Lineare Abbildungen und Matrizen
|
|
|
- Henriette Klein
- vor 8 Jahren
- Abrufe
Transkript
1 Lineare Abbildungen und Matrizen Seien V und W K-Vektorräume mit dimv = n und dimw = m Im folgenden wollen wir jeder m n Matrix eine lineare Abbildung V W zuordnen, und umgekehrt jeder linearen Abbildung V W eine m n Matrix, sodass wir einen Isomorphismus M(m n; K Hom K (V, W erhalten Dieser Isomorphismus ist allerdings nicht kanonisch gegeben Wir müssen zuerst in beiden Vektorräumen Basen wählen, und der Isomorphismus wird dann von den gewählten Basen abhängen Für das folgende fixieren wir nun eine Basis A = (v 1, v 2,, v n von V, und eine Basis B = (w 1, w 2,, w m von W I Die einer Matrix zugeordnete lineare Abbildung Sei A = (a ij M(m n; K Wir definieren eine lineare Abbildung F : V W durch Angabe der Bilder der Basisvektoren F (v 1 = a 11 w 1 + a 21 w a m1 w m F (v 2 = a 12 w 1 + a 22 w a m2 w m F (v n = a 1n w 1 + a 2n w a mn w m Setzen wir L A B (A = F, dann ist durch diese Vorgangsweise eine Abbildung L A B : M(m n; K Hom K(V, W erklärt Spezialfall (siehe vorher Seien V = K n, W = K m und K bzw K die kanonischen Basen in K n bzw K m Für A = (a ij M(m n; K ist dann F (e 1 = (a 11, a 21,, a m1 1
2 F (e 2 = (a 12, a 22,, a m2 F (e n = (a 1n, a 2n,, a mn Für ein beliebiges x = (x 1,, x n K n gilt somit F (x = F (x 1 e x n e n = x 1 F (e x n F (e n = x 1 (a 11, a 21,, a m1 + x 2 (a 12, a 22,, a m2 + + x n (a 1n, a 2n,, a mn = ( n a 1j x j, n a 2j x j,, n a mj x j Werden nun x K n und F (x = L K K (A(x als Spaltenvektoren geschrieben, dann kann x als n 1 Matrix, F (x als m 1 Matrix aufgefaßt werden, und es gilt mit y = F (x = (y 1, y 2,, y m die Beziehung y 1 y 2 y m = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn x 1 x 2 x n wobei auf der rechten Seite die Multiplikation von Matrizen auftritt! Aus diesem Grund verwendet man auch die Schreibweise F (x = L K K (A(x = Ax Man beachte weiters, dass F (e i der i-te Spaltenvektor von A ist Beispiel ( Sei A = M(2 3; R A definiert F : R R 2 ( x ( F (x = F ((x 1, x 2, x 3 = x x1 x = 2 + 2x 3 4x x 1 + x 2 + 3x 3 3 mit 2
3 ( 2 Im speziellen ist etwa F ((1, 1, 1 = 8 (Ende des Spezialfalles Zurück zum allgemeinen Fall Seien nun Φ A : K n V und Φ B : K m W die durch A bzw B definierten Koordinatensysteme in V bzw W Die zentrale Aussage ist nun die, dass das folgende Diagramm kommutativ ist, dh Φ B L K K (A = L A B (A Φ A : K n W K n L K K (A K m Φ A V L A W B (A Φ B Beweis Sei x = (x 1,, x n K n Dann ist L K K (A(x = Ax = ( n n a 1j x j,, a mj x j und Φ B L K K (A(x = Φ B (Ax = ( n a 1j x j w ( n a mj x j w m Andererseits ist Φ A (x = x 1 v x n v n und (mit F = L A B (A L A B (A Φ A(x = L A B (A(x 1v x n v n = x 1 F (v x n F (v n = x 1 (a 11 w a m1 w m + + x n (a 1n w a mn w m = ( n a 1j x j w ( n a mj x j w m Dies bedeutet: Mit F = L A B (A sei x der Koordinatenvektor von v V bzgl A Dann ist y = Ax der Koordinatenvektor von F (v bzgl B 3
4 Bemerkung L A B (A heißt die der Matrix A bzgl der Basen A und B zugeordnete lineare Abbildung V W Gilt V = W und A = B, dann schreibt man statt L A B auch L B II Die einer linearen Abbildung zugeordnete Matrix Sei nun F : V W eine lineare Abbildung Für jedes j = 1, 2,, n gibt es dann eindeutig bestimmte Skalare a 1j, a 2j,, a mj sodass F (v j = a 1j w 1 + a 2j w a mj w m Auf diese Weise wird eine Matrix M A B (F = (a ij definiert bzw eine Abbildung M A B : Hom K(V, W M(m n; K, F M A B (F Man beachte, dass die j-te Spalte von MB A (F der Koordinatenvektor von F (v j bzgl der Basis B ist M A B (F heißt die der linearen Abbildung F bzgl der Basen A und B zugeordnete Matrix (bzw die darstellende Matrix von F bzgl A und B Ist v V und x = x 1 x 2 x n bzw y = y 1 y 2 y m der Koordinatenvektor von v ( bzw F (v bzgl A ( bzw B, dann gilt y = M A B (F x Beweis v = x 1 v x n v n F (v = x 1 F (v x n F (v n = x 1 (a 11 w 1 + a 21 w a m1 w m + + x n (a 1n w 1 + a 2n w a mn w m = ( n a 1j x j w ( n a mj x j w m 4
5 Damit ist y i = n a ij x j Satz Die Abbildung L A B : M(m n; K Hom K(V, W, A L A B (A ist ein Isomorphismus, dessen Umkehrabbildung durch M A B : Hom K(V, W M(m n; K, F M A B (F gegeben ist Beweis Wir setzen L = L A B und M = M A B i L ist linear Seien A, B M(m n; K und λ, µ K Zu v V sei x der Koordinatenvektor von v bzgl A L(λA + µb(v = L(λA + µb Φ A (x = Φ B ((λa + µbx = Φ B (λax + µbx = λφ B (Ax + µφ B (Bx = λl(a Φ A (x + µl(b Φ A (x = λl(a(v + µl(b(v = (λl(a + µl(b(v Dies gilt für jedes v V und somit L(λA + µb = λl(a + µl(b ii L ist bijektiv Für A M(m n; K gilt: die j-te Spalte von M(L(A ist der Koordinatenvektor von L(A(v j bzgl B Dies ist aber die j-te Spalte von A Damit gilt: M L(A = A bzw M L = id M(m n;k Für F Hom K (V, W und v V gilt: L(M(F (v = L(M(F Φ A (x = Φ B (M(F x = F (v Also L M(F = F bzw L M = id HomK (V,W 5
6 Damit ist L ein Isomorphismus Beispiele 1 Sei V = P 1 mit Basis A = (1, t, W = P 2 mit Basis B = (1, t, t Wir suchen L A B (A für A = Wir wissen: Ist x der Koordinatenvektor von v V bzgl A, dann ist Ax der Koordinatenvektor von L A B (A(v bzgl B 1 1 ( x 1 x 2 Also, mit v = x 1 1+x 2 t und Ax = 2 0 x1 = 2x x x 1 + 2x 2 gilt L A B (A(v = (x 1 x x 1 t + (x 1 + 2x 2 t 2 Speziell, etwa für v = 1 t, also x 1 = 1, x 2 = 1 ergibt sich damit L A B (A(v = 2 + 2t t2 2 Sei A = (v 1, v 2, v 3 eine Basis von V = R 3 und B = (w 1, w 2 eine Basis von W = R 2 Die lineare Abbildung F : R 3 R 2 sei gegeben durch F (v 1 = w 1 + w 2, F (v 2 = 2w 1 + w 2, F (v 3 = 2w 1 w 2 Dann ist die darstellende Matrix von F bzgl A, B offenbar gegeben durch ( MB A(F = Sei etwa (4, 5, 3 der Koordinatenvektor von v bzgl A, also v = 4v 1 + 5v 2 3v 3 Dann ist F (v = 4F (v 1 + 5F (v 2 3F (v 3 = 4(w 1 + w 2 + 5(2w 1 + w 2 3(2w 1 w 2 = 8w w 2 6
7 Also ist der Koordinatenvektor von F (v bzgl Beziehungsweise: ( = ( 8 12 B gleich ( 8 12 III Komposition linearer Abbildungen Seien V, V, V K-Vektorräume mit Basen B, B, B und dimv = n, dimv = m, dimv = r Wir betrachten lineare Abbildungen F : V V, G : V V und setzen H = G F : V V Frage Was ist die darstellende Matrix von H bzgl B, B? Setze A = M B B (F und B = M B B (G K n x Ax K m y By K r Φ B V Φ B F V G V Φ B Für v V sei x der Koordinatenvektor von v bzgl B, y der Koordinatenvektor von F (v bzgl B, z der Koordinatenvektor von G(F (v bzgl B Dann ist z = By und mit y = Ax folgt, dass z = B(Ax = (BAx Damit: M B B (G F = BA = M B B (G M B B (F Dh die darstellende Matrix der Komposition von zwei linearen Abbildungen ist das Produkt der einzelnen darstellenden Matrizen Analog zeigt man für A M(m n; K und B M(r m; K, dass L B B (BA = L B B (B L B B (A 7
Äquivalenz von Matrizen
Äquivalenz von Matrizen Wir befassen uns jetzt mit der Fragestellung, ob man zu einer gegebenen linearen Abbildung F : V W geeignete Basen für V und W finden kann, sodass die darstellende Matrix von F
Kap 5: Rang, Koordinatentransformationen
Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv
Lineare Abbildungen - I
Lineare Abbildungen - I Definition. Seien V und W K-Vektorräume (über demselben K). Eine Abbildung F : V W heißt K-linear, wenn L1) F (v + w) = F (v) + F (w) v, w V L2) F (λv) = λf (v) v V, λ K. Somit
1 Lineare Abbildungen
1 Lineare Abbildungen Definition 1 Sei K ein Körper und V und W K-Vektoräume. Eine Abbildung f : V W heisst linear oder Homomoprhismus, wenn gilt: fv 1 + v 2 = fv 1 + fv 2 v 1, v 2 V fλv = λfv λ K, v V
Lineare Abbildungen und Matrizen
Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 31. Mai 2016 Stefan Ruzika 9: Lineare Abbildungen und Matrizen 31. Mai 2016 1 / 16 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume
Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching
Lineare Algebra 7. Übungsstunde Steven Battilana [email protected] battilana.uk/teaching November 9, 27 Erinnerung 2 Vektoräume Sei V ein Vektorraum, U V, U {}. U hiesst Untervektorraum, Unterraum,
Euklidische und unitäre Vektorräume
Euklidische und unitäre Vektorräume In allgemeinen Vektorräumen gibt es keine Möglichkeit der Längenmessung von Vektoren und der Winkelmessung zwischen zwei Vektoren. Dafür ist eine zusätzliche Struktur
09. Lineare Abbildungen und Koordinatentransformationen
09. Lineare Abbildungen und Koordinatentransformationen Definition. Seien V und W Vektorräume. Unter einer linearen Abbildung versteht man eine Abbildung F : V W, v F v w mit folgender Eigenschaft: F λ
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn
5 Die Allgemeine Lineare Gruppe
5 Die Allgemeine Lineare Gruppe Gegeben sei eine nicht leere Menge G und eine Abbildung (Verknüpfung) : G G G, (a, b) a b( a mal b ) Das Bild a b von (a, b) heißt Produkt von a und b. Andere gebräuchliche
Eigenwerte und Diagonalisierung
Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende
5 Lineare Abbildungen
5 Lineare Abbildungen Pink: Lineare Algebra 2014/15 Seite 59 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,
2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen
Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung
5 Lineare Abbildungen
5 Lineare Abbildungen Pink: Lineare Algebra HS 2014 Seite 56 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,
Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).
Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen
2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105. gramms kommutativ:
2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105 gramms kommutativ: V ϕ W ψ X c B c C c D K n x MC B(ϕ) x K m x MC D (ψ) x K l x M C D (ψ)mb C (ϕ) x Dies bedeutet, dass das gesamte Diagramm kommutativ ist.
3 Bilinearformen und quadratische Formen
3 Bilinearformen und quadratische Formen Sei V ein R Vektorraum. Definition: Eine Bilinearform auf V ist eine Abbildung s : V V R, welche linear in beiden Variablen ist, d.h.: Für u, v, w V und λ, µ R
35 Matrixschreibweise für lineare Abbildungen
35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir
Kapitel III. Lineare Abbildungen
Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,
Koordinaten und darstellende Matrizen
Koordinaten und darstellende Matrizen Olivier Sète 4 Juli 2008 Inhaltsverzeichnis Koordinatenabbildung 2 Definition und Eigenschaften 2 2 Beispiel 3 2 Matrixdarstellung eines Vektorraumhomomorphismus 3
Lösung zu Serie 9. Lineare Algebra D-MATH, HS Prof. Richard Pink
Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 9 1. [Aufgabe] Sei f : V W eine lineare Abbildung. Zeige: a) Die Abbildung f ist injektiv genau dann, wenn eine lineare Abbildung g :
13 Partielle Ableitung und Richtungsableitung
3 PARTIELLE ABLEITUNG UND RICHTUNGSABLEITUNG 74 3 Partielle Ableitung und Richtungsableitung 3 Definition und Notiz Sei B R n offen, f : B R m, v R n, so heißt für γ x,v (t) = x + tv d dt f(x + tv) f(x)
Lineare Gleichungssysteme
Lineare Gleichungssysteme Definition. Sei K ein Körper, a ij K für 1 i m, 1 j n und b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2......
Lineare Algebra. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching
Lineare Algebra 6. Übungsstunde Steven Battilana [email protected] battilana.uk/teaching November, 7 Vektoräume Eine Menge E zusammen mit zwei Verknüpfungen + : E E E, x, y x + y Addition : E E E,
2 Die Darstellung linearer Abbildungen durch Matrizen
2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )
Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom
Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse
4 Lineare Abbildungen und Matrizen
Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt
Lineare Algebra Weihnachtszettel
Lineare Algebra Weihnachtszettel 4..008 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet
70 IV. ENDLICH-DIMENSIONALE VEKTORRÄUME
IV. Endlich-dimensionale Vektorräume Unter einem endlich-dimensionalen Vektorraum verstehen wir einen Vektorraum, der eine endliche Basis besitzt. Die entscheidende Beobachtung ist die Tatsache, dass in
3 Lineare Algebra Vektorräume
3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +
x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)
Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f (v) = u} (Andere Bezeichnung: f (V) wird in Analysis-Vorlesung
Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November
Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzugen zur Vorlesung: Der Vollständigkeit
β 1 x :=., und b :=. K n β m
44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix
5 Lineare Algebra (Teil 3): Skalarprodukt
5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale
x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)
Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f(v) = u} (Andere Bezeichnung: f(v) wird in Analysis-Vorlesung
Kapitel V. Affine Geometrie
Kapitel V Affine Geometrie 1 Affine Räume Betrachte ein lineares Gleichungssystem Γ : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b
Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)
Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:
1 Eigenschaften von Abbildungen
Technische Universität München Christian Neumann Ferienkurs Lineare Algebra für Physiker Vorlesung Dienstag WS 2008/09 Thema des heutigen Tages sind zuerst Abbildungen, dann spezielle Eigenschaften linearer
Mathematik für Physiker, Informatiker und Ingenieure
Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG [email protected] http://www2.mathematik.uni-wuerzburg.de
Übungen zu Einführung in die Lineare Algebra und Geometrie
Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b
5 Diagonalisierbarkeit
5 Diagonalisierbarkeit Sei V ein K Vektorraum mit einer Basis B = (v 1,..., v n ) Wiederholung aus 2: Sei f : V V K linear. Stelle f(v j ) für j = 1,..., n dar in der Form a 1j Das n Tupel a j =. a nj
Lineare Abbildungen. i=0 c ix i n. K n K m
Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht
36 2 Lineare Algebra
6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so
4 Affine Koordinatensysteme
4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner
4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k).
4 Matrizenrechnung Der Vektorraum der m n Matrizen über K Sei K ein Körper und m, n N\{0} A sei eine m n Matrix über K: a a 2 a n a 2 a 22 a 2n A = = (a ij) mit a ij K a m a m2 a mn Die a ij heißen die
Hauptachsentransformation: Eigenwerte und Eigenvektoren
Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung
$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $
Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit
Grundlagen der Mathematik 1
Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben
Einführung in die Mathematik für Informatiker
Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 12.12.2016 9. Vorlesung Eigenschaften linearer Abbildungen Beschreibung linearer Abbildungen durch Matrizen... Eigenschaften
Summen und direkte Summen
Summen und direkte Summen Sei V ein K-Vektorraum. Wie früher erwähnt, ist für beliebige Teilmengen M, N V die Teilmenge M +N V wie folgt definiert M +N = {v+w : v M, w N}. Man sieht leicht, dass i.a. M
Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz
Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis
Vektorräume und lineare Abbildungen
Kapitel 11. Vektorräume und lineare Abbildungen 1 11.1 Vektorräume Sei K ein Körper. Definition. Ein Vektorraum über K (K-Vektorraum) ist eine Menge V zusammen mit einer binären Operation + einem ausgezeichneten
Übungen zu Einführung in die Lineare Algebra und Geometrie
Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax
Geometrische Deutung linearer Abbildungen
Geometrische Deutung linearer Abbildungen Betrachten f : R n R n, f(x) = Ax. Projektionen z.b. A = 1 0 0 0 1 0 0 0 0 die senkrechte Projektion auf die xy-ebene in R 3. Projektionen sind weder injektiv
Basis und Dimension. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren
Basis und Dimension Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren aus V. 1) (v i ) i I heißt ein Erzeugendensystem von V, wenn Span(v i ) = V. 2) (v i ) i I heißt Basis von
Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung
Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele
Mathematik für Anwender I
Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 9 Lineare Abbildungen Definition 9.1. Es sei K ein Körper und es seien V und W Vektorräume über K. Eine Abbildung heißt lineare
Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) =
Matrizen Eine m nmatrix ist ein rechteckiges Zahlenschema mit m Zeilen und n Spalten der Form a 11 a 12 a 1n A = a ij = a 21 a 22 a 2n a m1 a m2 a mn Dabei sind m und n natürliche und die Koezienten a
2.3 Lineare Abbildungen und Matrizen
2.3. LINEARE ABBILDUNGEN UND MATRIZEN 89 Bemerkung Wir sehen, dass die Matrix à eindeutig ist, wenn x 1,...,x r eine Basis ist. Allgemeiner kann man zeigen, dass sich jede Matrix mittels elementarer Zeilenumformungen
Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}.
Technische Universität Berlin Wintersemester 7/8 Institut für Mathematik 9. April 8 Prof. Dr. Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Nachklausur zur Linearen Algebra I Aufgabe ++ Punkte Definieren
Aufgaben zur linearen Algebra und analytischen Geometrie I
Aufgaben zur linearen Algebra und analytischen Geometrie I Es werden folgende Themen behandelt:. Formale und logische Grundlagen 2. Algebraische Grundlagen 3. Vektorräume und LGS 4. Homomorphismen und
Lösung zu Serie 24. a ij b i b j. v = j=1. v = v j b j.
Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 24 1. Zeige: Ist 1 n := min{dim K (V 1 ), dim K (V 2 )} < für Vektorräume V 1 und V 2, so ist jeder Tensor in V 1 K V 2 eine Summe von
Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte
Technische Universität München, Fakultät für Physik Ferienkurs - ineare Algebra Hanna Schäfer 03. März 04 0. inearität. f : M N, x : y = f(x) Merkinhalte. f(x + λy) = f(x) + λf(y), x, y V, λ K 3. ineare
Lösung 7: Bilinearformen
D-MATH Lineare Algebra II FS 207 Dr. Meike Akveld Lösung 7: Bilinearformen. a). Seien u, u 2 V, λ K, dann gelten nach Voraussetzung: L v (u + λu 2 ) =β(v, u + λu 2 ) = β(v, u ) + β(v, λu 2 ) =β(v, u )
5.7 Lineare Abhängigkeit, Basis und Dimension
8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n
4 Eigenwerte und Eigenvektoren
4 Eigenwerte und Eigenvektoren Sei V {0} ein K Vektorraum und f : V V K linear. Definition: Ein Eigenwert von f ist ein Element λ K, für die es einen Vektor v 0 in V gibt, so dass f(v) = λ v. Sei nun λ
Mathematische Erfrischungen III - Vektoren und Matrizen
Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen
Lineare Algebra I Zusammenfassung
Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,
Determinanten. I. Permutationen
Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch
8 Lineare Abbildungen
80 8 Lineare Abbildungen In diesem Kapitel untersuchen wir lineare Abbildungen von R n nach R m wie zum Beispiel Spiegelungen, Drehungen, Streckungen und Orthogonalprojektionen in R 2 und R 3 Man nennt
6. Normale Abbildungen
SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische
Technische Universität München. Mathematik für Physiker 1
Tutorübung - Lösungen T: Basiswechsel Technische Universität München Zentrum Mathematik Mathematik für Physiker Wintersemester /2 Michael Kaplan Jan Wehrheim Christian Mendl Übungsblatt 9 Wir betrachten
Mathematik für Naturwissenschaftler II SS 2010
Mathematik für Naturwissenschaftler II SS 2010 Lektion 9 20. Mai 2010 Kapitel 9. Matrizen und Determinanten Der Begriff der Matrix Die transponierte Matrix Definition 84. Unter einer (reellen) m n-matrix
Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz
Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 3: Vektorräume 24. April 2016 1 / 20 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume Erinnerung:
3.5 Duale Vektorräume und Abbildungen
3.5. DUALE VEKTORRÄUME UND ABBILDUNGEN 103 3.5 Duale Vektorräume und Abbildungen Wir wollen im Folgenden auch geometrische Zusammenhänge mathematisch beschreiben und beginnen deshalb jetzt mit der Einführung
02. Vektorräume und Untervektorräume
02. Vektorräume und Untervektorräume Wir kommen nun zur eigentlichen Definition eines K-Vektorraums. Dabei ist K ein Körper (bei uns meist R oder C). Informell ist ein K-Vektorraum eine Menge V, auf der
3 Moduln. Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert.
3 Moduln Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert. Beispiele: (1) (Z n, +, (Z, )), wobei (Z, ) Skalarmultiplikation. k (a 1,...,a n )=(ka 1,...,ka n )inz. (2)
3 Systeme linearer Gleichungen
3 Systeme linearer Gleichungen Wir wenden uns nun dem Problem der Lösung linearer Gleichungssysteme zu. Beispiel 3.1: Wir betrachten etwa das folgende System linearer Gleichungen: y + 2z = 1 (1) x 2y +
KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG
KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter
2.2 Kern und Bild; Basiswechsel
22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare
Mathematik I. Vorlesung 14. Rang von Matrizen
Prof Dr H Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 14 Rang von Matrizen Definition 141 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von den Spalten
Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.
1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild
8 Lineare Abbildungen und Matrizen
8 Lineare Abbildungen und Matrizen 8.1 Lineare Abbildungen Wir beschäftigen uns nun mit Abbildungen zwischen linearen Räumen. Von besonderem Interesse sind Abbildungen, die die Struktur der linearen Räume
Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen.
Definition: Lineare Abbildung Lineare Abbildungen Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. 8.1 Definition: Lineare Abbildung Eine Funktion f : V Ñ W zwischen
3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit
3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53
