Basis und Dimension. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Größe: px
Ab Seite anzeigen:

Download "Basis und Dimension. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren"

Transkript

1 Basis und Dimension Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren aus V. 1) (v i ) i I heißt ein Erzeugendensystem von V, wenn Span(v i ) = V. 2) (v i ) i I heißt Basis von V, wenn (v i ) Erzeugendensystem und linear unabhängig ist. (Die Anzahl der Elemente einer Basis heißt die Länge dieser Basis (ist eventuell ) Beispiele. 1) Sei V = K n. Wie zuvor gezeigt wurde, ist die Familie (e 1, e 2,..., e n ) mit e i = (0,.., 0, 1, 0,..0) linear unabhängig. i testelle Sei nun v = (a 1, a 2,..., a n ) V. Dann gilt offenbar v = a 1 e 1 + a 2 e a n e n = n i=1 a i e i. Damit ist (e 1, e 2,..., e n ) auch ein Erzeugendensystem, mithin eine Basis, und heißt die kanonische Basis im K n. 2) Gegeben seien die Vektoren v 1 = (3, 1), v 2 = (4, 1), v 3 = ( 1, 2) im R 2. (v 1 ) ist linear unabhängig, aber Span(v 1 ) R 2 (v 1, v 2, v 3 ) sind linear abhängig (weil 9v 1 5v 2 + 7v 3 = 0), und spannen den R 2 auf, - sind also ein Erzeugendensystem, aber keine Basis. Man überlege sich : (v 1, v 2 ) sind eine Basis des R 2. 3) C als C-Vektorraum hat die (kanonische) Basis (1). C als R-Vektorraum hat die Basis (1, i). 1

2 4) (p 0, p 1,..., p n ) mit p i (t) = t i ist Basis von P n. 5) Per definition ist die leere Familie Basis des Nullvektorraums {0}. Satz. Sei (v i ) i I eine Familie von Vektoren im K-Vektorraum V {0}. Dann sind folgende Aussagen äquivalent : 1) (v i ) i I ist Basis von V, 2) (v i ) i I ist ein unverkürzbares Erzeugendensystem, d.h. J I, J I gilt Span(v i ) i J V. 3) (v i ) i I ist eine unverlängerbare linear unabhängige Familie, d.h. (v i ) i I ist linear unabhängig und jede Familie (v i ) i J mit I J, I J ist linear abhängig. 4) (v i ) i I ist ein Erzeugendensystem und jeder Vektor v 0 besitzt eine eindeutige Darstellung als Linearkombination der (v i ) i I. Beweis. 4) 1) : siehe Satz vorher. 1) 2) : Annahme : (v i ) i I ist verkürzbares Erzeugendensystem, d.h. J I, J I und Span(v i ) i J = V. Wähle i 0 I \J. Weil v i0 V gibt es i 1, i 2,..., i r J und, λ 2,..., λ r K mit v i0 = v i1 + λ 2 v i λ r v ir bzw. ( 1)v i0 + v i1 + λ 2 v i λ r v ir = 0. Damit ist aber (v i0, v i1,..., v ir ) linear abhängig, ein Widerspruch. Also ist (v i ) i I ein unverkürzbares Erzeugendensystem. 2) 3) : Wir zeigen zuerst, dass (v i ) i I linear unabhängig ist. Weil V {0}, gilt I. Wenn I = {i 1 } und v = v i1, dann ist v 0 und V = Kv und (v) ist linear unabhängig. Sei also I 2. Wäre (v i ) i I linear abhängig, dann k I mit v k Span(v i ) i I\{k} und damit Span(v i ) i I\{k} = V, ein Widerspruch. Damit ist (v i ) i I linear unabhängig. Nun zeigen wir, dass (v i ) i I kann. nicht linear unabhängig verlängert werden 2

3 Annahme : J I, J I und (v i ) i J ist linear unabhängig. Wähle i 0 J \I. Weil (v i ) i I laut Voraussetzung ein Erzeugendensystem ist, gibt es i 1, i 2,..., i r I und, λ 2,..., λ r K mit v i0 = v i1 + λ 2 v i λ r v ir. Dies bedeutet aber, dass (v i ) i J linear abhängig ist, ein Widerspruch. 3) 4) : Aus der linearen Unabhängigkeit folgt die Eindeutigkeit der Darstellung (siehe vorher). Wir zeigen nun, dass (v i ) i I ein Erzeugendensystem ist. Sei v V. Wähle ein Element i 0 / I und setze J = I {i 0 } und v i0 = v. Laut Voraussetzung muß dann (v i ) i J linear abhängig sein, also muß es v i1,..., v ir mit i 1,..., i r I geben, sodass v i0, v i1,..., v ir linear abhängig sind. Dies bedeutet, dass eine nichttriviale Darstellung λv i0 + v i λ r v ir = 0 existiert. Da (v i1,..., v ir ) linear unabhängig sind, muß λ 0 sein, und damit v i0 = λ v i λ r λ v ir. Also v = v i0 Span(v i ) i I. Folgerung. (Basisauswahlsatz) Sei der K-Vektorraum V endlich erzeugt, d.h. V besitzt ein endliches Erzeugendensystem (v 1, v 2,..., v r ). Durch sukzessives Wegnehmen von Vektoren erreicht man in endlich vielen Schritten ein unverkürzbares Erzeugendensystem. Dies heißt, dass aus einem endlichen Erzeugendensystem eine Basis ausgewählt werden kann. Für den später folgenden Austauschsatz von Steinitz ist folgender Hilfssatz wichtig. Lemma. (Austauschlemma) Sei (v 1, v 2,..., v r ) eine Basis von V und sei w = v λ r v r. Gilt λ k 0, so ist (v 1,..., v k 1, w, v k+1,..., v r ) wieder eine Basis. (Hier kann also v k durch w ausgetauscht werden) 3

4 Beweis. obda kann k = 1 (bzw. 0) betrachtet werden (ansonsten Umnumerierung der Basisvektoren). Zu zeigen ist also, dass (w, v 2,..., v r ) eine Basis ist. Sei v V. Dann gibt es µ 1, µ 2,..., µ r K sodass v = µ 1 v 1 + µ 2 v µ r v r. Wegen v 1 = 1 w λ 2 v 2... λ r ist v = µ 1 w + (µ 2 λ 2 )v (µ r λ r )v r. Also ist (w, v 2,..., v r ) ein Erzeugendensystem. Nun gelte αw + α 2 v α r v r = 0. Dann ist α v 1 + (αλ 2 + α 2 )v (αλ r + α r )v r = 0. Weil (v 1, v 2,..., v r ) linear unabhängig ist, gilt α = 0, αλ 2 + α 2 = 0,..., αλ r + α r = 0. Weil 0, ist α = 0 und damit α 2 =... = α r = 0. Dies wiederum bedeutet, dass (w, v 2,..., v r ) linear unabhängig ist, also insgesamt eine Basis. Satz. (Austauschsatz von Steinitz) Sei (v 1, v 2,..., v r ) eine Basis des K-Vektorraums V, und sei (w 1, w 2,..., w n ) eine linear unabhängige Familie. Dann ist n r, und i 1, i 2,..., i n sodass v i1 gegen w 1, v i2 gegen w 2,..., v in gegen w n ausgetauscht werden können und man wieder eine Basis erhält. (D.h. w 1, w 2,..., w n Basis) und geeignete Vektoren aus (v 1, v 2,..., v r ) bilden eine Beweis. w 1 ist Linearkombination der Vektoren (v 1, v 2,..., v r ), etwa w 1 = v 1 + λ 2 v λ r v r. Weil w 1 0, gibt es ein k mit λ k 0. Mittels des Austauschlemmas kann w 1 gegen v k ausgetauscht werden. Nach geeigneter Umbenennung der Basisvektoren ist dann (w 1, v 2,..., v r ) eine Basis. Nun ist w 2 Linearkombination der Vektoren (w 1, v 2,..., v r ), etwa w 2 = w 1 + λ 2 v λ r v r. Dann k 2 mit λ k 0. (k 2 weil sonst w 1, w 2 linear abhängig wären) 4

5 Wiederum kann w 2 gegen ein v k, k 2, ausgetauscht werden. Nach geeigneter Umbenennung der Basisvektoren ist dann (w 1, w 2,..., v r ) eine Basis. Dieses Verfahren wird nun fortgesetzt und endet nach endlich vielen Schritten. Dabei muß nun n r sein (weil im Falle von n > r die Familie (w 1,..., w r ) Basis ist und damit maximal linear unabhängig, Widerspruch). Folgerung. Besitzt V eine endliche Basis, dann ist jede Basis endlich und je 2 Basen haben die gleiche Länge. Beweis. Sei (v 1, v 2,..., v r ) eine Basis von V. Wegen des Austauschsatzes kann es nicht mehr als r linear unabhängige Vektoren geben. Ist (w 1, w 2,..., w k ) eine weitere Basis, dann liefert die 2-malige Anwendung des Austauschsatzes k r und r k, also k = r. Damit können wir nun sinnvoll die Dimension eines K-Vektorraums erklären. Definition. Sei V ein K-Vektorraum. { V hat keine endliche Basis dim K V = r V hat eine Basis mit r Vektoren heißt Dimension von V über K. Bemerkungen. 1) Mittels des Lemma von Zorn kann man zeigen: jede linear unabhängige Familie in einem K-Vektorraum kann zu einer Basis vergrößert werden. Dies zeigt auch, dass jeder K-Vektorraum eine Basis besitzt. 2) Sei V endlich erzeugt. Wie früher gezeigt, ist V dann endlichdimensional. Wähle eine Basis von V, etwa (v 1, v 2,..., v r ). Zu einer gegebenen linear unabhängigen Familie (w 1, w 2,..., w n ) gilt dann n r und nach geeigneter Umbenennung ist dann (w 1,..., w n, v n+1,..., v r ) eine Basis. 5

6 Dies bedeutet, dass (w 1, w 2,..., w n ) zu einer Basis vergrößert werden kann (Basisergänzungssatz. 3) Sei dimv = n < und (v 1, v 2,..., v n ) linear unabhängig. Dann ist (v 1, v 2,..., v n ) eine Basis. 4) Sei W V und dimv <. Dann ist dimw dimv, und wenn dimw = dimv, dann ist V = W. Beispiele. 1) dim K K n = n (weil (e 1,...e n ) Basis ist) 2) dimp n = n + 1 3) dim Q R = (Aufgabe!) 4) dim C C = 1, dim R C = 2 5) dimabb(r, R) = (Aufgabe!) 6

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 05.11.2013 Alexander Lytchak 1 / 14 Linearkombinationen Definition Es sei V ein reeller Vektorraum. Es sei (v i ) i

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine Teilmenge des nichttrivialen

Mehr

Summen und direkte Summen

Summen und direkte Summen Summen und direkte Summen Sei V ein K-Vektorraum. Wie früher erwähnt, ist für beliebige Teilmengen M, N V die Teilmenge M +N V wie folgt definiert M +N = {v+w : v M, w N}. Man sieht leicht, dass i.a. M

Mehr

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v Kap 1: VEKTORRÄUME Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung ϕ : I X, i ϕ(i) = x i, wobei die Menge I in diesem Zusammenhang auch Indexmenge genannt wird. Man schreibt vereinfacht

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 11 Lineare Unabhängigkeit Definition 11.1. Es sei K ein Körper und V ein K-Vektorraum. Dann heißt eine Familie von Vektoren v i, i I,

Mehr

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin:

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin: Lineare Algebra I - 9.Vorlesung - rof. Dr. Daniel Roggenkamp & Falko Gauß Korrektur: 2. Klausurtermin: 09.02.2017 Linearkombination von Vektoren lineare Hülle Erzeugendensystem S lineare Unabhängigkeit

Mehr

Satz 7. A sei eine nichtleere Teilmenge des nichttrivialen Vektorraums (V, +, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine nichtleere Teilmenge des nichttrivialen Vektorraums (V, +, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine nichtleere Teilmenge

Mehr

Einführung in die Mathematik für Informatiker

Einführung in die Mathematik für Informatiker Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 21.11.2016 6. Vorlesung aufgespannter Untervektorraum Span(T ), Linearkombinationen von Vektoren Lineare Unabhängigkeit

Mehr

6.2 Basen. Wintersemester 2013/2014. Definition Seien V ein K-Vektorraum, n N 0 und v 1,..., v n V. (a) Man nennt

6.2 Basen. Wintersemester 2013/2014. Definition Seien V ein K-Vektorraum, n N 0 und v 1,..., v n V. (a) Man nennt Universität Konstanz Fachbereich Mathematik und Statistik Wintersemester 213/214 Markus Schweighofer Lineare Algebra I 6.2 Basen Definition 6.2.1. Seien V ein K-Vektorraum, n N und v 1,..., v n V. (a)

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension Lineare Algebra I WS 205/6 c Rudolf Scharlau 65 2.3 Basis und Dimension In diesem zentralen Abschnitt werden einige für die gesamte Lineare Algebra fundamentale Grundbegriffe eingeführt: Lineare Abhängigkeit

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

Lineare Abbildungen - I

Lineare Abbildungen - I Lineare Abbildungen - I Definition. Seien V und W K-Vektorräume (über demselben K). Eine Abbildung F : V W heißt K-linear, wenn L1) F (v + w) = F (v) + F (w) v, w V L2) F (λv) = λf (v) v V, λ K. Somit

Mehr

6.5 Lineare Abhängigkeit, Basis und Dimension

6.5 Lineare Abhängigkeit, Basis und Dimension 6.5. Lineare Abhängigkeit, Basis und Dimension 123 6.5 Lineare Abhängigkeit, Basis und Dimension Seien v 1,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von

Mehr

Kapitel 13. Lineare Gleichungssysteme und Basen

Kapitel 13. Lineare Gleichungssysteme und Basen Kapitel 13. Lineare Gleichungssysteme und Basen Matrixform des Rangsatzes Satz. Sei A eine m n-matrix mit den Spalten v 1, v 2,..., v n. A habe den Rang r. Dann ist die Lösungsmenge L := x 1 x 2. x n x

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 8 Dimensionstheorie Ein endlich erzeugter Vektorraum hat im Allgemeinen ganz unterschiedliche Basen. Wenn

Mehr

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum,

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum, 2 Vektorräume In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa Unterraum, Linearkombination, lineare Unabhängigkeit und Erzeugendensystem.

Mehr

Kapitel II. Vektorräume. Inhalt: 7. Vektorräume 8. Basis und Dimension 9. Direkte Summen und Faktorräume

Kapitel II. Vektorräume. Inhalt: 7. Vektorräume 8. Basis und Dimension 9. Direkte Summen und Faktorräume Kapitel II. Vektorräume Inhalt: 7. Vektorräume 8. Basis und Dimension 9. Direkte Summen und Faktorräume Die fundamentale Struktur in den meisten Untersuchungen der Linearen Algebra bildet der Vektorraum.

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGEBRA Ferienkurs Hanna Schäfer Philipp Gadow INHALT 1 Grundbegriffe 1 1.1 Aussagen und Quantoren 1 1.2 Mengen 2 1.3 Gruppen 3 1.4 Körper 4 1.5 Vektorräume 5 1.6 Basis und Dimension 7 Aufgaben

Mehr

ein vom Nullvektor verschiedener Vektor, dann ist jeder dazu parallele (kollinear) Veka tor d ein Vielfaches von a. + λ 2 a 2

ein vom Nullvektor verschiedener Vektor, dann ist jeder dazu parallele (kollinear) Veka tor d ein Vielfaches von a. + λ 2 a 2 II. Basis und Dimension ================================================================= 2.1 Linearkombination und Basis -----------------------------------------------------------------------------------------------------------------

Mehr

Zusammenfassung. von Kapitel 8 und Dezember Zusammenfassung. 8 Vektorräume. 9 Lin. Algebra. Vektorraum Unterraum allg. Rechenregeln.

Zusammenfassung. von Kapitel 8 und Dezember Zusammenfassung. 8 Vektorräume. 9 Lin. Algebra. Vektorraum Unterraum allg. Rechenregeln. von Kapitel 8 und 9 9. Dezember 2013 Die Definition des es K ist ein Körper, dann heißt die Menge Î K-VR, falls: Die Definition des es K ist ein Körper, dann heißt die Menge Î K-VR, falls: 1. Î ist bez.

Mehr

0, v 6 = , v 4 = 1

0, v 6 = , v 4 = 1 Aufgabe 6. Linearkombinationen von Vektoren Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 : M = v =, v =, v 3 =, v 4 =, v 5 =, v 6 =. Zeigen Sie, dass sich jeder Vektor v i M, i =,,...,

Mehr

3.2 Unabhängigkeitsstrukturen

3.2 Unabhängigkeitsstrukturen 80 3.2 Unabhängigkeitsstrukturen Unser Ziel ist der Nachweis, daß in Vektorräumen, also in Moduln über Körpern, Basen existieren und zwei endliche Basen gegebenenfalls von derselben Ordnung sind. (Basen

Mehr

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 4.3 und 4.4

Mehr

Lineare Algebra I. Christian Ebert & Fritz Hamm. Gruppen & Körper. Vektorraum, Basis & Dimension. Lineare Algebra I. 18.

Lineare Algebra I. Christian Ebert & Fritz Hamm. Gruppen & Körper. Vektorraum, Basis & Dimension. Lineare Algebra I. 18. 18. November 2011 Wozu das alles? Bedeutung von Termen Vektoren in R n Ähnlichkeiten zwischen Termbedeutungen Skalarprodukt/Norm/Metrik in R n Komposition von Termbedeutungen Operationen auf/abbildungen

Mehr

Rangsatz. d.) (2P) Formulieren Sie den

Rangsatz. d.) (2P) Formulieren Sie den Probeklausur Lineare Algebra I am 14.11.09 Die Klausur ist in drei Teile unterteilt, die grob als Definitions-, Rechenund Beweisteil bezeichnet werden können (optisch durch Linien getrennt). In jedem Teil

Mehr

Affine Geometrie (Einfachere, konstruktive Version)

Affine Geometrie (Einfachere, konstruktive Version) Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit

Mehr

Der Rangsatz für lineare Abbildungen

Der Rangsatz für lineare Abbildungen Der Rangsatz für lineare Abbildungen Satz Sei f : V W eine lineare Abbildung Dann gilt dim V = dim Kern(f) + dim Bild(f), also gleichbedeutend dim Kern(f) = dim V rg(f) Da uns in der Regel bei gegebenem

Mehr

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November 9, 27 Erinnerung 2 Vektoräume Sei V ein Vektorraum, U V, U {}. U hiesst Untervektorraum, Unterraum,

Mehr

$Id: vektor.tex,v /01/21 14:35:13 hk Exp $

$Id: vektor.tex,v /01/21 14:35:13 hk Exp $ Mathematik für Physiker I, WS 2/2 Freitag 2 $Id: vektortex,v 5 2//2 4:35:3 hk Exp $ Vektorräume 2 Untervektorräume und Erzeugendensysteme Am Ende der letzten Sitzung hatten wir wieder einmal den Lösungsraum

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

Aufgabe 1. Die ganzen Zahlen Z sind ein R-Vektorraum bezüglich der gewöhnlichen Multiplikation in R.

Aufgabe 1. Die ganzen Zahlen Z sind ein R-Vektorraum bezüglich der gewöhnlichen Multiplikation in R. Aufgabe Die ganzen Zahlen Z sind ein Q-Vektorraum bezüglich der gewöhnlichen Multiplikation in Q. Die reellen Zahlen R sind ein Q-Vektorraum bezüglich der gewöhnlichen Multiplikation in R. Die komplexen

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

U = U, v i λ i = o und (z.b.) λ 1 0. i=1 1 = i=2. i=2

U = U, v i λ i = o und (z.b.) λ 1 0. i=1 1 = i=2. i=2 7 Lineare Unabhängigkeit, asis Existenzsatz M Am Ende des vorigen Paragraphen betrachteten wir bei vorgegebener Teilmenge T eines K-Vektorraumes V das Erzeugnis U von T in V. Die ildung des Erzeugnisses

Mehr

Lineare Algebra. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 6. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November, 7 Vektoräume Eine Menge E zusammen mit zwei Verknüpfungen + : E E E, x, y x + y Addition : E E E,

Mehr

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen. 1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Projektive Räume und Unterräume

Projektive Räume und Unterräume Projektive Räume und Unterräume Erik Slawski Proseminar Analytische Geometrie bei Prof. Dr. Werner Seiler und Marcus Hausdorf Wintersemester 2007/2008 Fachbereich 17 Mathematik Universität Kassel Inhaltsverzeichnis

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

LINEARE ALGEBRA I (LEHRAMT GYMNASIUM) WINTERSEMESTER 2015/16

LINEARE ALGEBRA I (LEHRAMT GYMNASIUM) WINTERSEMESTER 2015/16 LINEARE ALGEBRA I (LEHRAMT GYMNASIUM) WINTERSEMESTER 2015/16 CAROLINE LASSER Inhaltsverzeichnis 1. Vektorräume 2 1.1. Vektorräume und Unterräume (13.10.) 2 1.2. Lineare Unabhängigkeit (20.10.) 3 1.3. Basen

Mehr

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3...

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3... Affine Hülle Wiederholung. Der Vektor x K n ist eine lineare Kombination der Vektoren x,...,x k K n, wenn es Zahlen λ,...,λ k K gibt mit x = λ x +... + λ k x k. Def. Gibt es solche Zahlen λ,...,λ k K mit

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 7 Die Lösungsmenge eines homogenen linearen Gleichungssystems in n Variablen über einem Körper K ist ein Untervektorraum

Mehr

Technische Universität München

Technische Universität München Technische Universität München Michael Schreier Ferienkurs Lineare Algebra für Physiker Vorlesung Montag WS 2008/09 1 komplexe Zahlen Viele Probleme in der Mathematik oder Physik lassen sich nicht oder

Mehr

70 IV. ENDLICH-DIMENSIONALE VEKTORRÄUME

70 IV. ENDLICH-DIMENSIONALE VEKTORRÄUME IV. Endlich-dimensionale Vektorräume Unter einem endlich-dimensionalen Vektorraum verstehen wir einen Vektorraum, der eine endliche Basis besitzt. Die entscheidende Beobachtung ist die Tatsache, dass in

Mehr

Affine Eigenschaften ( stets K = R)

Affine Eigenschaften ( stets K = R) Affine Eigenschaften ( stets K = R) Def. 15 Sei M eine Teilmenge eines affinen Raums A über V (über K). Eine Eigenschaft der Menge M heißt affin, wenn für jede Affinität F : A A 1 die Bildmenge {F(a)wobei

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen 1 Lineare Abhängigkeit 1.1 Für welche t sind die folgenden Vektoren aus 3 linear abhängig? (1, 3, 4), (3, t, 11), ( 1, 4, 0). Das zur Aufgabe gehörige LGS führt auf die Matrix 1 3 4 3 t 11. 1 4 0 Diese

Mehr

Lineare Abbildungen. i=0 c ix i n. K n K m

Lineare Abbildungen. i=0 c ix i n. K n K m Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht

Mehr

Wiederholung: lineare Abbildungen

Wiederholung: lineare Abbildungen Wiederholung: lineare Abbildungen Def Es seien (V,+, ) und (U, +, ) zwei Vektorräume Eine Abbildung f : V U heißt linear, falls für alle Vektoren v 1, v 2 V und für jedes λ R gilt: (a) f (v 1 + v 2 ) =

Mehr

Lineare Hülle. span(a) := λ i v i : so dass k N, λ i R und v i A.

Lineare Hülle. span(a) := λ i v i : so dass k N, λ i R und v i A. Lineare Hülle Def A sei eine nichtleere Teilmenge des Vektorraums (V,+, ) Die lineare Hülle von A (Bezeichung: span(a)) ist die Menge aller Linearkombinationen der Elemente aus A { k } span(a) := λ i v

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

3 Lineare Abbildungen und Matrizen

3 Lineare Abbildungen und Matrizen 3 Lineare Abbildungen und Matrizen Definition 3.1. Es seien V und W zwei Vektorräume über demselben Zahlkörper k. Eine Abbildung heisst linear, falls gilt i) [ λ k ] [ v V ] [ f (λ v) = λ f ( v) ] ii)

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana.

Lineare Algebra. 5. Übungsstunde. Steven Battilana. Lineare Algebra 5. Übungsstunde Steven Battilana stevenb@student.ethz.ch November, 6 Vektoräume Eine Menge E zusammen mit zwei Verknüpfungen +: E E! E, (x, y) 7! x + y (Addition) : E E! E, (x, y) 7! x

Mehr

Vortrag 20: Kurze Vektoren in Gittern

Vortrag 20: Kurze Vektoren in Gittern Seminar: Wie genau ist ungefähr Vortrag 20: Kurze Vektoren in Gittern Kerstin Bauer Sommerakademie Görlitz, 2007 Definition und Problembeschreibung Definition: Gitter Seien b 1,,b k Q n. Dann heißt die

Mehr

15. Basen und Dimension

15. Basen und Dimension 166 Andreas Gathmann 15. Basen und Dimension Wir wollen nun die Struktur von Vektorräumen genauer untersuchen. Besonders zentral ist dabei der Begriff der Basis, den ihr ja wahrscheinlich schon aus der

Mehr

1 Mengen und Abbildungen

1 Mengen und Abbildungen 1 MENGEN UND ABBILDUNGEN 1 1 Mengen und Abbildungen Wir starten mit einigen einführenden Definitionen und Ergebnissen aus der Theorie der Mengen und Abbildungen, die nicht nur Grundlage der Linearen Algebra

Mehr

1 Linearkombinationen

1 Linearkombinationen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Linearkombinationen Unter einer Linearkombination versteht man in der linearen Algebra einen Vektor, der sich durch

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

Lineare Algebra II Lösungen der Aufgaben 42 und 43

Lineare Algebra II Lösungen der Aufgaben 42 und 43 D Blottière SS 7 P Schützdeller Universität Paderborn Lineare Algebra II Lösungen der Aufgaben 4 und 43 Aufgabe 4 : Bemerkungen : Es sei V ein n-dimensionaler Vektorraum über einem Körper K und β : V V

Mehr

Elemente in Φ werden Wurzeln genannt. Bemerkung 3.2. (a) Zu einem Wurzelsystem können wir immer eine Spiegelungsgruppe definieren

Elemente in Φ werden Wurzeln genannt. Bemerkung 3.2. (a) Zu einem Wurzelsystem können wir immer eine Spiegelungsgruppe definieren 3. Wurzelsysteme Als erstes führen wir den Begriff eines Wurzelsystems ein. Definition 3.1 (Wurzelsystem). Eine endliche Teilmenge Φ V {0} heißt Wurzelsystem falls gilt: (R1) Φ Rα = {±α} für α Φ, (R2)

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Lineare Abbildungen und Matrizen Seien V und W K-Vektorräume mit dimv = n und dimw = m Im folgenden wollen wir jeder m n Matrix eine lineare Abbildung V W zuordnen, und umgekehrt jeder linearen Abbildung

Mehr

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K). Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen

Mehr

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper.

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48 4 Vektorräume 4.1 Definition Sei K ein Körper. Definition: Ein Vektorraum über K, oder kurz ein K-Vektorraum, ist ein Tupel (V,+,, 0 V ) bestehend aus

Mehr

11. BASIS, UNTERRAUM, und DIMENSION

11. BASIS, UNTERRAUM, und DIMENSION 11. BASIS, UNTERRAUM, und DIMENSION 1 Basen werden zu unterschiedlichen Zwecken benutzt: Um lineare Abbildungen in ihrer Matrixdarstellung zu vereinfachen, um die Dimension von Vektorräumen und ihren Unterräumen

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

4 Elementare Vektorraumtheorie

4 Elementare Vektorraumtheorie 4. ELEMENTARE VEKTORRAUMTHEORIE 51 4 Elementare Vektorraumtheorie Im folgenden sei K stets ein Körper. Definition. (i) Eine homogene Gleichung in den Unbekannten ξ 1,..., ξ n ist ein Ausdruck der Gestalt

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Definition. Sei K ein Körper, a ij K für 1 i m, 1 j n und b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2......

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2008/09 4 Einführung Vektoren und Translationen

Mehr

1 Lineare Abbildungen

1 Lineare Abbildungen 1 Lineare Abbildungen Definition 1 Sei K ein Körper und V und W K-Vektoräume. Eine Abbildung f : V W heisst linear oder Homomoprhismus, wenn gilt: fv 1 + v 2 = fv 1 + fv 2 v 1, v 2 V fλv = λfv λ K, v V

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof Dr H Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 11 Rang von Matrizen Definition 111 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von

Mehr

3.1 Sukzessive Minima und reduzierte Basen: Resultate

3.1 Sukzessive Minima und reduzierte Basen: Resultate Gitter und Codes c Rudolf Scharlau 4. Juni 2009 202 3.1 Sukzessive Minima und reduzierte Basen: Resultate In diesem Abschnitt behandeln wir die Existenz von kurzen Basen, das sind Basen eines Gitters,

Mehr

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}.

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}. Technische Universität Berlin Wintersemester 7/8 Institut für Mathematik 9. April 8 Prof. Dr. Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Nachklausur zur Linearen Algebra I Aufgabe ++ Punkte Definieren

Mehr

Lösungen der Aufgaben zu Abschnitt 5.4

Lösungen der Aufgaben zu Abschnitt 5.4 A Filler: Elementare Lineare Algebra Lösungen zu Abschnitt 54 Lösungen der Aufgaben zu Abschnitt 54 B ist linear unabhängig, wenn die Vektorgleichung ( ) ( ) ( ) ( ) 456 λ + λ + λ = bzw das LGS λ +4λ +λ

Mehr

4 Affine Koordinatensysteme

4 Affine Koordinatensysteme 4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner

Mehr

Kapitel 5. Vektorräume mit Skalarprodukt

Kapitel 5. Vektorräume mit Skalarprodukt Kapitel 5 Vektorräume mit Skalarprodukt 119 120 Kapitel V: Vektorräume mit Skalarprodukt 5.1 Elementare Eigenschaften des Skalarprodukts Dienstag, 20. April 04 Wollen wir in einem Vektorraum wie in der

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

Beziehungen zwischen Vektorräumen und ihren Dimensionen

Beziehungen zwischen Vektorräumen und ihren Dimensionen Beziehungen zwischen Vektorräumen und ihren Dimensionen Lineare Algebra I Kapitel 9 20. Juni 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz

Mehr

Skalarprodukt, Norm & Metrik

Skalarprodukt, Norm & Metrik Skalarprodukt, Norm & Metrik Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. Mai 2016 Stefan Ruzika 5: Skalarprodukt, Norm & Metrik 11. Mai 2016 1 / 13 Gliederung 1

Mehr

Alle Vektoren sind hier Spaltenvektoren. Eine Matrix besteht aus nebeneinandergeschrie-

Alle Vektoren sind hier Spaltenvektoren. Eine Matrix besteht aus nebeneinandergeschrie- 1 Vorbemerkungen Alle Vektoren sind hier Spaltenvektoren. Eine Matrix besteht aus nebeneinandergeschrie- benen Vektoren. Wird die Matrix A = ( a 1,..., a n ) mit dem Vektor c = c 1. c n multipliziert,

Mehr

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel 4 Orthogonalität 4. Motivation Im euklidischen Raum ist das euklidische Produkt zweier Vektoren u, v IR n gleich, wenn die Vektoren orthogonal zueinander sind. Für beliebige Vektoren lässt sich sogar der

Mehr

13 Partielle Ableitung und Richtungsableitung

13 Partielle Ableitung und Richtungsableitung 3 PARTIELLE ABLEITUNG UND RICHTUNGSABLEITUNG 74 3 Partielle Ableitung und Richtungsableitung 3 Definition und Notiz Sei B R n offen, f : B R m, v R n, so heißt für γ x,v (t) = x + tv d dt f(x + tv) f(x)

Mehr

Höhere Mathematik 1. Lösungshinweise zu den Hausaufgaben: 3. Gruppenübung zur Vorlesung. Wintersemester 2016/17

Höhere Mathematik 1. Lösungshinweise zu den Hausaufgaben: 3. Gruppenübung zur Vorlesung. Wintersemester 2016/17 T. Conde, J. Meinel, D. Seus, S. Thelin, R. Tielen, A. Wünsch. Gruppenübung zur Vorlesung Höhere Mathematik Wintersemester 6/7 M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 7. Lineare

Mehr

2 Euklidische Vektorräume

2 Euklidische Vektorräume Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,

Mehr

5.5 Abstrakter Vektorraum

5.5 Abstrakter Vektorraum 118 Kapitel 5 Lineare Algebra 55 Abstrakter Vektorraum Für die Vektoraddition und die Multiplikation von Vektoren mit Skalaren im zweioder dreidimensionalen euklidischen Raum gelten bestimmte Rechengesetze,

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( ) Ferienkurs Mathematik für Physiker I WS 206/7 Ferienkurs Mathematik für Physiker I Skript Teil 2 (28.03.207) Vektorräume Bevor wir zur Definition eines Vektorraumes kommen erinnern wir noch einmal kurz

Mehr

Äquivalenz von Matrizen

Äquivalenz von Matrizen Äquivalenz von Matrizen Wir befassen uns jetzt mit der Fragestellung, ob man zu einer gegebenen linearen Abbildung F : V W geeignete Basen für V und W finden kann, sodass die darstellende Matrix von F

Mehr

Aufgaben zu Kapitel 20

Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Verständnisfragen Aufgabe 20 Sind die folgenden Produkte Skalarprodukte? (( R ) 2 ( R 2 )) R : v w,, v v 2 w w 2 (( R ) 2 ( R 2 )) R : v w, 3 v v 2 w w + v

Mehr

Kapitel 7 Lineare Abbildungen und Matrizen II

Kapitel 7 Lineare Abbildungen und Matrizen II Kapitel 7 Lineare Abbildungen und Matrizen II 7.1 Weitere Rechenregeln für Matrizen Aus den bisher gelernten Regeln entnehmen wir den als Übung zu beweisenden Satz 7.1. Es gelten die folgenden Regeln.

Mehr

mit. Wir definieren (Skalarprodukt = Winkel).

mit. Wir definieren (Skalarprodukt = Winkel). 1 Grundidee des Simplexverfahrens (von George Dantzig): Man bestimmt eine beliebige Ecke (Extremalpunkt) einer Lösungsmenge eines Ungleichungssystems. Nun geht man an den Kanten vom Punkt entlang und kontrolliert

Mehr

Vektorräume. Kapitel Definition und Beispiele

Vektorräume. Kapitel Definition und Beispiele Kapitel 3 Vektorräume 3.1 Definition und Beispiele Sei (V,,0) eine abelsche Gruppe, und sei (K, +,, 0, 1) ein Körper. Beachten Sie, dass V und K zunächst nichts miteinander zu tun haben, deshalb sollte

Mehr

Die lineare Hülle. heißt der Vektor. Linearkombination der Vektoren v i mit Koeffizienten α i. Direkt aus (12.6) folgt

Die lineare Hülle. heißt der Vektor. Linearkombination der Vektoren v i mit Koeffizienten α i. Direkt aus (12.6) folgt Eine Menge v +U mit einem Untervektorraum U nennt man auch eine Nebenklasse des Untervektorraumes U. Sie entsteht, wenn man die Translation τ v auf die Menge U anwendet. Ausdrücke der Form αu + βv, auch

Mehr

5 Diagonalisierbarkeit

5 Diagonalisierbarkeit 5 Diagonalisierbarkeit Sei V ein K Vektorraum mit einer Basis B = (v 1,..., v n ) Wiederholung aus 2: Sei f : V V K linear. Stelle f(v j ) für j = 1,..., n dar in der Form a 1j Das n Tupel a j =. a nj

Mehr

5. Vorlesung. Rechnen mit Vektoren.

5. Vorlesung. Rechnen mit Vektoren. 5. Vorlesung. Rechnen mit Vektoren. Vektoren per se gibt es nicht. Vektoren sind immer Teil eines Vektorraumes. In dieser Vorlesung führen wir Vektorräume und Vektoren ein und beweisen ein paar klassische

Mehr

Symplektische Geometrie

Symplektische Geometrie 31. August 2005 Symplektische Vektorrume Wiederholung: Eine (schwach) symplektische Form auf einem Vektorraum V ist eine Bilinearform die schiefsymmetrisch ist, d.h. ω : V V R ω(w.v) = ω(v, w) für alle

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr