Lineare Algebra I (WS 13/14)
|
|
|
- Bella Gärtner
- vor 9 Jahren
- Abrufe
Transkript
1 Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke Alexander Lytchak 1 / 12
2 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn für alle v 1, v 2 V und alle λ 1, λ 2 R die Gleichheit gilt: f (λ 1 v 1 + λ 2 v 2 ) = λ 1 f (v 1 ) + λ 2 f (v 2 ) Für eine lineare Abbildung sind das Bild und Urbild von Untervektorräumen Untervektorräume. Insbesondere ist das Bild im(f ) = f (V ) ein Untervektorraum von W ; und der Kern ker(f ) := f 1 (0) ist ein Untervektorraum von V. im(f ) misst die Surejktivität von f : Sei W endlich-dimensional. Die Abbildung f surjektiv, genau dann wenn dim(im(f )) = dim(w ). Alexander Lytchak 2 / 12
3 Wir zeigen nun, dass der Kern von f für die Injektivität verantwortlich ist. Proposition Sei f : V W linear. Die Abbildung f genau dann injektiv, wenn ker f = {0} V. Alexander Lytchak 3 / 12
4 Das Beispiel Für V = R n und W = R m sei f : V W eine lineare Abbildung. Für 1 j n seien e j R n die Elemente der Standardbasis. Sei w j := f (e j ). Die Abbildung f ist eindeutig durch die Vektoren w j R m bestimmt: Für einen Vektor x = (x 1,..., x n ) R n gilt f (x) = f ( n x j e j ) = j=1 n x j w j Andererseits ist für beliebige w 1,..., w n R m die oben definierte Abbildung f linear. Schreiben wir die Koordinaten dieser n Vektoren w j R m als Spalten einer Matrix, so erhalten wir eine (m n)-matrix A = (a ij ) 1 i m,1 j n. Damit haben wir einer linearen Abbildung f : R n R m eine (m n)-matrix A nach der folgenden Regel zugeordnet: j=1 Die j-te Spalte von A ist das Bild von e j. Alexander Lytchak 4 / 12
5 Das Beispiel. Fortsetzung Die obige Zuordnung ist eineindeutig. Die Umkehrabbildung dieser Zuordnung definiert zu einer (m n)-matrix A = (a ij ) 1 i m,1 j n R m n eine lineare Abbildung f A : R n R m, die den Vektor e j auf den j-ten Spaltenvektor von A schickt. Die Abbildung f A : R n R m ist wie folgt gegeben: (x 1,... x n ) ( n a 1j x j,..., j=1 n ) a mj x j Um es gelehrter auszudrücken, führen wir folgende Bezeichnung ein: Für reelle Vektorräume V, W bezeichnen wir als Hom(V, W ) die Menge aller linearen Abbildungen V W. Wir haben soeben eine bijektive Abbildung A f A zwischen der Menge der reellen (m n)-matrizen und Hom(R n, R m ) definiert. j=1 Alexander Lytchak 5 / 12
6 Das Beispiel. Fortsetzung Der Nullmatrix 0 R m n wird die Nullabbildung f 0 = 0 : R n R m zugeorndet, die alles auf den Nullvektor in R m schickt. Sei m = n. Die Diagonaleinträge der quadratischen Matrix (a ij ) R n n sind die Einträge (a ii ) 1 i n. Die (n n)-einheitsmatrix E n hat alle Diagonaleinträge gleich 1 und alle übrigen gleich 0. Die entsprechende lineare Abbildung f En : R n R n ist id R n. Sei m = n. Die Matrix (a ij ) R n n heißt eine Diagonalmatrix, wenn alle Einträge außerhalb der Diagonalen gleich 0 sind. Sei A eine Diagonalmatrix mit Diagonaleinträgen λ j = (a jj ) 1 j n. Dann gilt f A (x 1,..., x n ) = (λ 1 x 1, λ 2 x 2,..., λ n x n ). Sind im obigen Beispiel alle λ j = λ, so ist f A : R n R n eine Streckung um λ. Jede lineare Abbildung f : R R ist eine Streckung. Alexander Lytchak 6 / 12
7 Das Beispiel. Fortsetzung Sei m < n. Sei A R m n mit Einträgen a ii = 1 für 1 i m und allen anderen Einträgen gleich 0. Dann ist f A : R n R m die kanonische Projektion f A (x 1,..., x m,..., x n ) = (x 1,..., x m ). Sei m > n. Sei A R m n mit Einträgen a ii = 1 für 1 i n und allen anderen Einträgen gleich 0. Dann ist f A : R n R m die kanonische Einbettung f A (x 1,..., x n ) = (x 1,..., x n, 0, 0,..., 0) Sei m = n = 2. Die (2 2)-Diagonalmatrix mit Einträgen 1 und 1 definiert eine Spiegelung an der e 1 -Achse. Die Diagonalmatrix mit Einträgen 1 und 1 definiert eine Spiegelung an der e 2 -Achse. Sei m = n = 2. Die Matrix ( cos t sin t sin t cos t definiert eine Drehung des R 2 um den Winkel t gegen den Uhrzeigersinn. ) Alexander Lytchak 7 / 12
8 Das Beispiel. Fortsetzung. Sei m = n = 2. Betrachte die (2 2)-Matrix A mit a 11 = a 22 = 0 und a 12 = a 21 = 1. Der entsprechende Endomorphismus von R 2 ist die Spiegelung an der Geraden {(x 1, x 2 ) x 1 = x 2 }. Sei n = 1. Eine (m 1)-Matrix A ist durch einen Spaltenvektor w gegeben. Die entsprechende lineare Abbildung f A : R R m ist durch f A (t) = tw definiert. Sei m = 1. Eine (1 n)-matrix A ist ein Zeilenvektor (a 1, a 2,..., a n ). Die entsprechende lineare Abbildung f A : R n R ist gegeben durch (x 1,..., x n ) a 1 x 1 + a 2 x a n x n. Sei n = 2, m = 3. Seien w 1, w 2 R 3 zwei linear unabhängige Vektoren. Sei A die (3 2)-Matrix, mit Spaltenvektoren w 1, w 2. Dann ist f A : R 2 R 3 die Abbildung (λ 1, λ 2 ) λ 1 w 1 + λ 2 w 2. Das Bild von f A ist der von w 1, w 2 aufgespannte Unterraum von R 3, also eine Ebene. Alexander Lytchak 8 / 12
9 Das Beispiel. Fortsetzung. Sei ein lineares Gleichungssystem Ax = b gegeben. Sei (A b) die erweiterte Koeffizientenmatrix. Betrachte die entsprechende lineare Abbildung f A : R n R m und fasse b als ein Element aus R m auf. Die Menge L der Lösungen des Gleichnugssystems ist genau das Urbild f 1 A (b). Ist b = 0, so ist L genau der Kern von f A. Alexander Lytchak 9 / 12
10 Lineare Abbildungen und Basen Proposition Es sei f : V W eine lineare Abbildung und (v i ) i I eine Familie von Vektoren in V. Dann gilt span(f (v i ) i I ) = f (span(v i ) i I ). Folgerung Es sei f : V W eine lineare Abbildung. Ist U ein endlich-dimensionaler Unterraum von V, so gilt dim(f (U)) dim(u). Ist V endlich-dimensional, so auch f (V ) und es gilt dim(f (V )) dim(v ). Proposition Es sei f : V W eine lineare Abbildung. Sei (v 1,..., v n ) eine Basis von V und sei w j = f (v j ) für alle i. Die Abbildung f ist surjektiv genau dann, wenn (w 1,..., w n ) ein Erzeugendensystem von W ist. Die Abbildung f ist injektiv genau dann, wenn (w 1,..., w n ) linear unabhängig sind. Die Abbildung f ist bijektiv genau dann, wenn (w 1,..., w n ) eine Basis von W ist. Alexander Lytchak 10 / 12
11 Lineare Abbildungen und Basen (Fortsetzung) Proposition Es sei (v 1,..., v n ) eine Basis des Vektorraumes V und W ein beliebiger Vektorraum. Seien w 1,..., w n W beliebig. Dann existiert genau eine lineare Abbildung f : V W, so dass f (v j ) = w j für 1 j n gilt. Mit anderen Worten: Eine lineare Abbildung kann auf einer Basis beliebig definiert werden. Jede solche Definition legt die lineare Abbildung eindeutig fest. Proposition Endlich-dimensionale Vektorräume V und W sind isomorph genau dann, wenn dim V = dim W. Folgerung Jeder reelle Vektorraum V der Dimension n ist isomorph zu R n. Alexander Lytchak 11 / 12
12 Sei V ein reeller Vektorraum. Zu jeder Basis B = (v 1,..., v n ) von V gibt es genau einen Isomorphismus Φ B : R n V mit Φ B (e j ) = v j für 1 i n. Wir nennen Φ B das zur Basis B gehörende Koordinatensystem. Die Umkehrabbildung Φ 1 B schickt einen Vektor v V auf das eindeutige n-tupel reeller Zahlen (λ 1,..., λ n ), so dass v = λ 1 v λ n v n. Die Koeffizienten (λ 1,..., λ n ) heißen die Koordinaten von v bezüglich der Basis B. Die Koordinaten von v V hängen von der Wahl der Basis B ab! Sei C = (w 1,..., w n ) eine andere Basis von V. Hat v V, bezüglich B die Koordinaten (λ 1,..., λ n ) und bezüglich C die Koordinaten (µ 1,..., µ n ), so gilt Φ B ((λ 1,..., λ n )) = v = Φ C ((µ 1,..., µ n )). Folglich ist Φ 1 C Φ B ((λ 1,..., λ n )) = (µ 1,..., µ n ). Die Abbildung Φ 1 C Φ B ist ein linearer Isomorphismus R n R n, der die Transformation der Koordinaten beschreibt. Die diesem Isomorphismus entsprechende (n n)-matrix hat als j-ten Spaltenvektoren die Koordinaten von v j bezüglich der Basis C. Sie heißt die Transformationsmatrix des Basiswechsels und wird mit TC B bezeichnet. Alexander Lytchak 12 / 12
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 03.12.2013 Alexander Lytchak 1 / 16 Wiederholung und Beispiele Der Spaltenrang einer Matrix ist gleich ihrem Zeilenrang.
Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching
Lineare Algebra 7. Übungsstunde Steven Battilana [email protected] battilana.uk/teaching November 9, 27 Erinnerung 2 Vektoräume Sei V ein Vektorraum, U V, U {}. U hiesst Untervektorraum, Unterraum,
5 Lineare Abbildungen
5 Lineare Abbildungen Pink: Lineare Algebra 2014/15 Seite 59 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,
5 Lineare Abbildungen
5 Lineare Abbildungen Pink: Lineare Algebra HS 2014 Seite 56 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,
Lineare Algebra I Lösung der Probeklausur
David Blottière Patrick Schützdeller WS 6/7 Universität Paderborn Lineare Algebra I Lösung der Probeklausur Aufgabe : M i) M ist linear unabhängig. Seien a,b,c R mit Daraus folgt : Also gilt a = b = c
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 05.11.2013 Alexander Lytchak 1 / 14 Linearkombinationen Definition Es sei V ein reeller Vektorraum. Es sei (v i ) i
Lineare Algebra I (WS 12/13)
Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der
Lineare Algebra. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching
Lineare Algebra 6. Übungsstunde Steven Battilana [email protected] battilana.uk/teaching November, 7 Vektoräume Eine Menge E zusammen mit zwei Verknüpfungen + : E E E, x, y x + y Addition : E E E,
(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.
() In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.
4 Lineare Abbildungen und Matrizen
Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt
Ferienkurs Mathematik für Physiker I Skript Teil 2 ( )
Ferienkurs Mathematik für Physiker I WS 206/7 Ferienkurs Mathematik für Physiker I Skript Teil 2 (28.03.207) Vektorräume Bevor wir zur Definition eines Vektorraumes kommen erinnern wir noch einmal kurz
1 Lineare Abbildungen
1 Lineare Abbildungen Definition 1 Sei K ein Körper und V und W K-Vektoräume. Eine Abbildung f : V W heisst linear oder Homomoprhismus, wenn gilt: fv 1 + v 2 = fv 1 + fv 2 v 1, v 2 V fλv = λfv λ K, v V
1 Linearkombinationen
Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Linearkombinationen Unter einer Linearkombination versteht man in der linearen Algebra einen Vektor, der sich durch
$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $
Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit
2.4 Lineare Abbildungen und Matrizen
24 Lineare Abbildungen und Matrizen Definition 24 Seien V, W zwei K-Vektorräume Eine Abbildung f : V W heißt lineare Abbildung (lineare Transformation, linearer Homomorphismus, Vektorraumhomomorphismus
Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung
8 Lineare Abbildungen und Matrizen
8 Lineare Abbildungen und Matrizen 8.1 Lineare Abbildungen Wir beschäftigen uns nun mit Abbildungen zwischen linearen Räumen. Von besonderem Interesse sind Abbildungen, die die Struktur der linearen Räume
4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper.
4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48 4 Vektorräume 4.1 Definition Sei K ein Körper. Definition: Ein Vektorraum über K, oder kurz ein K-Vektorraum, ist ein Tupel (V,+,, 0 V ) bestehend aus
09. Lineare Abbildungen und Koordinatentransformationen
09. Lineare Abbildungen und Koordinatentransformationen Definition. Seien V und W Vektorräume. Unter einer linearen Abbildung versteht man eine Abbildung F : V W, v F v w mit folgender Eigenschaft: F λ
2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105. gramms kommutativ:
2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105 gramms kommutativ: V ϕ W ψ X c B c C c D K n x MC B(ϕ) x K m x MC D (ψ) x K l x M C D (ψ)mb C (ϕ) x Dies bedeutet, dass das gesamte Diagramm kommutativ ist.
Lineare Abbildungen. i=0 c ix i n. K n K m
Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht
Übungen zur Linearen Algebra 1
Übungen zur Linearen Algebra 1 Wintersemester 2014/2015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.2015, 11 Uhr Auf diesem
Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung
Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz
Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis
KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG
KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG Aufgabe 1 Es sei K ein Körper, V ein K-Vektorraum, und seien v 1,..., v n V (n N). (a) Definieren Sie, wann die endliche Familie v 1,...,
Übungen zur Linearen Algebra 1 Probeklausur Musterlösung: Aufgabe A
Musterlösung: Aufgabe A Wir betrachten die Matrix A = 1 4 1 1 3 1 4 5 2 M(3 3, Q) und die dazugehörige Abbildung f : Q 3 Q 3 ; v A v. Für j = 1, 2, 3 bezeichne v j Q 3 die j-te Spalte von A. Teilaufgabe
13 Partielle Ableitung und Richtungsableitung
3 PARTIELLE ABLEITUNG UND RICHTUNGSABLEITUNG 74 3 Partielle Ableitung und Richtungsableitung 3 Definition und Notiz Sei B R n offen, f : B R m, v R n, so heißt für γ x,v (t) = x + tv d dt f(x + tv) f(x)
Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht
Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben
Lineare Algebra I Zusammenfassung
Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition
1 Eigenschaften von Abbildungen
Technische Universität München Christian Neumann Ferienkurs Lineare Algebra für Physiker Vorlesung Dienstag WS 2008/09 Thema des heutigen Tages sind zuerst Abbildungen, dann spezielle Eigenschaften linearer
Lineare Abbildungen und Darstellungsmatrizen
KAPITEL 4 Lineare Abbildungen und Darstellungsmatrizen 1. Lineare Abbildungen Definition 4.1 (Lineare Abbildungen). Seien V und W zwei Vektorräume über den selben Körper K. Eine Abbildung f : V W heißt
Prüfung Lineare Algebra 2
1. Überprüfen Sie die folgenden Aussagen: (1) Zwei reelle symmetrische Matrizen sind genau dann ähnlich, wenn sie die gleiche Signatur haben. (2) Jede symmetrische Matrix ist kongruent zu einer Diagonalmatrix,
Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}.
Technische Universität Berlin Wintersemester 7/8 Institut für Mathematik 9. April 8 Prof. Dr. Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Nachklausur zur Linearen Algebra I Aufgabe ++ Punkte Definieren
Klausur zur Vorlesung Lineare Algebra und Geometrie I
Klausur zur Vorlesung Lineare Algebra und Geometrie I Ruhr-Universität Bochum Prof. Dr. Peter Eichelsbacher 3. April 2007, 9.00-13.00 Uhr, 240 Minuten Name und Geburtsdatum: Matrikelnummer: Hinweise: Überprüfen
2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen
Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung
Projektive Räume und Unterräume
Projektive Räume und Unterräume Erik Slawski Proseminar Analytische Geometrie bei Prof. Dr. Werner Seiler und Marcus Hausdorf Wintersemester 2007/2008 Fachbereich 17 Mathematik Universität Kassel Inhaltsverzeichnis
Kapitel 7. Lineare Abbildungen. 7.1 Motivation
Kapitel 7 Lineare Abbildungen 71 Motivation Verschieben, Drehen und Scheren sind parallelentreu, dh sie lassen sich auch als Abbildung zwischen Vektorräumen fomulieren Die Verschiebung, beispielsweise,
Mathematik für Anwender I
Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 9 Lineare Abbildungen Definition 9.1. Es sei K ein Körper und es seien V und W Vektorräume über K. Eine Abbildung heißt lineare
Eigenwerte und Diagonalisierung
Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende
Lineare Algebra I (WS 12/13)
Lineare Algebra I (WS 2/3) Bernhard Hanke Universität Augsburg 20..202 Bernhard Hanke / 3 Matrizen und Lineare Abbildungen Es seien lineare Abbildungen, d.h. Matrizen gegeben. B = (b jk ) : R r R n, A
35 Matrixschreibweise für lineare Abbildungen
35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir
Einführung in die Mathematik für Informatiker
Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 12.12.2016 9. Vorlesung Eigenschaften linearer Abbildungen Beschreibung linearer Abbildungen durch Matrizen... Eigenschaften
Mathematik für Physiker, Informatiker und Ingenieure
Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG [email protected] http://www2.mathematik.uni-wuerzburg.de
Lösbarkeit linearer Gleichungssysteme
Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn
Bestimmung der Dimension
Bestimmung der Dimension Satz. Sei (v 1, v 2,..., v n ) ein minimales Erzeugendensystem von V, d.h. dieses System ist ein Erzeugendensystem von V, aber keines der nach Weglassen eines v i (1 i n) entstehenden
Lineare Algebra und analytische Geometrie I
Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 15 Unterräume und Dualraum Untervektorräume eines K-Vektorraumes stehen in direkter Beziehung zu Untervektorräumen
Lineare Algebra Weihnachtszettel
Lineare Algebra Weihnachtszettel 4..008 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet
Vektorräume und lineare Abbildungen
Kapitel 11. Vektorräume und lineare Abbildungen 1 11.1 Vektorräume Sei K ein Körper. Definition. Ein Vektorraum über K (K-Vektorraum) ist eine Menge V zusammen mit einer binären Operation + einem ausgezeichneten
Kapitel 12. Lineare Abbildungen und Matrizen
Kapitel 12 Lineare Abbildungen und Matrizen Lineare Abbildungen f : R n R m Wir wissen schon: Eine lineare Abbildung f : R n R m ist eindeutig durch ein n-tupel von Vektoren v 1, v 2,, v n des R m bestimmt
β 1 x :=., und b :=. K n β m
44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix
6. Normale Abbildungen
SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische
3 Vektorräume abstrakt
Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare
Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik
Universität Karlsruhe (TH) Institut für Algebra und Geometrie Dr. Klaus Spitzmüller Dipl.-Inform. Wolfgang Globke Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Lösungen zum
Grundlagen der Mathematik 1
Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben
Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2
3 Definition: 1. Übungsblatt zur Vorlesung Lineare Algebra I. im WS 2003/2004 bei Prof. Dr. S. Goette
1. Übungsblatt zur Vorlesung Abgabe Donnerstag, den 30.10.03 1 Finden 2 Sei Sie reelle Zahlen a, b, c, so dass a (2, 3, 1) + b (1, 2, 2) + c (2, 5, 3) = (3, 7, 5). (V,, ) ein euklidischer Vektorraum. Zeigen
2.2 Kern und Bild; Basiswechsel
22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare
6 Lineare Abbildungen
6 Lineare Abbildungen Bei der Untersuchung einer algebraischen Struktur spielen im wesentlichen immer zwei Konzepte eine wichtige Rolle: Unterstrukturen, also Teilmengen mit derselben Struktur, und Morphismen,
11. BASIS, UNTERRAUM, und DIMENSION
11. BASIS, UNTERRAUM, und DIMENSION 1 Basen werden zu unterschiedlichen Zwecken benutzt: Um lineare Abbildungen in ihrer Matrixdarstellung zu vereinfachen, um die Dimension von Vektorräumen und ihren Unterräumen
Lineare Algebra II Lösungen zu ausgewählten Aufgaben
Lineare Algebra II Lösungen zu ausgewählten Aufgaben Blatt 2, Aufgabe 3 a) Wir zeigen, daß das Ideal (2, X) kein Hauptideal in Z[X] ist. (Dieses Ideal besteht aus allen Elementen in Z[X], die von der Form
Aufgaben zur linearen Algebra und analytischen Geometrie I
Aufgaben zur linearen Algebra und analytischen Geometrie I Es werden folgende Themen behandelt:. Formale und logische Grundlagen 2. Algebraische Grundlagen 3. Vektorräume und LGS 4. Homomorphismen und
7.2 Die adjungierte Abbildung
7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)
Lineare Algebra. 7. Übungsstunde. Steven Battilana.
Lineare Algebra 7. Übungsstunde Steven attilana [email protected] December 4, 6 Erinnerung Definition. Eine Abbildung F : V W zwischen E-Vektorräumen V und W heisst linear (genauer Homomorphismus
Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte
Technische Universität München, Fakultät für Physik Ferienkurs - ineare Algebra Hanna Schäfer 03. März 04 0. inearität. f : M N, x : y = f(x) Merkinhalte. f(x + λy) = f(x) + λf(y), x, y V, λ K 3. ineare
Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung
Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele
5.7 Lineare Abhängigkeit, Basis und Dimension
8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n
Lineare Abbildungen und Matrizen
Lineare Abbildungen und Matrizen Seien V und W K-Vektorräume mit dimv = n und dimw = m Im folgenden wollen wir jeder m n Matrix eine lineare Abbildung V W zuordnen, und umgekehrt jeder linearen Abbildung
Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.
1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild
6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar.
Um zu zeigen, dass die irreduziblen Teiler eines reellen Polynoms höchstens den Grad 2 haben, fassen wir nun (x γ) und (x γ) zusammen und stellen fest, dass (x (a + b i))(x ((a b i)) = x 2 2a + (a 2 +
Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h.
Lineare Abbildungen Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls (1) u, v V : f( u + v) = f( u) + f( v). (2) v V α K : f(α v) = αf( v).
Übungen zum Ferienkurs Lineare Algebra WS 14/15
Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)
Lineare Algebra 1. Roger Burkhardt
Lineare Algebra 1 Roger Burkhardt [email protected] Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2008/09 7 Einführung Definition lineare Abbildung
Lineare Abbildungen - I
Lineare Abbildungen - I Definition. Seien V und W K-Vektorräume (über demselben K). Eine Abbildung F : V W heißt K-linear, wenn L1) F (v + w) = F (v) + F (w) v, w V L2) F (λv) = λf (v) v V, λ K. Somit
Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen
Lineare Algebra I 4 Tutorium Lineare Abbildungen und Matrizen Fachbereich Mathematik WS / Prof Dr Kollross 7 Februar Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Bewegungen im ) Als Bewegung
4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau
312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind
Lösungsskizze zur Wiederholungsserie
Lineare Algebra D-MATH, HS Prof. Richard Pink Lösungsskizze zur Wiederholungsserie. [Aufgabe] Schreibe die lineare Abbildung f : Q Q 5, x +x +x x x +x +6x f x := x +x +8x x x +x +x. x +x +5x als Linksmultiplikation
Lineare Algebra I (WS 12/13)
Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche
Lineare Algebra II 8. Übungsblatt
Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.
Kapitel III. Lineare Abbildungen
Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,
Wiederholung: lineare Abbildungen
Wiederholung: lineare Abbildungen Def Es seien (V,+, ) und (U, +, ) zwei Vektorräume Eine Abbildung f : V U heißt linear, falls für alle Vektoren v 1, v 2 V und für jedes λ R gilt: (a) f (v 1 + v 2 ) =
Übungsklausur Lineare Algebra
Übungsklausur Lineare Algebra Sommersemester 2010 Johannes Gutenberg-Universität Mainz Diese Übungsklausur ist sehr lang (gut zum Üben). In der richtigen Klausur finden Sie eine Multiple Choice aufgabe
x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)
Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f (v) = u} (Andere Bezeichnung: f (V) wird in Analysis-Vorlesung
EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME
EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME In diesem Abschnitt wiederholen wir zunächst grundlegende Definitionen und Eigenschaften im Bereich der Matrizenrechnung, die wahrscheinlich bereits in Ansätzen
Lineare Algebra und analytische Geometrie I
Prof Dr H Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 12 Wege entstehen dadurch, dass man sie geht Franz Kafka Invertierbare Matrizen Definition 121 Es sei K ein
