeilen-/Spaltenadditionen 41 Satz Entsteht à R n n aus A R n n durch Addition des λ-fachen der i-ten Zeile zur k-ten Zeile mit i k (oder des µ-fachen der j-ten Spalte zur l-ten Spalte mit j l), so ist det (Ã) = det (A). Determinanten-Berechnung mit Gauß 42 Sei A R n n gegeben. Bestimme mit elementaren Zeilen- und Spaltenoperationen aus A eine Dreiecksmatrix à = (ã ij ) R n n. Sei t die Anzahl der durchgeführten Zeilenund Spaltenvertauschungen. Dann ist det (A) = ( 1) t n ã ii. i=1

22 Determinanten-Multiplikationssatz 43 Satz Für A, B R n n gilt det (AB) = det (A) det (B) Vorsicht: Im Allgemeinen ist aber det (A + B) nicht gleich det (A) + det (B)! Rechenregeln 44 Seien A, B R n n. det (A T ) = det (A) det (A) 0 A invertierbar det (A 1 ) = 1 det (A), falls A invertierbar det (AB) = det (A) det (B) = det (BA) det (A k ) = (det (A)) k für alle k N det (λ A) = λ n det (A) für alle λ R det (I n ) = 1 det (O n n ) = 0

23 Cramers Regel 45 Satz Ist A R n n invertierbar und b R n, so gilt für die eindeutige Lösung von Ax = b für alle j {1,..., n}: x j = 1 det A det ( A,1,..., A,j 1, b, A,j+1,..., A,n )

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 4: Matrizen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 10. November 2011) Matrizen 2 Definition 4.1 Eine

Mehr

Vorlesung Mathematik für Ingenieure (WS 17/18, SS 18, WS 18/19)

Vorlesung Mathematik für Ingenieure (WS 17/18, SS 18, WS 18/19) 1 Vorlesung Mathematik für Ingenieure (WS 17/18, SS 18, WS 18/19) Kapitel 4: Matrizen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 4. Dezember 2017) Matrizen 2 Definition 4.1 Eine

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 2: Vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 19. Oktober 2011) Vektoren in R n Definition 2.1

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 9: Matrizen und Lineare Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 14. April 2008) 2 3 4 5 Page-Rank

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Lineare Algebra I für Mathematiker Lösungen

Lineare Algebra I für Mathematiker Lösungen Lineare Algebra I für Mathematiker Lösungen Anonymous 24. April 2016 Aufgabe 1 Beantworten Sie bitte die folgenden Fragen. Jeder Vektorraum hat mindestens ein Element. Q ist ein R-Vektorraum (mit der Multiplikation

Mehr

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen. 1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

Vektorräume und lineare Abbildungen

Vektorräume und lineare Abbildungen Kapitel 11. Vektorräume und lineare Abbildungen 1 11.1 Vektorräume Sei K ein Körper. Definition. Ein Vektorraum über K (K-Vektorraum) ist eine Menge V zusammen mit einer binären Operation + einem ausgezeichneten

Mehr

6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66

6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66 6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66 6 Determinanten 6.1 Symmetrische Gruppe Definition: Eine bijektive Abbildung von einer Menge X auf sich selbst heisst eine Permutation von X. Satz-Definition:

Mehr

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper.

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48 4 Vektorräume 4.1 Definition Sei K ein Körper. Definition: Ein Vektorraum über K, oder kurz ein K-Vektorraum, ist ein Tupel (V,+,, 0 V ) bestehend aus

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n Kapitel Vektorräume Josef Leydold Mathematik für VW WS 07/8 Vektorräume / 4 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit x R n =. : x i R, i n x n und wird als n-dimensionaler

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Kapitel 3 Vektorräume Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit R n = x 1. x n : x i R, 1 i n und

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra 2014/15 Seite 59 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra HS 2014 Seite 56 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

1 Linearkombinationen

1 Linearkombinationen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Linearkombinationen Unter einer Linearkombination versteht man in der linearen Algebra einen Vektor, der sich durch

Mehr

Einführung in die Mathematik für Informatiker

Einführung in die Mathematik für Informatiker Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 12.12.2016 9. Vorlesung Eigenschaften linearer Abbildungen Beschreibung linearer Abbildungen durch Matrizen... Eigenschaften

Mehr

1 Darstellungsmatrizen

1 Darstellungsmatrizen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Darstellungsmatrizen Vereinbarungen für dieses Kapitel: K Körper V und W endlich-dimensionale K-Vektorräume B = {v

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn

Mehr

Lineare Algebra I, Musterlösung zu Blatt 9

Lineare Algebra I, Musterlösung zu Blatt 9 Lineare Algebra I, Musterlösung zu Blatt 9 Wintersemester 2007/08 1. Untersuchen Sie, ob die folgenden Matrizen invertierbar sind und bestimmen Sie gegebenenfalls die Inverse. 8 1 3 1 a) A = 3 3 1 1 11

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 12 Wege entstehen dadurch, dass man sie geht Franz Kafka Invertierbare Matrizen Definition 121 Es sei K ein

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

Mathematik I. Vorlesung 12. Lineare Abbildungen

Mathematik I. Vorlesung 12. Lineare Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 12 Lineare Abbildungen Definition 12.1. Es sei K ein Körper und es seien V und W K-Vektorräume. Eine Abbildung heißt lineare Abbildung,

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

Prüfung Lineare Algebra , B := ( ), C := 1 1 0

Prüfung Lineare Algebra , B := ( ), C := 1 1 0 1. Es seien 1 0 2 0 0 1 3 0 A :=, B := ( 1 2 3 4 ), C := 1 1 0 0 1 0. 0 0 0 1 0 0 1 0 0 0 0 Welche der folgenden Aussagen ist richtig? A. A und C haben Stufenform, B nicht. B. A und B haben Stufenform,

Mehr

Mathematik I. Vorlesung 14. Rang von Matrizen

Mathematik I. Vorlesung 14. Rang von Matrizen Prof Dr H Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 14 Rang von Matrizen Definition 141 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von den Spalten

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 0 Olga Holtz MA 378 Sprechstunde Fr 4-6 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do -4 und nv jokar@mathtu-berlinde Kapitel Die Determinante

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 9 Lineare Abbildungen Definition 9.1. Es sei K ein Körper und es seien V und W Vektorräume über K. Eine Abbildung ϕ : V W

Mehr

Lineare Algebra. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 6. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November, 7 Vektoräume Eine Menge E zusammen mit zwei Verknüpfungen + : E E E, x, y x + y Addition : E E E,

Mehr

D-Math/Phys Lineare Algebra I HS 2017 Dr. Meike Akveld. Clicker Fragen

D-Math/Phys Lineare Algebra I HS 2017 Dr. Meike Akveld. Clicker Fragen D-Math/Phys Lineare Algebra I HS 2017 Dr. Meike Akveld Clicker Fragen Frage 1 Die Aussage Dieser Satz ist falsch ist wahr falsch Dies ist die einfachste Form des Lügner-Paradoxes ist der folgende selbstbezügliche

Mehr

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen 1 Zum Aufwärmen 1.1 Notationen In diesem Teil der Vorlesung bezeichnen wir Körper mit K, Matrizen mit Buchstaben A,B,..., Vektoren mit u,v,w,... und Skalare mit λ,µ,... Die Menge der m n Matrizen bezeichnen

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension 23 Basis und Dimension Erinnerung Gegeben ein K-Vektorraum V, ein Vektorensystem x,, x n in V Eine Linearkombination in den x i ist ein Vektor der Form λ x + + λ n x n mit λ i K Die λ i heißen Koeffizienten

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGEBRA Ferienkurs Hanna Schäfer Philipp Gadow INHALT 1 Grundbegriffe 1 1.1 Aussagen und Quantoren 1 1.2 Mengen 2 1.3 Gruppen 3 1.4 Körper 4 1.5 Vektorräume 5 1.6 Basis und Dimension 7 Aufgaben

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München Technische Universität München Wintersemester 27/28 Lineare Algebra Skript zum Ferienkurs Tag 2-2.3.28 Claudia Nagel Pablo Cova Fariña Wir danken Herrn Prof. Kemper vielmals für seine Unterstützung bei

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 2: Der Euklidische Raum Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 30. Oktober 2007) Vektoren in R n Definition

Mehr

Aufgaben zu Kapitel 17

Aufgaben zu Kapitel 17 Aufgaben zu Kapitel 7 Aufgaben zu Kapitel 7 Verständnisfragen Aufgabe 7. Welche der folgenden Abbildungen sind linear? ( R ) ( R ) (a) ϕ : v v v v + R R ( ) v (b) ϕ : v v v 4 v v R R ( ) v (c) ϕ : v v

Mehr

6.5 Lineare Abhängigkeit, Basis und Dimension

6.5 Lineare Abhängigkeit, Basis und Dimension 6.5. Lineare Abhängigkeit, Basis und Dimension 123 6.5 Lineare Abhängigkeit, Basis und Dimension Seien v 1,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von

Mehr

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November 9, 27 Erinnerung 2 Vektoräume Sei V ein Vektorraum, U V, U {}. U hiesst Untervektorraum, Unterraum,

Mehr

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. () In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.

Mehr

Grundlagen der Mathematik 1

Grundlagen der Mathematik 1 Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben

Mehr

Klausur zur Vorlesung Lineare Algebra I

Klausur zur Vorlesung Lineare Algebra I Heinrich Heine Universität Düsseldorf 31.07.2010 Mathematisches Institut Lehrstuhl für Algebra und Zahlentheorie Prof. Dr. Oleg Bogopolski Klausur zur Vorlesung Lineare Algebra I Bearbeitungszeit: 120

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Vorlesung Mathematik für Ingenieure (WS /, SS, WS /3) Kapitel 3: Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 4. November 0) Abbildungen / Funktionen Definition 3. Eine

Mehr

Geometrische Deutung linearer Abbildungen

Geometrische Deutung linearer Abbildungen Geometrische Deutung linearer Abbildungen Betrachten f : R n R n, f(x) = Ax. Projektionen z.b. A = 1 0 0 0 1 0 0 0 0 die senkrechte Projektion auf die xy-ebene in R 3. Projektionen sind weder injektiv

Mehr

a) Die Abbildung µ h ist injektiv, da für alle g 1, g 2 G gilt: Daher ist µ h bijektiv. Zudem folgt aus µ h (g) = g auch

a) Die Abbildung µ h ist injektiv, da für alle g 1, g 2 G gilt: Daher ist µ h bijektiv. Zudem folgt aus µ h (g) = g auch Aufgabe. (8 Punkte) Es sei (G, ) eine Gruppe und e G ihr neutrales Element. Für h G sei µ h : G G die Abbildung, die durch g G : µ h (g) := h g gegeben ist. a) Zeigen Sie, dass für jedes h G die Abbildung

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen 4.1 Lineare Abbildungen Definition 4.1. Es seien V, W K-Vektorräume. Eine Abbildung f : V W heißt linear oder Homomorphismus, wenn für alle u, v V und λ K gilt Beispiel 4.2. L1 f(u + v) = f(u) + f(v),

Mehr

Klausur zur Linearen Algebra I HS 2012, Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum

Klausur zur Linearen Algebra I HS 2012, Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum Klausur zur Linearen Algebra I HS 01, 1.1.01 Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum Name: Sitzplatznummer: Die Bearbeitungszeit für diese Klausur beträgt 90 Minuten. Die Klausur umfaßt

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

Lineare Algebra I - Prüfung Winter 2019

Lineare Algebra I - Prüfung Winter 2019 Lineare Algebra I - Prüfung Winter 209. (20 Punkte) Kreuzen Sie auf dem Abgabeblatt ihre Antwort an. Pro Teilaufgabe ist genau eine der vier Antwortmöglichkeiten richtig. Für jede richtig beantwortete

Mehr

Lineare Algebra I. Christian Ebert & Fritz Hamm. Gruppen & Körper. Vektorraum, Basis & Dimension. Lineare Algebra I. 18.

Lineare Algebra I. Christian Ebert & Fritz Hamm. Gruppen & Körper. Vektorraum, Basis & Dimension. Lineare Algebra I. 18. 18. November 2011 Wozu das alles? Bedeutung von Termen Vektoren in R n Ähnlichkeiten zwischen Termbedeutungen Skalarprodukt/Norm/Metrik in R n Komposition von Termbedeutungen Operationen auf/abbildungen

Mehr

2.4 Lineare Abbildungen und Matrizen

2.4 Lineare Abbildungen und Matrizen 24 Lineare Abbildungen und Matrizen Definition 24 Seien V, W zwei K-Vektorräume Eine Abbildung f : V W heißt lineare Abbildung (lineare Transformation, linearer Homomorphismus, Vektorraumhomomorphismus

Mehr

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Dreizehnte Woche,

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Dreizehnte Woche, Fakultät für Mathematik PD Dr Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Lineare Algebra 1 Dreizehnte Woche, 272014 9 Der Gauß-Algorithmus (Ende) estimmung des Inversen einer

Mehr

14 Determinanten. 70 II. Lineare Gleichungssysteme. a b c d

14 Determinanten. 70 II. Lineare Gleichungssysteme. a b c d 70 II. Lineare Gleichungssysteme 14 Determinanten Aufgabe: Zeigen Sie, daß die Regularität einer quadratischen Matrix stabil gegen kleine Störungen ist: Es sei A K n n regulär. Finden Sie δ > 0, so daß

Mehr

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K). Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen

Mehr

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit

Mehr

1 Lineare Abbildungen

1 Lineare Abbildungen 1 Lineare Abbildungen Definition 1 Sei K ein Körper und V und W K-Vektoräume. Eine Abbildung f : V W heisst linear oder Homomoprhismus, wenn gilt: fv 1 + v 2 = fv 1 + fv 2 v 1, v 2 V fλv = λfv λ K, v V

Mehr

6.2 Basen. Wintersemester 2013/2014. Definition Seien V ein K-Vektorraum, n N 0 und v 1,..., v n V. (a) Man nennt

6.2 Basen. Wintersemester 2013/2014. Definition Seien V ein K-Vektorraum, n N 0 und v 1,..., v n V. (a) Man nennt Universität Konstanz Fachbereich Mathematik und Statistik Wintersemester 213/214 Markus Schweighofer Lineare Algebra I 6.2 Basen Definition 6.2.1. Seien V ein K-Vektorraum, n N und v 1,..., v n V. (a)

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218

Mehr

Vorlesung Mathematik für Ingenieure (WS 17/18, SS 18, WS 18/19)

Vorlesung Mathematik für Ingenieure (WS 17/18, SS 18, WS 18/19) 1 Vorlesung Mathematik für Ingenieure (WS 17/18, SS 18, WS 18/19) Kapitel 3: Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 20. November 2017) Abbildungen / Funktionen 2

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Vorlesung Mathematik für Ingenieure (WS /, SS, WS /3) Kapitel 3: Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 4. November ) Abbildungen / Funktionen Definition 3. Eine

Mehr

32 2 Lineare Algebra

32 2 Lineare Algebra 3 Lineare Algebra Definition i Die Vektoren a,, a k R n, k N, heißen linear unabhängig genau dann, wenn für alle λ,, λ k R aus der Eigenschaft λ i a i λ a + + λ k a k folgt λ λ k Anderenfalls heißen die

Mehr

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte Aufgabe ( Es seien e =, e = Untervektorraum (, e = ( R und U := [e, e ] der von e, e erzeugte Weiter sei G := {A GL(, R A e = e und A U U} (a Zeigen Sie, dass G eine Untergruppe von GL(, R ist (b Geben

Mehr

Lineare Algebra Weihnachtszettel

Lineare Algebra Weihnachtszettel Lineare Algebra Weihnachtszettel 0..08 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet

Mehr

Lineare Abbildungen und Darstellungsmatrizen

Lineare Abbildungen und Darstellungsmatrizen KAPITEL 4 Lineare Abbildungen und Darstellungsmatrizen 1. Lineare Abbildungen Definition 4.1 (Lineare Abbildungen). Seien V und W zwei Vektorräume über den selben Körper K. Eine Abbildung f : V W heißt

Mehr

5.4 Basis, Lineare Abhängigkeit

5.4 Basis, Lineare Abhängigkeit die allgemeine Lösung des homogenen Systems. Wieder ist 2 0 L i = L h + 0 1 Wir fassen noch einmal zusammen: Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbekannten hat n Rang(A)

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure Wintersemester 8/9 Kapitel 4: Matrizen, lineare Abbildungen und Gleichungssysteme Volker Kaibel Otto-von-Guericke Universität Magdeburg Version vom 5. November 8 Page-Rank

Mehr

1 Grundzüge der linearen Algebra

1 Grundzüge der linearen Algebra Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Teil: Lineare Algebra Wintersemester 2018/19 Ioannis Anapolitanos Karlsruher Institut für Technologie Institut für Analysis

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 30.10.2012 Bernhard Hanke 1 / 10 Vektorräume (Wiederholung) Ein reeller Vektorraum besteht aus einer Menge V, einem ausgezeichneten Element

Mehr

Klausur Lineare Algebra I am Es sind insgesamt 60 Punkte bei der Klausur zu erreichen.

Klausur Lineare Algebra I am Es sind insgesamt 60 Punkte bei der Klausur zu erreichen. Klausur Lineare Algebra I am 03.02.10 Es sind insgesamt 60 Punkte bei der Klausur zu erreichen. Aufgabe 1. (6 Punkte insgesamt) a.) (3P) Definieren Sie, was eine abelsche Gruppe ist. b.) (3P) Definieren

Mehr

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n.

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n. Richie Gottschalk Lineare Algebra I Seite Aufgabe Im Folgenden sind K immer ein Körper und V ein K-Vektorraum. a) Welche der folgenden Ringe sind kommutativ? K[x] K[x] ist per se ein kommutativer Polynomring.

Mehr

2.11 Eigenwerte und Diagonalisierbarkeit

2.11 Eigenwerte und Diagonalisierbarkeit 2.11. EIGENWERTE UND DIAGONALISIERBARKEIT 127 Die Determinante eines Endomorphismus Wir geben uns jetzt einen endlichen erzeugten K-Vektorraum V und einen Endomorphismus ϕ : V V vor. Wir wollen die Determinante

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Lineare Algebra I. December 11, 2017

Lineare Algebra I. December 11, 2017 Lineare Algebra I December 11, 2017 1 Grundlagen 1.1 Relationen Definition. Seien X und Y Mengen. Eine Relation auf X Y ist eine Teilmenge R X Y. Für x X, y Y sagen wir x steht in Relation mit y, falls

Mehr

7 Determinanten. D ist alternierend g.d.w. für alle i j gilt:

7 Determinanten. D ist alternierend g.d.w. für alle i j gilt: 7 Determinanten Im folgenden betrachten wir quadratische Matrizen Wir schreiben dabei eine n n Matrix A (über dem Körper K) primär als Zeilenvektor, dessen Elemente die Spalten von A sind; also A = (a

Mehr

2.9. DER DUALRAUM 115

2.9. DER DUALRAUM 115 2.9. DER DUALRAUM 115 Abbildungsmatrizen und die duale Abbildung Seien nun V und W endlich-dimensionale K-Vektorräume. Wir fixieren Basen b 1,..., b n von V und c 1,...,c m von W. Seien X 1,..., X n und

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V.

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V. Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung falls und nur falls ist bijektiv, d.h. ihre Matrix ist invertierbar, (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

1. Hausübung ( )

1. Hausübung ( ) Übungen zur Vorlesung»Lineare Algebra B«(SS ). Hausübung (8.4.) Aufgabe Es seien σ (3, 6, 5,, 4, 8,, 7) und τ (3,,, 4, 6, 5, 8, 7). Berechnen Sie σ τ, τ σ, σ, τ, die Anzahl der Inversionen von σ und τ

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

4 Determinanten, Eigenwerte, Diagonalisierung, Jordansche Normalform

4 Determinanten, Eigenwerte, Diagonalisierung, Jordansche Normalform Technische Universität München Florian Ettlinger Ferienkurs Lineare Algebra Vorlesung Donnerstag WS 2/2 4 Determinanten, Eigenwerte, Diagonalisierung, Jordansche Normalform 4 Determinanten 4 Definition

Mehr

Vektorräume. Kapitel Definition und Beispiele

Vektorräume. Kapitel Definition und Beispiele Kapitel 3 Vektorräume 3.1 Definition und Beispiele Sei (V,,0) eine abelsche Gruppe, und sei (K, +,, 0, 1) ein Körper. Beachten Sie, dass V und K zunächst nichts miteinander zu tun haben, deshalb sollte

Mehr

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Vierzehnte & Fünfzehnte Woche,

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Vierzehnte & Fünfzehnte Woche, Fakultät für Mathematik PD Dr Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Lineare Algebra 1 Vierzehnte & Fünfzehnte Woche, 1672014 10 Determinanten (Schluß) Das folgende Resultat

Mehr

Lösungsskizze zur Hauptklausur Lineare Algebra I

Lösungsskizze zur Hauptklausur Lineare Algebra I Lösungsskizze zur Hauptklausur Lineare Algebra I Aufgabe Seien V und W zwei K-Vektorräume für einen Körper K. a) Wann heißt eine Abbildung f : V W linear? b) Wann heißt eine Abbildung f : V W injektiv?

Mehr

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Lösung Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Um zu zeigen, dass es sich bei den gegebenen Vektoren um Basen handelt,

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 2014/2015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.2015, 11 Uhr Auf diesem

Mehr

Lerndingsbums für LA

Lerndingsbums für LA Lerndingsbums für LA Geheim 23. Juli 2010 1. Es seien A, B und C beliebige Mengen. Kreuzen Sie jeweils Ja an, wenn die Aussage stimmt oder Nein, wenn sie nicht stimmt! Hier ist M \ N die Differenzmenge

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr