2.2 Eigenwerte und Eigenvektoren
|
|
|
- Theodor Biermann
- vor 7 Jahren
- Abrufe
Transkript
1 2.2. Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Lineare Abbildungen werden je nach Basiswahl durch unterschiedliche Matrizen beschrieben. Besonders einfach ist die Diagonalform. Wir werden in diesem Abschnitt der Frage nachgehen, welche linearen Abbildungen sich durch eine Diagonalmatri darstellen lassen. Schauen wir uns zunächst genauer an, welche Wirkung eine durch eine Diagonalmatri definierte lineare Abbildung hat Beispiel Sei L:R 2 R 2 die durch Multiplikation mit der Matri A = 2 definierte Abbildung. Dann gilt: Le 2 = Ae = 2 = e 2. Der Vektor e behält also unter der Abbildung seine Richtung, wird aber um den Faktor gestaucht. Dasselbe gilt für alle Vektoren, die in der -Achse liegen. Die -Achse als 2 Ganzes bleibt also stabil. WeiteristLe 2 = Ae 2 = = 2e 2 2.DerVektore 2 wirdalsovonderabbildung L um den Faktor 2 gestreckt, ebenso wie alle Vielfachen von e 2. Die -Achse bleibt also ebenfalls stabil unter L Definition Eine Zahl λ R ist ein Eigenwert einer linearen Abbildung L:V V, falls ein Vektor v V eistiert mit Lv = λ v. In diesem Fall bezeichnet man v als einen zum Eigenwert λ gehörigen Eigenvektor. Jedes Vielfache w = αv von v ist ebenfalls ein Eigenvektor zum Eigenwert λ. Denn Lw = αlv = αλv = λlw. Die von v aufgespannte Gerade linv bleibt unter der Abbildung L stabil, es ist eine Eigenrichtung von L Beispiele. Die durch die Matri A = 2 definierte Abbildung hat 2 den Eigenvektor e zum Eigenwert und e 2 2 zum Eigenwert Sei B =. Die Vektoren v 4 = und v 2 = sind Eigenvektoren von L B. Denn Bv = = 5v und Bv 2 = = 2v 2 2. Die zu v und v 2 gehörigen Eigenwerte sind also 5 bzw Definition Eine lineare Abbildung L: V V heisst diagonalisierbar, wenn es eine Basis B von V gibt, so dass M B L eine Diagonalmatri ist. Beispielsweise sind ebene Spiegelungen diagonalisierbar, Drehungen dagegen nicht Satz Die Abbildung L ist genau dann diagonalisierbar, wenn sie n linear unabhängige Eigenvektoren in V besitzt für n = dimv.
2 4 Kapitel 2. Lineare Algebra II Beweis. Für eine Basis B von V gilt genau dann λ M B L =..., λ n wenn Lv j = λ j v j für j =,...,n. Das bedeutet aber gerade, dass die Basis B nur aus Eigenvektoren von L besteht. q.e.d. Man kann Eigenwerte, Eigenvektoren und Diagonalisierbarkeit auch für Matrizen definieren Definition Eine Zahl λ R ist ein Eigenwert einer n n-matri A, falls ein Vektor v R n eistiert mit Av = λ v. In diesem Fall bezeichnet man v als einen zum Eigenwert λ gehörigen Eigenvektor. Die Matri A heisst diagonalisierbar, wenn es eine invertierbare n n-matri S gibt, so dass S AS Diagonalform hat. Nun gilt wieder der entsprechende Satz über Diagonalisierbarkeit: 2.28 Satz Eine n n-matri A ist genau dann diagonalisierbar, wenn sie n linear unabhängige Eigenvektoren in R n besitzt. Beweis. Nehmen wir an, v,...,v n seien linear unabhängige Eigenvektoren zu den Eigenwerten λ,...,λ n. Wir bilden aus den Spalten v,...,v n eine Matri S. Diese Matri ist dann invertierbar und es gilt einerseits: AS = Av... Av n = λ v... λ n v n. Andererseits ist λ λ S... = v...v n... λ n λ n = λ v... λ n v n. Also hat S AS Diagonalform. Das heisst, A ist diagonalisierbar. Diese Argumentation lässt sich auch umkehren. q.e.d. Die Matri B = zum Beispiel hat die Eigenwerte 5 und 2. Bilden wir 4 2, dann aus den Eigenvektoren v und v 2 die Transformationsmatri S = 5 ist S BS =. 2 Nun wollen wir die Frage behandeln, wie man Eigenwerte und Eigenvektoren einer vorgegebenen Matri finden kann. Nehmen wir zunächst an, v R n sei ein Eigenvektor der Matri A zum Eigenwert λ. Dann ist v und es gilt λv Av = λe Av =. Das Gleichungssstem λe A = hat also zusätzlich zu der trivialen Lösung = noch eine Lösung v in R n. Daraus folgt detλe A =.
3 2.2. Eigenwerte und Eigenvektoren 4 Betrachtet man jetzt λ als Unbekannte, so gilt: Die Eigenwerte von A sind gerade die Lösungen der Gleichung detλe A =. Für die Matri B = zum Beispiel ist 4 λ 3 2 detλe B = det = λ 2 7λ+. λ 4 Die Nullstellen dieses Polnoms, λ = 5 und λ 2 = 2, sind die Eigenwerte der Matri B. Allgemein gilt: 2.29 Satz Sei A M n n. Dann ist p A λ := detλe A ein normiertes Polnom in λ von Grad n. Man nennt p A das charakteristische Polnom von A. Die reellen EigenwertevonAsindgeradediereellenNullstellenvonp A.DeshalbhatAhöchstens n verschiedene Eigenwerte. Beweis. Wir zeigen per Induktion über n, dass p A ein Polnom von Grad n ist. Für n = ist A = a und p A = λ a. Für n > entwickeln wir die Determinante von λe A nach der ersten Spalte: λ a a 2... a n a p A λ = det 2 λ a a 2n..... a n... λ a nn n = λ a detλe n A + k+ a k detλe A k. k=2 Per Induktionist detλe n A einpolnom vongradn, unddetλe A k sindpolnome von Grad n 2fürallek 2.DennλE A k entsteht ausλe A durch Streichung der ersten Spalte und der k-ten Zeile, die Variable λ kommt also nur noch in jeweils n 2 Zeilen vor. Also folgt, dass der Grad von p A gleich n ist. q.e.d. Schauen wir uns den Fall n = 2 genauer an. Das charakteristische Polnom einer a b λ a b 2 2-Matri A = lautet p c d A λ = detλe A = det = c λ d λ aλ d bc = λ 2 a+dλ+ad bc. Die Summe der Diagonaleinträge einer Matri wird als ihre Spur bezeichnet. Damit gilt: p A λ = λ 2 SpurA λ+deta. Durch vollständige Induktion kann man zeigen, dass die Spur und die Determinante einer Matri, wie im zweidimensionalen Fall schon nachgerechnet, immer als Koeffizienten des charakteristischen Polnoms auftreten. Genauer:
4 42 Kapitel 2. Lineare Algebra II 2.3 Satz Für n n-matrizen A gilt: p A λ = λ n SpurAλ n + + n deta. Bezeichnet man mit λ,...,λ n sämtliche möglicherweise auch kompleen Nullstellen von p A und zwar mit Vielfachheit gezählt, dann folgt: SpurA = λ + +λ n und deta = λ λ n. Um nun zu einem gegebenen Eigenwert λ von A die zugehörigen Eigenvektoren zu bestimmen, ist das lineare Gleichungssstem λe A. = n zu lösen. Den Lösungsraum dieses Gleichungssstem bezeichnet man als den Eigenraum zum Eigenwert λ. Wir schreiben dafür L λ. Der Raum L λ besteht aus allen Eigenvektoren zum Eigenwert λ zusammen mit dem Nullvektor. Für jeden Eigenwert λ gilt: diml λ = n RangλE A. 2.3 Beispiele. Das charakteristische Polnom der Matri B = lautet p B λ = λ 2 7λ+ = λ 5λ 2. Um den Eigenraum zum 4 Eigenwert λ = 5 zu bestimmen, betrachten wir: 5E Bv = Der Lösungsraum dazu ist { L 5 = 2 2 } { = = α =. } α R. Für den Eigenwert λ 2 = 2 ergibt sich entsprechend: 2 2E Bv = =. 2 Der Lösungsraum dazu ist { L 2 = } { = 2 = α } 2 α R. 2. Das charakteristische Polnom der Matri A = lautet 2 λ p A λ = detλe A = det λ = λ 2 λ 2. λ 2
5 2.2. Eigenwerte und Eigenvektoren 43 Also hat A einen doppelten Eigenwert, nämlich λ = und einen einfachen Eigenwert λ 2 = 2. Es gilt L 2 = line 3. Bestimmen wir nun den Eigenraum zu dem doppelten Eigenwert. Dazu lösen wir das Gleichungssstem E Av = =. z Der Lösungsraum L = line ist nur eindimensional. Die Matri A kann deshalb nicht diagonalisierbar sein. Eigenvektoren zu verschiedenen Eigenwerten sind automatisch linear unabhängig siehe Übungsaufgabe. Deshalb gilt: 2.32 Satz Eine n n-matri A ist genau dann diagonalisierbar, wenn gilt: diml λ +...+diml λr = n. Dabei bezeichnen λ,...,λ r sämtliche verschiedenen Eigenwerte von A Folgerung Hat eine n n-matri n verschiedene Eigenwerte, dann ist sie diagonalisierbar. Wir wollen nun zeigen, dass sich das charakteristische Polnom einer Matri bei einem Basiswechsel nicht ändert. Dazu führen wir folgenden Begriff ein Definition Zwei Matrizen A,B M n n heissen ähnlich, wenn eine invertierbare n n-matri S eistiert, so dass B = S AS Satz Sind A,B ähnliche n n-matrizen, so gilt: p A = p B und insbesondere SpurA = SpurB und deta = detb. Beweis. Die charakteristischen Polnome stimmen überein, denn p B λ = detλe B = detλs S S AS = dets λe AS = detλe A = p A λ. q.e.d Definition Sei L:V V eine lineareabbildung, dimv = n.sei A = M B L für eine Basis B von V. Dann nennt man pλ := p A λ auch das charakteristische Polnom von L. Das Polnom p hängt nicht von der Wahl der Basis ab. Denn Basiswechsel führen zu ähnlichen Matrizen.
45 Eigenwerte und Eigenvektoren
45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.
6 Eigenwerte und Eigenvektoren
6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,
Eigenwerte und Diagonalisierung
Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende
MC-Serie 11: Eigenwerte
D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung
Musterlösungen zur Linearen Algebra II Übungsklausur
Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,
3.6 Eigenwerte und Eigenvektoren
3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse
Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht
Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben
2.2 Kern und Bild; Basiswechsel
22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare
klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s
Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen
Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger
Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit
Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren
Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/
5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21
5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11
Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.
Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:
6 Hauptachsentransformation
6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten
Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016
Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert
Diagonalisieren. Nikolai Nowaczyk Lars Wallenborn
Diagonalisieren Nikolai Nowaczyk http://mathniknode/ Lars Wallenborn http://wwwwallenbornnet/ 16-18 März 01 Inhaltsverzeichnis 1 Matrizen 1 11 Einschub: Invertierbarkeit
4 Lineare Algebra (Teil 2): Quadratische Matrizen
4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,
Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen
Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).
Lineare Algebra II 6. Übungsblatt
Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der
Eigenwerte und Eigenvektoren
Ergänzung Eigenwerte und Eigenvektoren Motivation Definitionen Beispiele im IR 2 Beispiele im IR 3 Eigenwerte und Eigenvektoren Motivation Lineare Abbildungen, Ausgangsvektor und Bildvektor Lineare Abbildungen
46 Eigenwerte und Eigenvektoren symmetrischer Matrizen
46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46.1 Motivation Symmetrische Matrizen (a ij = a ji für alle i, j) kommen in der Praxis besonders häufig vor. Gibt es für sie spezielle Aussagen über
KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008
KLAUSUR ZUR LINEAREN ALGEBRA I. Februar 008 MUSTERLÖSUNG Diese Klausur wurde je nach Sitzreihe in zwei verschiedenen Versionen geschrieben. Die andere Version unterscheidet sich von der vorliegenden jedoch
Proseminar Lineare Algebra II, SS 11. Blatt
Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2
1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema
1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und
3.3 Klassifikation quadratischer Formen auf R n
3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen
Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,
Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog
Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.
Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich
3.3 Eigenwerte und Eigenräume, Diagonalisierung
3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.
Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014
Skript zur Vorlesung Prof. Dr.-Ing. Katina Warendorf 2. Oktober 2014 erstellt von Sindy Engel erweitert von Prof. Dr.-Ing. Katina Warendorf Inhaltsverzeichnis 1 Vektoren 4 1.1 Grundbegriffe.................................
Übungen zur Linearen Algebra 1
Übungen zur Linearen Algebra 1 Wintersemester 2014/2015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.2015, 11 Uhr Auf diesem
Einführung in die Mathematik für Informatiker
Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 12.12.2016 9. Vorlesung Eigenschaften linearer Abbildungen Beschreibung linearer Abbildungen durch Matrizen... Eigenschaften
Tutorium Mathematik II, M Lösungen
Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +
Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar. http://www.math.uni-bielefeld.
Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung:
Technische Universität München Zentrum Mathematik. Übungsblatt 7
Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion
Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,
Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung
Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter
Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).
Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A
1 Vektoren, Vektorräume, Abstände: 2D
Vektoren, Vektorräume, Astände: D Definition: Die Menge aller (geordneten Paare reeller Zahlen (oder allgemeiner: Elemente eines elieigen Körpers, als Spalten geschrieen, ezeichnen wir als Vektoren: R
Kapitel 18. Aufgaben. Verständnisfragen
Kapitel 8 Aufgaben Verständnisfragen Aufgabe 8 Gegeben ist ein Eigenvektor v zum Eigenwert λ einer Matrix A (a) Ist v auch Eigenvektor von A? Zu welchem Eigenwert? (b) Wenn A zudem invertierbar ist, ist
Musterlösungen zur Linearen Algebra II Blatt 5
Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische
1.9 Eigenwerte und Eigenvektoren
.9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..
Eigenwerte und Eigenvektoren von Matrizen
Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt
C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =
1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition
Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?
1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern
In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)
34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)
Lösungsskizzen zur Klausur
sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie
5 Eigenwerte und die Jordansche Normalform
Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n
Vorkurs Mathematik B
Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Inhaltsverzeichnis INHALTSVERZEICHNIS 1
INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4
Lineare Abhängigkeit
Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange
(Allgemeine) Vektorräume (Teschl/Teschl 9)
(Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:
Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung
Lineare Algebra II 5. Übungsblatt
Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,
40 Lokale Extrema und Taylor-Formel
198 VI. Differentialrechnung in mehreren Veränderlichen 40 Lokale Extrema und Taylor-Formel Lernziele: Resultate: Satz von Taylor und Kriterien für lokale Extrema Methoden aus der linearen Algebra Kompetenzen:
2 Die Dimension eines Vektorraums
2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1
Lineare Algebra. Teil III. Inhaltsangabe
Teil III Lineare Algebra Inhaltsangabe 3 Lineare Algebra 22 3.1 Einführung.......................... 22 3.2 Matrizen und Vektoren.................... 23 3.3 Spezielle Matrizen...................... 24
y = A(x) y + b(x). (1) y = A(x) y (2)
73 5.2 Lineare Systeme Sei weiterhin IK = C oder IK = IR. Seien = I IR ein offenes Intervall, x 0 I, y 0 IK n, A: I IK n n und b: I IK n stetige matrix- bzw vektorwertige Funktionen. Wir betrachten komplexe
LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow
LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9
MATHEMATIK II FÜR STUDIERENDE DER PHYSIK
- 87 - MATHEMATIK II FÜR STUDIERENDE DER PHYSIK 21 Vektorräume mit Skalarprodukt Wir halten uns hier im Wesentlichen an das Buch G.Fischer : Lineare Algebra, 14. Auflage, Kap. 5. 21.1 Definition und Beispiele
4 Vorlesung: 21.11. 2005 Matrix und Determinante
4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer
KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG
KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter
Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012
Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.0 Aufgabe : Entscheiden Sie in dieser Aufgabe, ob die Aussagen wahr oder falsch sind. Begründungen sind nicht erforderlich. Ein korrekt gesetztes
Abbildung 5.1: stabile und instabile Ruhelagen
Kapitel 5 Stabilität Eine intuitive Vorstellung vom Konzept der Stabilität vermitteln die in Abb. 5.1 dargestellten Situationen. Eine Kugel rollt unter dem Einfluss von Gravitation und Reibung auf einer
Lineare Algebra I Zusammenfassung
Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html
11. BASIS, UNTERRAUM, und DIMENSION
11. BASIS, UNTERRAUM, und DIMENSION 1 Basen werden zu unterschiedlichen Zwecken benutzt: Um lineare Abbildungen in ihrer Matrixdarstellung zu vereinfachen, um die Dimension von Vektorräumen und ihren Unterräumen
Lineare Algebra und analytische Geometrie I
Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 25 J ai décidé d être heureux parce que c est bon pour la santé Voltaire Trigonalisierbare Abbildungen
37 Gauß-Algorithmus und lineare Gleichungssysteme
37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass
Serie 10: Inverse Matrix und Determinante
D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die
Lineare Algebra II, Lösungshinweise Blatt 9
Prof Dr Katrin Wendland Priv Doz Dr Katrin Leschke Christoph Tinkl SS 27 Lineare Algebra II, Lösungshinweise Blatt 9 Aufgabe (4 Punkte) Sei 2 3 4 A = 5 6 Berechnen Sie A k für alle k N und verifizieren
1 Euklidische und unitäre Vektorräume
1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen
6.3 Hauptachsentransformation
Im Wintersemester 6/7 wurde in der Vorlesung Höhere Mathematik für Ingenieurstudiengänge der folgende Algorithmus zur Hauptachsentransformation besprochen: 63 Hauptachsentransformation Die Matrizen, die
Lineare Abbildungen und Darstellungsmatrizen
KAPITEL 4 Lineare Abbildungen und Darstellungsmatrizen 1. Lineare Abbildungen Definition 4.1 (Lineare Abbildungen). Seien V und W zwei Vektorräume über den selben Körper K. Eine Abbildung f : V W heißt
9 Funktionen und ihre Graphen
57 9 Funktionen und ihre Graphen Funktionsbegriff Eine Funktion ordnet jedem Element aus einer Menge D f genau ein Element aus einer Menge W f zu. mit = f(), D f Die Menge aller Funktionswerte nennt man
( ) Lineare Gleichungssysteme
102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv
f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.
Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit
Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen)
Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie (Lineare Abbildungen) Dozent/in: R. Burkhardt Büro:.6 Klasse: Semester: Datum: HS 8/9. Aufgabe Zeige, dass die folgenden Abbildungen
(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren
Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene
Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A
133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des
Leitfaden Lineare Algebra: Determinanten
Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv
Lineare Algebra und analytische Geometrie I
Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 9 Basiswechsel Wir wissen bereits, dass in einem endlichdimensionalen Vektorraum je zwei Basen die gleiche Länge
x,y A = t xay v i,v j A = e i,e j t PAP
75 Lineare Algebra II SS 2005 Teil 6 Bilinearformen 6A Kongruenz quadratischer Matrizen Sei K ein Körper, sei A M(n n, K) eine quadratische Matrix Wie wir zu Beginn von Teil 3 gesehen haben, liefert A
Erweiterte Koordinaten
Erweiterte Koordinaten Sei K n ein n dimensionaler affiner Raum Die erweiterten Koordinaten des Punktes x x n K n sind x x n Kn+ (Das ist für alle K sinnvoll, weil in jedem Körper K wohldefiniert ist In
Aufgaben zu Kapitel 15
Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Verständnisfragen Aufgabe 5 Zeigen Sie, dass die Menge K m n aller m n-matrizen über einem Körper K mit komponentenweiser Addition und skalarer Multiplikation
4. Vektorräume und Gleichungssysteme
technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume
Lineare Gleichungssysteme - Grundlagen
Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente
Mathematik II. (für Informatiker, ET und IK) Oliver Ernst. Sommersemester 2014. Professur Numerische Mathematik
Mathematik II (für Informatiker, ET und IK) Oliver Ernst Professur Numerische Mathematik Sommersemester 2014 Inhalt 7 Lineare Algebra 7 Lineare Algebra II Oliver Ernst (Numerische Mathematik) Mathematik
Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.
Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden
Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01
Kapitel Komplexe Zahlen Motivation: die Gleichung x = hat offensichtlich keine reellen Lösungen, da x 0 für jedes reelle x gilt Um auch diese Gleichung lösen zu können, muß man neue Zahlen einführen: die
Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:
Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise
7 Die Determinante einer Matrix
7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =
Euklidische und unitäre Vektorräume
Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein
