Lösung zu Serie 24. a ij b i b j. v = j=1. v = v j b j.

Größe: px
Ab Seite anzeigen:

Download "Lösung zu Serie 24. a ij b i b j. v = j=1. v = v j b j."

Transkript

1 Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie Zeige: Ist 1 n := min{dim K (V 1 ), dim K (V 2 )} < für Vektorräume V 1 und V 2, so ist jeder Tensor in V 1 K V 2 eine Summe von n reinen Tensoren, aber im allgemeinen nicht von n 1 reinen Tensoren. Lösung: Ohne Beschränkung der Allgemeinheit können wir n = dim K (V 2 ) dim K (V 1 ) annehmen. Sei {b i } eine Basis von V 1 und sei {b 1,..., b n} eine Basis von V 2. Dann ist { b i b j i I, 1 j n} eine Basis von V 1 V 2. Jeder Vektor v V 1 V 2 lässt sich daher schreiben als v = a ij b i b j j=1 für eindeutige Koeffizienten a ij K. Mit v j := a ijb i V 1 für alle j folgt v = v j b j. j=1 Also ist v eine Summe der n reinen Tensoren w 1 b 1,..., w n b n. Wir müssen weiter zeigen, dass ein Tensor existiert, welcher nicht die Summe von n 1 reinen Tensoren ist. Wegen dim(v 1 ) dim(v 2 ) können wir dabei {1,..., n} I annehmen. Behauptung. Der Tensor v := n b i b i lässt sich nicht als Summe von n 1 reinen Tensoren schreiben. Beweis. Sei angenommen v = n 1 v i w i für Vektoren v i V 1 und w i V 2. Aus Dimensionsgründen existiert dann ein nicht-verschwindendes Element l V 2 mit l(w i ) = 0 für alle i = 1,..., n 1. Es folgt also n 1 (id V1 l)(v) = v i l(w i ) = 0, (id V1 l)(v) = b i l(b i) = 0. Da b 1,..., b m linear unabhängig sind, folgt l(b i) = 0 für alle i, also l = 0 im Widerspruch zur Annahme. 1

2 2. Beweise: Für jeden Vektorraum V und für jede Menge {W i } von Vektorräumen W i existiert ein natürlicher Isomorphismus ( ) = V K W i (V K W i ) Lösung: Wir schreiben v ix i für Elemente (v i ) einer äusseren direkten Summe V i von Vektorräumen V i. Betrachte die Abbildung ( ) ϕ: V W i (V K W i ) (v, ) w i X i (v w i )X i. Man zeigt direkt, dass ϕ blinear ist. Durch Anwenden der universelle Eigenschaft des Tensorproduktes (V K ( W i ), κ) auf ϕ erhalten wir eine lineare Abbildung ( ) Φ: V W i (V K W i ) mit Φ κ = ϕ, also mit ( ) v w i X i (v w i )X i für alle v V und w ix i W i. Sei B = {b j j J} eine Basis von V und für jedes i I sei B i = {b ik } k K i eine Basis von W i. Dann ist {b ik X i i I, k K i } eine Basis von W i, und somit ist { bj (b ikx i ) j J, k Ki, i I } eine Basis von V ( W i ) und { (bj b ik)x i j J, k Ki, i I } eine Basis von (V W i ). Wegen Φ(b j (b ikx i )) = (b j b ik)x i für alle i, j, k bildet Φ die erste Basis bijektiv auf die zweite ab und ist somit ein Isomorphismus. 3. Zeige: (a) Für alle K-Vektorräume V und W existiert ein natürlicher injektiver Homomorphismus Φ: V K W Hom K (V, W ) mit l w (v l(v) w) 2

3 (b) Das Bild von Φ ist der Unterraum aller linearer Abbildungen V W mit endlichem Rang. (c) Die Abbildung Φ ist ein Isomorphismus genau dann, wenn V oder W endlich-dimensional ist. (d) Für alle K-Vektorräume V und W konstruiere einen natürlichen injektiven Homomorphismus V W (V W ) Lösung: und beweise die zu (c) analoge Aussage. (a) Betrachte die Abbildung ϕ : V W Hom K (V, W ), (l, w) (v l(v) w). Durch direktes Nachprüfen zeigt man, dass ϕ bilinear ist. Folglich erhält man aus der universellen Eigenschaft des Tensorproduktes (V K W, κ) eine lineare Abbildung Φ: V K W Hom K (V, W ) mit Φ κ = ϕ, also mit Φ(l w) = ϕ(l, w) = (v l(v) w). Wir zeigen, dass Φ injektiv ist: Sei {l i } eine Basis von V und sei {b j } j J eine Basis von W. Dann bildet { li b j i I, j J } eine Basis von V W. Jedes Element v V W lässt sich folglich schreiben als v = a ij l i b j = λ j b j j J j J mit Koeffizienten a ij K und mit λ j := i a ijl i. Sei nun x Kern(Φ) ein beliebiges Element und schreibe x = j J λ j b j für gewisse λ j V. Dann gilt für alle v V 0 = Φ(x)(v) = λ j (v)b j. Da {b j } j J eine Basis von W bildet, folgt λ j (v) = 0 für alle j J und alle v V, also λ j = 0 für alle j, also x = 0. Somit ist Φ injektiv. (b) Für jedes Basiselement l i b j von V W ist das Bild der Abbildung j J Φ(l i b j ): V W, v l i (v) b j 3

4 in b j enthalten. Die Abbildung Φ(l i b j ) hat also Rang 1. Sei v V W ein beliebiges Element. Da v eine (endliche) Linearkombination von Basisvektoren ist, ist wegen der Linearität von Φ folglich Φ(v) eine Linearkombination von Bildern von Basisvektoren, also von linearen Abbildungen g 1,..., g n : V W vom Rang 1. Wegen Bild(Φ(v)) Bild(g 1 ),..., Bild(g n ) ist somit Rang(Φ(v)) n k=1 Rang(g i) n <. Umgekehrt sei f : V W eine lineare Abbildung von endlichem Rang. Sei b 1,..., b n eine Basis von Bild(f) und erweitere dies zu einer Basis {b i } von W. Für jedes 1 i n sei weiter λ i W die eindeutige Linearform mit λ i (b j ) = δ ij für alle j I. Insbesondere gilt dann w = n λ i(w)b i für alle w Bild(f). Behauptung. Φ( n f (λ i ) b i ) = f. Beweis. Für alle v V ist ( Φ f (λ i ) b i )(v) = also wegen f(v) Bild(f) gleich f(v). = = Φ(f (λ i ) b i )(v) f (λ i )(v) b i λ i (f(v)) b i, Aus der Behauptung folgt, dass f im Bild von Φ liegt. Das zeigt auch die umgekehrte Aussage der Aufgabe. (c) Falls W endlich-dimensional ist, hat jede Abbildung f : V W endlichen Rang. Wegen (b) ist Φ daher surjektiv. Wegen (a) ist aber Φ auch injektiv und somit ein Isomorphismus. Im Fall V endlich-dimensional gilt dim(bild(f)) dim(v ) <, also Rang(f) < für alle Homomorphismen f : V W. Mit (b) ist also Φ surjektiv und somit wie vorher ein Isomorphismus. Sei umgekehrt angenommen, dass V und W beide nicht endlich-dimensional ist. Wir zeigen, dass Φ nicht surjektiv ist, indem wir ein Homomorphismus f : V W von unendlichem Rang konstruieren: Sei {b i } eine Basis von V und sei {b j} j J eine Basis von W. Da die Mengen I und J jeweils unendlich viele Elemente haben, existiert eine 4

5 Abbildung u : I J, sodass {u(i) i I} unendlich viele Elemente hat. Definiere eine linare Abbildung f : V W durch die Vorschrift f(b i ) = b u(i) für alle i I. Wegen b u(i) Bild(f) für alle i I enthält Bild(f) unendlich viele Basisvektoren, hat also unendliche Dimension. Es folgt, dass f von unendlichen Rang ist. (d) Durch Anwenden von (a) mit dem Vektorraum W anstelle von W erhalten wir einen natürlichen injektiven Homomorphismus Φ : V W Hom K (V, W ) Wegen der Adjunktionsformel (siehe Kapitel 11.3 der Zusammenfassung) existiert ein natürlicher Isomorphismus ψ : Hom K (V, W ) = = Mult K (V, W ; K) (V W ). Somit ist die Komposition ψ Φ ein natürlicher injektiver Homomorphismus V W (V W ). Weiter ist V oder W endlich-dimensional genau dann, wenn V oder W endlich-dimensional ist. Wegen (c) ist dies genau dann der Fall, wenn Φ ein Isomorphismus ist, also genau dann, wenn ψ Φ ein Isomorphismus ist. Das zeigt, die zu (c) analoge Aussage. 4. Sei V ein Vektorraum mit Basen B = (b 1,..., b n ) und B = (b 1,..., b n) und sei t := α ij b i b j = i,j=1 α ijb i b j i,j für eindeutige Koeffizienten α ij, α ij K ein Element in V K V. Was ist die Beziehung zwischen in Termen von M B B(id)? A := (α ij ) 1 i,j n und A := (α ij) 1 i,j n Lösung: Mit M B B(id) = (m ij ) i,j ist b i = n k=1 m kib k für alle i. Es folgt α ij b i b j = ( ) ( ) α ij m ki b k m lj b l i,j=1 i,j k l = α ij m ki m lj b k b l i,j,k,l = k,l ( α ij m ki m lj )b k b l. i,j 5

6 Da {b i b j i, j = 1,..., n} eine Basis von V V bildet, folgt für alle k, l α kl = i,j m ki α ij m lj, also A = M B B(id) A M B B(id) T. 5. Seien U und V zwei K-Vektorräume. Zeige: (a) Es existiert eine natürliche injektive Abbildung Φ : End(U) End(V ) End(U V ), sodass für alle f End(U) und g End(V ) gilt: u U v V : Φ(f g)(u v) = f(u) g(v). Ab jetzt seien U und V endlich-dimensional. Zeige weiter: (b) Die Abbildung Φ ist ein Isomorphismus (c) Sei B U = (u 1,..., u m ) eine Basis von U, sei B V von V und sei B := (u i v j ) 1 i m 1 j n = (v 1,..., v n ) eine Basis die induzierte Basis von U V, wobei u i v j an (n(i 1)+j)-ter vorkommt. Für Endomorphismen f End(U) und g End(V ) betrachte die Darstellungsmatrizen A = (a ij ) 1 i,j m := M BU B U (f) und B = (b ij ) 1 i,j n := M BV B V (g). Dann gilt: a 11 B a 1m B M B B (f g) = a m1 B a mm B (d) Spur(f g) = Spur(f) Spur(g). (e) det(f g) = det(f) dim V det(g) dim U. Lösung: (a) Betrachte die Abbildung ϕ : End(U) End(V ) End(U V ), (f, g) f g, wobei f g der eindeutige Endormorphismus von U V ist mit (f g)(u v) = f(u) g(v) für alle u U und v V, 6

7 siehe die Proposition zur Funktorialität in Kapitel der Zusammenfassung. Man prüft direkt, dass ϕ bilinear ist; zum Beispiel gilt für beliebige Endomorphismen f 1, f 2 End(U) und g End(V ) ((f 1 + f 2 ) g)(u v) = (f 1 + f 2 )(u) g(v) = (f 1 (u) + f 2 (u)) g(v) = f 1 (u) g(v) + f 2 (u) g(v) = (f 1 g)(u v) + (f 2 g)(u v), also mit der Proposition zur Funktorialität (f 1 +f 2 ) g = (f 1 g)+(f 2 g), also ϕ((f 1 + f 2 ), g) = ϕ(f 1, g) + ϕ(f 2, g). Die anderen Bilinearitätseigenschaften von ϕ folgen ähnlich. Aus der universellen Eigenschaft von (End(U) End(V ), κ) folgt, dass eine eindeutige lineare Abbildung Φ : End(U) End(V ) End(U V ) existiert mit Φ κ = ϕ, also mit Φ(f g) = ϕ(f, g) = f g, also mit u U v V : Φ(f g)(u v) = (f g)(u v) = f(u) g(v) für alle f End(U) und g End(V ). Wir zeigen, dass Φ injektiv ist. Sei {g i } eine Basis von End(V ). Mit dem gleichen Argument wie in der Lösung zu Aufgabe 2(a) existieren für jedes h End(U) End(V ) Endomorphismen f i End(U) mit h = f i g i. Sei x = f i g i Kern(Φ) ein beliebiges Element. Sei u U und λ U beliebig und betrachte die induzierten Abbildungen α : K U, a a u und β : U K, u λ(u). Wegen Φ(x) = 0 verschwindet die Komposition W = K W α id W V W Φ(x) V W β id W K W = W und folglich gilt für alle v V 0 = (β id W ) Φ(x)(u v) ( ) = (β id W ) f i (u) g i (v) = λ(f i (u)) g i (v), 7

8 also λ(f i (u)) g i = 0. Wegen der linearen Unabhängigkeit der Vektoren {g i } folgt λ(f i (u)) für alle i. Da λ beliebig war, ist daher f i (u) = 0, also, da auch u beliebig war, f i = 0 für alle i, also x = 0. Somit ist Φ injektiv. (b) Wegen dim(end(u) End(V )) = dim(end(u)) dim(end(v )) = dim(u) 2 dim(v ) 2 = dim(u V ) 2 = dim(end(u V )) ist Φ eine Abbildung zwischen zwei endlich-dimensionalen Vektorräumen derselben Dimension. Also ist Φ injektiv genau dann, wenn Φ ein Isomorphismus ist. Die Aussage folgt nun direkt aus (a). (c) Für alle 1 j m and 1 l n gilt (f g)(u j v l ) = f(u j ) g(v l ) ( m ) ( ) = a ij u i b kl v k = m k=1 a ij b kl u i v k. Somit ist a ij b kl der Eintrag von M B B (f g) an der Zeilenposition korrespondierend zu u i v k und an der Spaltenposition korrespondierend zu v j v l, also an der ( (i 1)n + k, (j 1)n + l ) -ten Stelle. Es folgt die Aussage. (d) Aus (c) folgt j=1 Spur(f g) = Spur M B B (f g) m = a ii Spur(B) = Spur(A) Spur(B) (e) Aus (c) folgt B det(id U g) = det... = (det B) m = (det g) dim U B Sei B := (u i v j ) i,j die Basis von U V, in der u i v j an der (i+(j 1)m)- ten Stelle vorkommt. Mit demselben Argument wie in (c) zeigt man b 11 A b 1n A M B B (f g) =....., b n1 A b nn A 8

9 also det(f id V ) = det(f) dim V. Für alle f 1, f 2 End(U) und g 1, g 2 End(V ) gilt (f 1 g 1 ) (f 2 g 2 ) = (f 1 f 2 ) (g 1 g 2 ), siehe Zusammenfassung Kapitel Es folgt det(f g) = det((f id V ) (id U g)) = det(f id V ) det(id U g) = det(f) dim V (det g) dim U 9

Lineare Abbildungen und Darstellungsmatrizen

Lineare Abbildungen und Darstellungsmatrizen KAPITEL 4 Lineare Abbildungen und Darstellungsmatrizen 1. Lineare Abbildungen Definition 4.1 (Lineare Abbildungen). Seien V und W zwei Vektorräume über den selben Körper K. Eine Abbildung f : V W heißt

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra HS 2014 Seite 56 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Universität Karlsruhe (TH) Institut für Algebra und Geometrie Dr. Klaus Spitzmüller Dipl.-Inform. Wolfgang Globke Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Lösungen zum

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

Lineare Abbildungen - I

Lineare Abbildungen - I Lineare Abbildungen - I Definition. Seien V und W K-Vektorräume (über demselben K). Eine Abbildung F : V W heißt K-linear, wenn L1) F (v + w) = F (v) + F (w) v, w V L2) F (λv) = λf (v) v V, λ K. Somit

Mehr

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit

Mehr

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen. 1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 2014/2015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.2015, 11 Uhr Auf diesem

Mehr

1 Linearkombinationen

1 Linearkombinationen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Linearkombinationen Unter einer Linearkombination versteht man in der linearen Algebra einen Vektor, der sich durch

Mehr

3.5 Duale Vektorräume und Abbildungen

3.5 Duale Vektorräume und Abbildungen 3.5. DUALE VEKTORRÄUME UND ABBILDUNGEN 103 3.5 Duale Vektorräume und Abbildungen Wir wollen im Folgenden auch geometrische Zusammenhänge mathematisch beschreiben und beginnen deshalb jetzt mit der Einführung

Mehr

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}.

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}. Technische Universität Berlin Wintersemester 7/8 Institut für Mathematik 9. April 8 Prof. Dr. Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Nachklausur zur Linearen Algebra I Aufgabe ++ Punkte Definieren

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn

Mehr

70 IV. ENDLICH-DIMENSIONALE VEKTORRÄUME

70 IV. ENDLICH-DIMENSIONALE VEKTORRÄUME IV. Endlich-dimensionale Vektorräume Unter einem endlich-dimensionalen Vektorraum verstehen wir einen Vektorraum, der eine endliche Basis besitzt. Die entscheidende Beobachtung ist die Tatsache, dass in

Mehr

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen) Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f (v) = u} (Andere Bezeichnung: f (V) wird in Analysis-Vorlesung

Mehr

Vektorräume und lineare Abbildungen

Vektorräume und lineare Abbildungen Kapitel 11. Vektorräume und lineare Abbildungen 1 11.1 Vektorräume Sei K ein Körper. Definition. Ein Vektorraum über K (K-Vektorraum) ist eine Menge V zusammen mit einer binären Operation + einem ausgezeichneten

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzugen zur Vorlesung: Der Vollständigkeit

Mehr

Lineare Abbildungen. i=0 c ix i n. K n K m

Lineare Abbildungen. i=0 c ix i n. K n K m Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht

Mehr

8 Lineare Abbildungen und Matrizen

8 Lineare Abbildungen und Matrizen 8 Lineare Abbildungen und Matrizen 8.1 Lineare Abbildungen Wir beschäftigen uns nun mit Abbildungen zwischen linearen Räumen. Von besonderem Interesse sind Abbildungen, die die Struktur der linearen Räume

Mehr

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis

Mehr

Kapitel 13. Lineare Gleichungssysteme und Basen

Kapitel 13. Lineare Gleichungssysteme und Basen Kapitel 13. Lineare Gleichungssysteme und Basen Matrixform des Rangsatzes Satz. Sei A eine m n-matrix mit den Spalten v 1, v 2,..., v n. A habe den Rang r. Dann ist die Lösungsmenge L := x 1 x 2. x n x

Mehr

Lineare Algebra II, Lösungshinweise Blatt 9

Lineare Algebra II, Lösungshinweise Blatt 9 Prof Dr Katrin Wendland Priv Doz Dr Katrin Leschke Christoph Tinkl SS 27 Lineare Algebra II, Lösungshinweise Blatt 9 Aufgabe (4 Punkte) Sei 2 3 4 A = 5 6 Berechnen Sie A k für alle k N und verifizieren

Mehr

Der Rangsatz für lineare Abbildungen

Der Rangsatz für lineare Abbildungen Der Rangsatz für lineare Abbildungen Satz Sei f : V W eine lineare Abbildung Dann gilt dim V = dim Kern(f) + dim Bild(f), also gleichbedeutend dim Kern(f) = dim V rg(f) Da uns in der Regel bei gegebenem

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

Musterlösung zur Probeklausur Lineare Algebra I

Musterlösung zur Probeklausur Lineare Algebra I Musterlösung zur Probeklausur Lineare Algebra I Aufgabe 1 5 Punkte: Welche der folgenden Aussagen sind wahr bzw. falsch? Setzen Sie in jeder Zeile genau ein Kreuz. Für jede korrekte Antwort erhalten Sie

Mehr

Kapitel 12. Lineare Abbildungen und Matrizen

Kapitel 12. Lineare Abbildungen und Matrizen Kapitel 12 Lineare Abbildungen und Matrizen Lineare Abbildungen f : R n R m Wir wissen schon: Eine lineare Abbildung f : R n R m ist eindeutig durch ein n-tupel von Vektoren v 1, v 2,, v n des R m bestimmt

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Lineare Abbildungen und Matrizen Seien V und W K-Vektorräume mit dimv = n und dimw = m Im folgenden wollen wir jeder m n Matrix eine lineare Abbildung V W zuordnen, und umgekehrt jeder linearen Abbildung

Mehr

Wiederholung: lineare Abbildungen

Wiederholung: lineare Abbildungen Wiederholung: lineare Abbildungen Def Es seien (V,+, ) und (U, +, ) zwei Vektorräume Eine Abbildung f : V U heißt linear, falls für alle Vektoren v 1, v 2 V und für jedes λ R gilt: (a) f (v 1 + v 2 ) =

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.3 2009/05/25 15:03:47 hk Exp $ 7 Vektorräume und Körperweiterungen Wir sind gerade bei der Besprechung derjenigen Grundeigenschaften des Tensorprodukts, die mit vergleichsweise wenig

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

Klausurvorbereitungsblatt Lineare Algebra

Klausurvorbereitungsblatt Lineare Algebra Klausurvorbereitungsblatt Lineare Algebra Sommersemester 25 Aufgabe 2 2 Sei A 3 3 8 2 4 3 R4 5. 5 2 a) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems Ax b) Ist Ax b mit b lösbar? (Begründen

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen 4.1 Lineare Abbildungen Definition 4.1. Es seien V, W K-Vektorräume. Eine Abbildung f : V W heißt linear oder Homomorphismus, wenn für alle u, v V und λ K gilt Beispiel 4.2. L1 f(u + v) = f(u) + f(v),

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Hier

Mehr

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin:

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin: Lineare Algebra I - 9.Vorlesung - rof. Dr. Daniel Roggenkamp & Falko Gauß Korrektur: 2. Klausurtermin: 09.02.2017 Linearkombination von Vektoren lineare Hülle Erzeugendensystem S lineare Unabhängigkeit

Mehr

Dualraum eines Vektorraumes

Dualraum eines Vektorraumes Dualraum eines Vektorraumes Alexander Hölzle Mai 2012 Inhaltsverzeichnis I Einleitung 3 1 Motivation und Überblick............................. 3 2 Notation und Konventionen...........................

Mehr

Bestimmung der Dimension

Bestimmung der Dimension Bestimmung der Dimension Satz. Sei (v 1, v 2,..., v n ) ein minimales Erzeugendensystem von V, d.h. dieses System ist ein Erzeugendensystem von V, aber keines der nach Weglassen eines v i (1 i n) entstehenden

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Grundlagen der Mathematik 1

Grundlagen der Mathematik 1 Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben

Mehr

Kapitel 4. Multilineare Abbildungen. 4.4 Tensorprodukte

Kapitel 4. Multilineare Abbildungen. 4.4 Tensorprodukte Kapitel 4 c M. Roczen und H. Wolter Lineare Algebra individuell Online Ver. 0.52, 3.5.2005 Multilineare Abbildungen In diesem Kapitel werden Abbildungen von Vektorräumen untersucht, die in mehreren Argumenten

Mehr

Ausgangsfrage: gegeben Vektorraum, wieviele Komponenten hat. allgemein: ein Vektorraum mit, heisst 'Unterraum' von. ist ein Unterraum von V.

Ausgangsfrage: gegeben Vektorraum, wieviele Komponenten hat. allgemein: ein Vektorraum mit, heisst 'Unterraum' von. ist ein Unterraum von V. L2.3 Basis und Dimension Ausgangsfrage: gegeben Vektorraum, wieviele Komponenten hat Formaler: was ist die 'Dimension' von Sei Definition: 'Span' 'lineare Hülle' = alle möglichen Linearkombination der

Mehr

Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte

Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte Technische Universität München, Fakultät für Physik Ferienkurs - ineare Algebra Hanna Schäfer 03. März 04 0. inearität. f : M N, x : y = f(x) Merkinhalte. f(x + λy) = f(x) + λf(y), x, y V, λ K 3. ineare

Mehr

Lösungen der Aufgaben zu Abschnitt 5.4

Lösungen der Aufgaben zu Abschnitt 5.4 A Filler: Elementare Lineare Algebra Lösungen zu Abschnitt 54 Lösungen der Aufgaben zu Abschnitt 54 B ist linear unabhängig, wenn die Vektorgleichung ( ) ( ) ( ) ( ) 456 λ + λ + λ = bzw das LGS λ +4λ +λ

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

Lineare Algebra Weihnachtszettel

Lineare Algebra Weihnachtszettel Lineare Algebra Weihnachtszettel 4..008 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet

Mehr

Musterlösung zur Klausur Lineare Algebra I

Musterlösung zur Klausur Lineare Algebra I Musterlösung zur Klausur Lineare Algebra I Aufgabe Version A 5 Punkte: Welche der folgenden Aussagen sind wahr bzw. falsch? Setzen Sie in jeder Zeile genau ein Kreuz. Für jede korrekte Antwort erhalten

Mehr

4 Elementare Vektorraumtheorie

4 Elementare Vektorraumtheorie 4. ELEMENTARE VEKTORRAUMTHEORIE 51 4 Elementare Vektorraumtheorie Im folgenden sei K stets ein Körper. Definition. (i) Eine homogene Gleichung in den Unbekannten ξ 1,..., ξ n ist ein Ausdruck der Gestalt

Mehr

Basis und Dimension. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Basis und Dimension. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren Basis und Dimension Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren aus V. 1) (v i ) i I heißt ein Erzeugendensystem von V, wenn Span(v i ) = V. 2) (v i ) i I heißt Basis von

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

3 Lineare Abbildungen und Matrizen

3 Lineare Abbildungen und Matrizen 3 Lineare Abbildungen und Matrizen Definition 3.1. Es seien V und W zwei Vektorräume über demselben Zahlkörper k. Eine Abbildung heisst linear, falls gilt i) [ λ k ] [ v V ] [ f (λ v) = λ f ( v) ] ii)

Mehr

Kapitel 5. Endomorphismen von Vektorräumen. 5.3 Nilpotente Endomorphismen

Kapitel 5. Endomorphismen von Vektorräumen. 5.3 Nilpotente Endomorphismen Kapitel 5 c M Roczen und H Wolter Preview zur aktuellen Fassung: Lineare Algebra individuell Online Ver 052, 1552005 Alle Rechte vorbehalten Endomorphismen von Vektorräumen V 0 sei ein Vektorraum über

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Summen und direkte Summen

Summen und direkte Summen Summen und direkte Summen Sei V ein K-Vektorraum. Wie früher erwähnt, ist für beliebige Teilmengen M, N V die Teilmenge M +N V wie folgt definiert M +N = {v+w : v M, w N}. Man sieht leicht, dass i.a. M

Mehr

Lineare Algebra I. Lösung 9.2:

Lineare Algebra I. Lösung 9.2: Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 9 Prof. Dr. Markus Schweighofer 20.01.2010 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 9.1: Voraussetzung:

Mehr

Kapitel 11. Dimension und Isomorphie

Kapitel 11. Dimension und Isomorphie Kapitel 11. Dimension und Isomorphie Bestimmung der Dimension Satz. Sei (v 1, v 2,..., v n ) ein minimales Erzeugendensystem von V, d.h. dieses System ist ein Erzeugendensystem von V, aber keines der nach

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum,

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum, 2 Vektorräume In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa Unterraum, Linearkombination, lineare Unabhängigkeit und Erzeugendensystem.

Mehr

Einführung in die Mathematik für Informatiker

Einführung in die Mathematik für Informatiker Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 12.12.2016 9. Vorlesung Eigenschaften linearer Abbildungen Beschreibung linearer Abbildungen durch Matrizen... Eigenschaften

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

x 2 + y 2 = f x y = λ

x 2 + y 2 = f x y = λ Lineare Abbildungen Def Es seien (V 1,+, ) und (V 2,+, ) zwei Vektorräume Eine Abbildung f : V 1 V 2 heißt linear, falls für alle Vektoren u,v V 1 und für jedes λ R gilt: f (u + v) = f (u) + f (v), f (λu)

Mehr

11. BASIS, UNTERRAUM, und DIMENSION

11. BASIS, UNTERRAUM, und DIMENSION 11. BASIS, UNTERRAUM, und DIMENSION 1 Basen werden zu unterschiedlichen Zwecken benutzt: Um lineare Abbildungen in ihrer Matrixdarstellung zu vereinfachen, um die Dimension von Vektorräumen und ihren Unterräumen

Mehr

LINEARE ALGEBRA FÜR ANALYSIS

LINEARE ALGEBRA FÜR ANALYSIS LINEARE ALGEBRA FÜR ANALYSIS ALBERTO S. CATTANEO Zusammenfassung. Eine Zusammenfassung der wichtigsten in der Analysis gebrauchten Grundbegriffe aus der linearen Algebra (speziell für diejenigen, die lineare

Mehr

Kapitel 11. Bilinearformen über beliebigen Bilinearformen

Kapitel 11. Bilinearformen über beliebigen Bilinearformen Kapitel 11 Bilinearformen über beliebigen Körpern Wir können in diesem Kapitel rasch vorgehen, weil die meisten Konzepte im Zusammenhang mit Sesquilinearformen bereits eingeführt wurden. In diesem Abschnitt

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

3.2 Unabhängigkeitsstrukturen

3.2 Unabhängigkeitsstrukturen 80 3.2 Unabhängigkeitsstrukturen Unser Ziel ist der Nachweis, daß in Vektorräumen, also in Moduln über Körpern, Basen existieren und zwei endliche Basen gegebenenfalls von derselben Ordnung sind. (Basen

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

4 Eigenwerte und Eigenvektoren

4 Eigenwerte und Eigenvektoren 4 Eigenwerte und Eigenvektoren Sei V {0} ein K Vektorraum und f : V V K linear. Definition: Ein Eigenwert von f ist ein Element λ K, für die es einen Vektor v 0 in V gibt, so dass f(v) = λ v. Sei nun λ

Mehr

IV.3. RANG VON MATRIZEN 81

IV.3. RANG VON MATRIZEN 81 IV3 RANG VON MATRIZEN 8 Ist b,,b n eine Basis des reellen Vektorraums V, dann bildet b,,b n auch eine Basis des komplexen Vektorraums V C Mit V ist daher auch V C endlichdimensional und es gilt dim C V

Mehr

1 Mengen und Abbildungen

1 Mengen und Abbildungen 1 MENGEN UND ABBILDUNGEN 1 1 Mengen und Abbildungen Wir starten mit einigen einführenden Definitionen und Ergebnissen aus der Theorie der Mengen und Abbildungen, die nicht nur Grundlage der Linearen Algebra

Mehr

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h.

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h. Lineare Abbildungen Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls (1) u, v V : f( u + v) = f( u) + f( v). (2) v V α K : f(α v) = αf( v).

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension Lineare Algebra I WS 205/6 c Rudolf Scharlau 65 2.3 Basis und Dimension In diesem zentralen Abschnitt werden einige für die gesamte Lineare Algebra fundamentale Grundbegriffe eingeführt: Lineare Abhängigkeit

Mehr

Satz 7. A sei eine nichtleere Teilmenge des nichttrivialen Vektorraums (V, +, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine nichtleere Teilmenge des nichttrivialen Vektorraums (V, +, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine nichtleere Teilmenge

Mehr

Beziehungen zwischen Vektorräumen und ihren Dimensionen

Beziehungen zwischen Vektorräumen und ihren Dimensionen Beziehungen zwischen Vektorräumen und ihren Dimensionen Lineare Algebra I Kapitel 9 20. Juni 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Affine Geometrie (Einfachere, konstruktive Version)

Affine Geometrie (Einfachere, konstruktive Version) Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit

Mehr

3.9 Elementarmatrizen

3.9 Elementarmatrizen 90 Kapitel III: Vektorräume und Lineare Abbildungen 3.9 Elementarmatrizen Definition 9.1 Unter einer Elementarmatrix verstehen wir eine Matrix die aus einer n n-einheitsmatrix E n durch eine einzige elementare

Mehr

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen Kapitel 2 Lineare Algebra II 2 Lineare Abbildungen Die mit der Vektorraumstruktur verträglichen Abbildungen zwischen Vektorräumen werden als linear bezeichnet Genauer definiert man: 2 Definition Eine Abbildung

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

Musterlösung zur Nachklausur Lineare Algebra I

Musterlösung zur Nachklausur Lineare Algebra I Musterlösung zur Nachklausur Lineare Algebra I Aufgabe 1 5 Punkte: Welche der folgenden Aussagen sind wahr bzw falsch? Setzen Sie in jeder Zeile genau ein Kreuz Für jede korrekte Antwort erhalten Sie 0,5

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Universität Zürich HS , Vorlesung #3

Universität Zürich HS , Vorlesung #3 Algebraic Number Theory P. Habegger Universität Zürich HS 2010 6.10.2010, Vorlesung #3 1.4 Diskriminante Die primitivste Invariante eines Zahlkörpers ist sein Grad. Die Diskriminante eines Zahlkörpers

Mehr

Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen

Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen Vorschau: Lineare Abbildungen Wer Vektorräume studiert,

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

$Id: vektor.tex,v /01/21 14:35:13 hk Exp $

$Id: vektor.tex,v /01/21 14:35:13 hk Exp $ Mathematik für Physiker I, WS 2/2 Freitag 2 $Id: vektortex,v 5 2//2 4:35:3 hk Exp $ Vektorräume 2 Untervektorräume und Erzeugendensysteme Am Ende der letzten Sitzung hatten wir wieder einmal den Lösungsraum

Mehr

11.2 Orthogonalität. Wintersemester 2013/2014

11.2 Orthogonalität. Wintersemester 2013/2014 Universität Konstanz Fachbereich Mathematik und Statistik Wintersemester 2013/2014 Markus Scheighofer Lineare Algebra I 11.2 Orthogonalität Definition 11.2.1. Seien V ein K-Vektorraum mit Skalarprodukt

Mehr

9 Aus der linearen Algebra. Themen: Lineare Abbildungen Darstellung durch Matrizen

9 Aus der linearen Algebra. Themen: Lineare Abbildungen Darstellung durch Matrizen 9 Aus der linearen Algebra Themen: Der à n Lineare Abbildungen Darstellung durch Matrizen Der à n besteht aus den n-tupeln mit x i Ã. x 1 x 2 x = (x 1, x 2,...,x n ) oder x =. x n Der à n besteht aus den

Mehr

Homogene und inhomogene Koordinaten und das Hyperboloid

Homogene und inhomogene Koordinaten und das Hyperboloid Seminararbeit zum Seminar aus Reiner Mathematik Homogene und inhomogene Koordinaten und das Hyperboloid Gernot Holler 1010674 WS 2012/13 28.November 2012 1 Inhaltsverzeichnis 1 Einleitung 3 2 Homogene

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

4.3 Affine Punkträume

4.3 Affine Punkträume 4.3. AFFINE PUNKTRÄUME 185 4.3 Affine Punkträume Es wird jetzt der Übergang von der linearen Algebra zur analytischen Geometrie beschrieben. 4.3.1 Definition (affiner Punktraum) Sei V ein K-Vektorraum,

Mehr

Vektorräume. Kapitel Definition und Beispiele

Vektorräume. Kapitel Definition und Beispiele Kapitel 3 Vektorräume 3.1 Definition und Beispiele Sei (V,,0) eine abelsche Gruppe, und sei (K, +,, 0, 1) ein Körper. Beachten Sie, dass V und K zunächst nichts miteinander zu tun haben, deshalb sollte

Mehr

Koordinaten und darstellende Matrizen

Koordinaten und darstellende Matrizen Koordinaten und darstellende Matrizen Olivier Sète 4 Juli 2008 Inhaltsverzeichnis Koordinatenabbildung 2 Definition und Eigenschaften 2 2 Beispiel 3 2 Matrixdarstellung eines Vektorraumhomomorphismus 3

Mehr

, Uhr Dr. Thorsten Weist. Name Vorname Matrikelnummer. Geburtsort Geburtsdatum Studiengang

, Uhr Dr. Thorsten Weist. Name Vorname Matrikelnummer. Geburtsort Geburtsdatum Studiengang Nachklausur zur Linearen Algebra I - Nr. 1 Bergische Universität Wuppertal Sommersemester 2011 Prof. Dr. Markus Reineke 06.10.2011, 10-12 Uhr Dr. Thorsten Weist Bitte tragen Sie die folgenden Daten leserlich

Mehr