4 Eigenwerte und Eigenvektoren
|
|
|
- Christoph Lange
- vor 9 Jahren
- Abrufe
Transkript
1 4 Eigenwerte und Eigenvektoren Sei V {0} ein K Vektorraum und f : V V K linear. Definition: Ein Eigenwert von f ist ein Element λ K, für die es einen Vektor v 0 in V gibt, so dass f(v) = λ v. Sei nun λ K ein Eigenwert von f. Ein Eigenvektor von f zum Eigenwert λ ist ein Vektor w 0 aus V, so dass f(w) = λ w Zu jedem Eigenwert von f gehört also mindestens ein Eigenvektor. Beispiele: a) Ist f = id V, d.h. f(v) = v für alle v V, so gilt: λ = ist der einzige Eigenwert von f. Jeder Vektor v 0 von V ist Eigenvektor von f. b) Ist f die Nullabbildung, so gilt: λ = 0 ist der einzige Eigenwert von f. Jeder Vektor v 0 von V ist Eigenvektor von f. c) Genau dann ist 0 Eigenwert von f, wenn Kern f {0}. x y d) f : R 2 R 2 hat keine Eigenwerte: y x x Angenommen λ R wäre ein Eigenwert von f und v = 0 ( x 2 ) λx x x2 ein zugehöriger Eigenvektor, d.h. = λ =, also λx 2 x 2 x λx = x 2 und λx 2 = x. Wegen v 0 folgt x 2 0. Einsetzen ergibt x 2 = λλx 2 = λ 2 x 2 und = λ 2, Widerspruch!
2 (4.) Bemerkung: Genau dann ist λ K ein Eigenwert von f, wenn Kern (λ id V f) {0}. Beweis: λ ist Eigenwert von f genau dann, wenn es ein v 0 gibt mit f(v) = λv, d.h. v 0 und (λid V f)(v) = λv f(v) = 0, d.h. Kern (λid V f) {0}. Von nun an sei dim V = n <. B und B seien Basen von V, A = MB B(f) und A = MB B (f). (4.2) Bemerkung: det A = det A und Spur A = Spur A. Definiere deshalb det f := det A und Spur f := Spur A. Beweis: Nach (2.5) ist A = SAS, wenn S = M B B (id V ). Nach II.7 folgt det A = det SAS = det S det A(det S) = det A. Nach II.4 ist Spur A = Spur A. (4.3) Bemerkung: Die Aussagen det f 0, f Isomorphismus und Kern f = 0 sind äquivalent. Beweis: det A 0 II.7.6 A ist invertierbar f ist ein Isomorphismus.5.7 Kern f = {0}. Sei A eine n n Matrix über K. Definition: Die Funktion χ A (λ) := det(λe n A) in der Variablen λ heißt charakteristisches Polynom von A. Es hat den Grad n. 0 λ 0 0 λ Beispiel: A = : λe 0 2 A = = und 0 λ 0 λ λ χ a (λ) = det = λ λ 2 = (λ )(λ + ) 0 λ B = : χ 0 B (λ) = det = λ λ 2 + Definition: χ f (λ) := det(λid V f) heißt charakteristisches Polynom von f. Es hat den Grad n = dim V. Ist also A = MB B(f), so ist M B B(λidV f) = λmb B(id V ) MB B(f) = λe n A und somit χ f (λ) = det(λid V f) =: det MB B(λid V f) = det(λe n A) = χ A (λ) Beispiele: f : R 2 R 2 x x2, ; B = (e, e 2 ) x 2 x 2
3 0 MB B(f) = = B und χ 0 f (λ) = χ B (λ) = λ 2 + g : R 2 R 2 x x2 0, ; MB x 2 x B(g) = = A und 0 χ g (λ) = χ A (λ) = λ 2. (4.4) Satz: Die Eigenwerte von f sind die Nullstellen des charakteristischen Polynoms von f. Insbesondere hat f höchstens n = Grad χ f verschiedene Eigenwerte. Beweis: χ f (λ) = 0 det(λid V f) = Kern (λid V f) 0 4. λ ist Eigenwert von f. In den Beispielen: f hat keine Eigenwerte, da χ f (λ) = λ 2 + keine reelle Nullstelle hat. Die Eigenwerte g sind die Nullstellen ± von χ g (λ) = λ 2. (4.5) Satz: a) χ f (λ) hat den Grad n und den höchsten Koeffizienten, ist also von der Form χ f (λ) = λ n + c n λ n c λ + c 0 ; c 0,..., c n K b) c 0 = ( ) n det f und c n = Spur f. Beweis: Für n = ist die Aussage klar. Sei n 2. Sei B eine beliebige Basis von V und A = MB B(f) = (a ij). λ a a 2... a n a 2 λ a a 2n λe n A = (λδ ij a ij ) =... a n a n2... λ a nn Durch Entwicklung nach der. Spalte ergibt sich induktiv χ f (λ) = det(λe n A) = (λ a )... (λ a nn )+Q(λ), wobei Q ein Polynom vom Grad n 2 ist. Also ist χ f (λ) = λ n λ n (a a nn ) + R(λ) + Q(λ), Grad R n 2 = λ n + c n λ n c λ + c 0 Es folgt c n = (a a nn ) = Spur f. Setze noch λ = 0 in χ f (λ) = π S n sign(π)(λ δ,π() a π() )... 3
4 ... (λ δ n,π(n) a n,π(n) ). Erhalte c 0 = χ f (0) = π S n sign(π)( a,π() )... ( a n,π(n) ) = ( ) n π S n sign(π)a,π()... a n,π(n) = ( ) n det A = ( ) n det f. (4.6) Kästchenregel: Sei A M(n n, K) eine Kästchenmatrix A = B 0 B 2, B M(r r, K), B 2 M((n r) (n r), K) Dann gilt χ A = χ B χ B2. Beweis: λe n A = λe r B, also 0 λe n r B 2 χ A (λ) = det(λe n A) II.7.7 = det(λe r B ) det(λe n r B 2 ) = χ B (λ) χ B2 (λ) Eigenräume: Sei f End V und λ K. Setze V (f, λ) = {v f(v) = λv} (4.7) Bemerkung: a) V (f, λ) = Kern (λid V f) ist ein UVR von V. b) λ ist ein Eigenwert von f genau dann, wenn V (f, λ) 0. c) Sind λ λ 2 Eigenwerte von f, so ist V (f, λ ) V (f, λ 2 ) = {0}. Definition: Ist λ ein Eigenwert von f, so heißt V (f, λ) der Eigenraum von f zum Eigenwert λ. Nun sei K = R oder K = C, dim V < und λ ein Eigenwert von f, d.h. λ ist eine Nullstelle von χ f (x). Gemäß 3 schreibt sich χ f (x) eindeutig in der Form χ f (x) = (x λ) ν R(x) wobei ν und R(x) ein Polynom mit R(λ) 0 ist. Definition: 4
5 (i) ν = ν(χ f, λ) heißt die algebraische Vielfachheit des Eigenwerts λ von f. Sie gibt an, wie oft der Faktor x λ im Polynom χ f (x) aufgeht. (ii) dim V (f, λ) heißt die geometrische Vielfachheit des Eigenwerts λ von f. Offenbar ist dim V (f, λ). (4.8) Satz: Geometrische Vielfachheit (λ) Algebraische Vielfachheit (λ). Beweis: Wähle eine Basis (v,..., v r ) von V (f, λ) und ergänze sie zu einer Basis B = (v,..., v n ) von V. Wegen f(v i ) = λv i, i =,..., r ist A = MB B (f) von der Form λ A =.... λe r.. 0 = und nach 4.6 gilt λ 0 A 0 A χ f (x) = χ A (x) = χ λer (x).χ A (x) = (x λ) r χ A (x). Also ist dim V (f, λ) = r ν(χ f (x)) Beispiel: a a) f : R 2 R 2, b 0 MB B (f) = χ 0 0 f (x) = det b ; B = (e 0, e 2 ) x = x 2, also ν(χ 0 x f, 0) = 2 V (f, 0) = Kern (0 id f) = Kern ( f) = Kern f = R, also 0 Geometrische Vielfachheit (0) = < 2 = Algebraische Vielfachheit (0). b) g : R 2 R 2 x x2. Gesehen: χ x 2 x g (x) = x 2. Die Eigenwerte sind also λ = ± und Algebraische Vielfachheit (±) =. Es folgt: Geometrische Vielfachheit (± = denn hier gilt Geometrische Vielfachheit Algebraische Vielfachheit =. 5
5 Diagonalisierbarkeit
5 Diagonalisierbarkeit Sei V ein K Vektorraum mit einer Basis B = (v 1,..., v n ) Wiederholung aus 2: Sei f : V V K linear. Stelle f(v j ) für j = 1,..., n dar in der Form a 1j Das n Tupel a j =. a nj
Eigenwerte und Diagonalisierung
Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende
Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom
Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse
Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)
Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit
6 Eigenwerte und Eigenvektoren
6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,
Ausgewählte Lösungen zu den Übungsblättern 9-10
Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt
Berechnung der Determinante
Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,
Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich
Henning Krause Lineare Algebra Julia Sauter SS 27 Klausur 2.9.27 mit Lösungsvorschlag Jan Geuenich Aufgabe (4 Punkte: Sei n N und seien A und B zwei (n n-matrizen über einem Körper K. Wahr Falsch (a Es
6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar.
Um zu zeigen, dass die irreduziblen Teiler eines reellen Polynoms höchstens den Grad 2 haben, fassen wir nun (x γ) und (x γ) zusammen und stellen fest, dass (x (a + b i))(x ((a b i)) = x 2 2a + (a 2 +
5 Minimalpolynom und charakteristisches Polynom
5 Minimalpolynom und charakteristisches Polynom 5.1 Lemma Sei A K n n. Dann ist λ K genau dann ein Eigenwert von A, wenn det(λe n A) = 0. 5.2 Beispiel ( ) 1 4 i) A = R 1 1 2 2 det(λe 2 A) = λ 1 4 1 λ 1
Musterlösungen zur Linearen Algebra II Übungsklausur
Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,
Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.
Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:
Musterlösung Donnerstag - Determinanten und Eigenwerte
Musterlösung Donnerstag - Determinanten und Eigenwerte 6. März Aufgabe : Zum Aufwärmen () Zeige, dass eine nilpotente Endomorphismus nur die Null als Eigenwert hat. Hinweis: Ein Endomorphismus heißt nilpotent,
Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,
Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren
6 Hauptachsentransformation
6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten
Lineare Algebra II 3. Übungsblatt
Lineare Algebra II 3. Übungsblatt Fachbereich Mathematik SS 2011 Prof. Dr. Kollross 27./28. April 2011 Susanne Kürsten Tristan Alex Minitest Aufgabe M1 (Formale Polynome) Betrachten Sie die folgenden Polynome
Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich:
Lineare Algebra D-MATH, HS 04 Prof. Richard Pink Lösung zu Serie. [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: a) F (X) := X 5 X in R[X] und C[X]. b) F (X) := X 4 +X 3 +X in
Mathematik für Physiker, Informatiker und Ingenieure
Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG [email protected] http://www2.mathematik.uni-wuerzburg.de
Determinanten. Motivation: Man betrachte das lineare Gleichungssystem =. (1) y = Sei o.b.d.a a 0 und c 0. Dann ist (1) äquivalent zu. = ac ad y.
Determinanten Motivation: Man betrachte das lineare Gleichungssystem [ [ [ a b x u = (1) c d y v Sei obda a und c Dann ist (1) äquivalent zu [ [ ca cb x = ac ad y und ferner zu [ [ ca cb x ad cb y Falls
Lineare Algebra II 6. Übungsblatt
Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der
2 Ähnlichkeit von Matrizen, Eigenwerte und Eigenvektoren
2 ÄHNLICHKEIT VON MATRIZEN, EIGENWERTE UND EIGENVEKTOREN 1 19. Mai 2000 2 Ähnlichkeit von Matrizen, Eigenwerte und Eigenvektoren Motivation. Es seien: V ein K-Vektorraum mit dim V = n < und F End V, Φ,
Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.
Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x
Kapitel 11 Eigenwerte und Eigenvektoren
Kapitel Eigenwerte und Eigenvektoren. Problem der Diagonalisierbarkeit Es sei wieder K gleich R oder. Eine n n)-matrix A mit Koeffizienten aus K wird als diagonalisierbar bezeichnet, wenn es eine invertierbare
Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht
Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben
Eigenwerte (Teschl/Teschl 14.2)
Eigenwerte (Teschl/Teschl 4.2 Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =
23. Die Jordan sche Normalform
Chr.Nelius, Lineare Algebra II (SS 2005) 1 23. Die Jordan sche Normalform Wir suchen für einen trigonalisierbaren Endomorphismus unter seinen dreiecksförmigen Darstellungsmatrizen eine Darstellungsmatrix,
Proseminar Lineare Algebra II, SS 11. Blatt
Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2
Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops
15. DETERMINANTEN 1 Für n Vektoren b 1,..., b n im R n definiert man ihre Determinante det(b 1,..., b n ) Anschaulich gilt det(b 1,..., b n ) = Orientierung der Vektoren b 1,..., b n Volumen des von den
MC-Serie 11: Eigenwerte
D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung
Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen.
Definition: Lineare Abbildung Lineare Abbildungen Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. 8.1 Definition: Lineare Abbildung Eine Funktion f : V Ñ W zwischen
5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit
ME Lineare Algebra HT 2008 99 5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit 5.1 Ein Beispiel zur Motivation Als einfachstes Beispiel eines dynamischen Systems untersuchen wir folgendes Differentialgleichungssystem
4 Lineare Algebra (Teil 2): Quadratische Matrizen
4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,
Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)
Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1
D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie. Welche der folgenden Vektoren sind Eigenvektoren der Matrix? (a) (,, ). Ein Vektor v ist Eigenvektor von A :=, falls Av ein skalares
18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1
UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive
KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit.
KAPITEL 8 Normalformen Definition 8.1 (Blockmatrizen). Sind 1. Blockmatrizen A K m 1 n 1,B K m 1 n 2,C K m 2 n 1 und D K m 2 n 2 so nennet man die Matrix X = ( A B C D ) K (m 1+m 2 ) (n 1 +n 2 ) eine Blockmatrix
Klausurenkurs zum Staatsexamen (SS 2013): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 23): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag 3. Mit Hilfe elementarer Zeilenumformungen sowie der Tatsache, daß sich die Determinante
Lineare Algebra und analytische Geometrie I
Prof. Dr. H. Brenner Osnabrück WS 0/06 Lineare Algebra und analytische Geometrie I Vorlesung... und ein guter Lehrer kann auch einem schlechten Schüler was beibringen Beziehung zwischen Eigenräumen Wir
Klausur Lineare Algebra I am Es sind insgesamt 60 Punkte bei der Klausur zu erreichen.
Klausur Lineare Algebra I am 03.02.10 Es sind insgesamt 60 Punkte bei der Klausur zu erreichen. Aufgabe 1. (6 Punkte insgesamt) a.) (3P) Definieren Sie, was eine abelsche Gruppe ist. b.) (3P) Definieren
4 Orthogonale Endormorphismen
4 Orthogonale Endormorphismen Frage: Bei welchen Abbildungen R R bzw. R 3 R 3 bleibt der Abstand zwischen zwei Punkten erhalten? Für α R setzen wir cosα sin α D(α) = und S(α) := sin α cosα ( cos α sin
Eigenwerttheorie. Martin Gubisch Lineare Algebra I WS 2007/2008
Eigenwerttheorie Martin Gubisch Lineare Algebra I WS 27/28 Motivation Gegeben seien ein K-Vektorraum V der Dimension n < und eine K-lineare Abbildung f : V V Wir suchen eine Basis V = v 1,, v n von V,
9 Eigenwerte und Eigenvektoren
92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl
9 Eigenwerte und Eigenvektoren
92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl
2.2 Eigenwerte und Eigenvektoren
2.2. Eigenwerte und Eigenvektoren 39 2.2 Eigenwerte und Eigenvektoren Lineare Abbildungen werden je nach Basiswahl durch unterschiedliche Matrizen beschrieben. Besonders einfach ist die Diagonalform. Wir
12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen
12 Lineare Algebra - Übersicht Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen Unterräume Sei X ein Vektorraum über Ã. Eine Teilmenge M X heißt Unterraum von X, wenn
Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen
Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt
Kapitel 11. Bilinearformen über beliebigen Bilinearformen
Kapitel 11 Bilinearformen über beliebigen Körpern Wir können in diesem Kapitel rasch vorgehen, weil die meisten Konzepte im Zusammenhang mit Sesquilinearformen bereits eingeführt wurden. In diesem Abschnitt
29.2 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten Wir betrachten das homogene System. y = A y, t R, (1)
292 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten Wir betrachten das homogene System y = A y, t R, ( wobei A C n n, und wollen ein Fundamentalsystem bestimmen Grundlegende Beobachtung:
1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von
1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von Wachstumsraten Bestimmung von Maximal- und Minimalwerten von
7.2 Die adjungierte Abbildung
7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)
Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik
Universität Karlsruhe (TH) Institut für Algebra und Geometrie Dr. Klaus Spitzmüller Dipl.-Inform. Wolfgang Globke Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Lösungen zum
44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall
44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall 44 1 Zusammenfassung Dieser Paragraf richtet sich im Aufbau weitgehend nach 42, um den Zerlegungssatz (44.7) analog zum Satz über die
2.11 Eigenwerte und Diagonalisierbarkeit
2.11. EIGENWERTE UND DIAGONALISIERBARKEIT 127 Die Determinante eines Endomorphismus Wir geben uns jetzt einen endlichen erzeugten K-Vektorraum V und einen Endomorphismus ϕ : V V vor. Wir wollen die Determinante
Lineare Algebra II Lösungen zu ausgewählten Aufgaben
Lineare Algebra II Lösungen zu ausgewählten Aufgaben Blatt 2, Aufgabe 3 a) Wir zeigen, daß das Ideal (2, X) kein Hauptideal in Z[X] ist. (Dieses Ideal besteht aus allen Elementen in Z[X], die von der Form
Lösungsskizze zur Wiederholungsserie
Lineare Algebra D-MATH, HS Prof. Richard Pink Lösungsskizze zur Wiederholungsserie. [Aufgabe] Schreibe die lineare Abbildung f : Q Q 5, x +x +x x x +x +6x f x := x +x +8x x x +x +x. x +x +5x als Linksmultiplikation
Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung
Technische Universität München Physik Department Pablo Cova Fariña, Claudia Nagel Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 207/8 Blatt 3 - Aufgabe : Darstellungsmatrizen Sei
Hauptachsentransformation: Eigenwerte und Eigenvektoren
Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung
3.3 Das charakteristische Polynom
LinAlg II Version 1 2. Mai 2006 c Rudolf Scharlau 209 3.3 Das charakteristische Polynom Wir setzen die im vorigen Abschnitt begonnene Untersuchung von Eigenvektoren und Eigenwerten fort und stellen den
45 Eigenwerte und Eigenvektoren
45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.
Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)
Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein
Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen
Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).
Lineare Algebra: Determinanten und Eigenwerte
: und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b
Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009
I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe
Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching
Lineare Algebra 12. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 14, 2017 1 Erinnerung: Determinanten, Orthogonale/unitäre Matrizen Sei A R 2 2, dann kann die Inverse
Musterlösungen zur Linearen Algebra II Blatt 2
Musterlösungen zur Linearen Algebra II Blatt 2 Aufgabe. Sei R ein nullteilerfreier kommutativer Ring mit. Setze K := R R\{0}/ mit der Äquivalenzrelation definiert durch (a, b) (a, b ) genau dann, wenn
Eigenwerte und Eigenvektoren von Matrizen
Eigenwerte und Eigenvektoren von Matrizen Betrachtet wird eine (n,n)-matrix A. Eine Zahl λ heißt Eigenwert von A, wenn ein Vektor v existiert, der nicht der Nullvektor ist und für den gilt: A v = λ v.
Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015
sskizzen der Klausur zur Linearen Algebra im Herbst 5 Aufgabe I. Es sei (G, ) eine Gruppe mit neutralem Element e und M {x G x x e}. Zeigen Sie: (a) Ist G kommutativ, so ist M eine Untergruppe von G. (b)
Lineare Algebra II 8. Übungsblatt
Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.
5. Übung zur Linearen Algebra II -
5. Übung zur Linearen Algebra II - en Kommentare an [email protected] FU Berlin. SS 2. Aufgabe 7 5 A := 2. 3 2 (i) Berechne die Eigenwerte und Eigenvektoren von A. (ii) Ist A diagonalisierbar?
2 Die Dimension eines Vektorraums
2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1
Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016
Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016 Bearbeiten Sie bitte zwei
Satz. Wie wirkt sich ein Basiswechsel auf die Darstellungsmatrix einer linearen Abbildung F : V n V n aus?
Wie wirkt sich ein Basiswechsel auf die Darstellungsmatrix einer linearen Abbildung F : V n V n aus? Seien [F] B und [F] B die Darstellungsmatrizen von F bezüglich zweier Basen B und B. Weiter sei T die
y hom (x) = C e p(x) dx
Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)
Übungen zu Lineare Algebra und Geometrie 1
Übungen zu Lineare Algebra und Geometrie 1 Andreas Čap Sommersemester 2015 Wiederholung grundlegender Begriffe (1 Bestimme Kern und Bild der linearen Abbildung f : R 3 R 3, die gegeben ist durch f(x, y,
Lineare Algebra I Lösung der Probeklausur
David Blottière Patrick Schützdeller WS 6/7 Universität Paderborn Lineare Algebra I Lösung der Probeklausur Aufgabe : M i) M ist linear unabhängig. Seien a,b,c R mit Daraus folgt : Also gilt a = b = c
5 Lineare Algebra (Teil 3): Skalarprodukt
5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale
Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016
Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 206 Bearbeiten Sie bitte
klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s
Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen
AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW
AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW Lineare Gleichungssysteme Lösen Sie folgende Gleichungssysteme über R: a) x + x + x = 6x + x + x = 4 x x x = x 7x x = 7 x x = b) x + x 4x + x 4 = 9 x + 9x x x
Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger
Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit
Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung
3 Vektorräume abstrakt
Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare
TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF
TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF 07.03.2016-11.03.2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Darstellungsmatrizen 2 2 Diagonalisierbarkeit
{ id, falls sgn(σ) = 1, τ, falls sgn(σ) = 1,
Aufgabe I1 (4 Punkte) Es seien (G, ) und (H, ) Gruppen a) Wann heißt eine Abbildung Φ : G H ein Gruppenhomomorphismus? b) Es seien Φ, Ψ : G H zwei Gruppenhomomorphismen Zeigen Sie, dass eine Untergruppe
4.4 Hermitesche Formen
44 Hermitesche Formen Wie üblich bezeichnen wir das komplex konjugierte Element von ζ = a + bi C (a, b R) mit ζ = a bi Definition 441 Sei V ein C-Vektorraum Eine hermitesche Form (HF) auf V ist eine Abbildung
Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung
Lineare Algebra und Numerische Mathematik für D-BAUG
P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist
a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,
Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist
Musterlösungen zur Linearen Algebra II Weihnachtszettel
Musterlösungen zur Linearen Algebra II Weihnachtszettel Aufgabe. Welche der folgenden Matrizen 3 0 0 A = 0 4, B = 3, C = 0 0 0 6 0 0 0 sind über R und welche über C diagonalisierbar? Bestimmen Sie dazu
Klausur zur Mathematik II (Modul: Lineare Algebra II)
Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Wolfgang Mackens Wintersemester 0/04 Klausur zur Mathematik II (Modul: Lineare Algebra II) 05.0.04 Sie haben 60 Minuten Zeit zum
Mathematik I. Vorlesung 16. Eigentheorie
Prof Dr H Brenner Osnabrück WS 009/00 Mathematik I Vorlesung 6 Eigentheorie Unter einer Achsenspiegelung in der Ebene verhalten sich gewisse Vektoren besonders einfach Die Vektoren auf der Spiegelungsachse
Klausurähnliche Aufgaben
Sommersemester 2007/08 Lineare Algebra Klausurähnliche Aufgaben Aufgabe 1 Seien v 1, v 2, v 3, v 4, v 5, v 6 die Vektoren in R 5 mit v 1 = (1, 2, 3, 1, 2), v 2 = (2, 4, 6, 2, 4), v 3 = ( 1, 1, 3, 0, 3),
