Lineare Algebra I (WS 12/13)
|
|
|
- Friederike Schmitt
- vor 8 Jahren
- Abrufe
Transkript
1 Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg Bernhard Hanke 1 / 9
2 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche Eliminationsverfahren. Wir betrachten ein lineares Gleichungssystem der Form a 11 x a 1n x n = b 1 a 21 x a 2n x n = b 2.. a m1 x a mn x n = b m aus m Gleichungen in n Unbekannten x 1,..., x n mit Koeffizienten a ij R, b i R, wobei 1 i m, 1 j n. Wir erhalten die Koeffizientenmatrix A := (a ij ) 1 i m, 1 j n := a 11 a a 1n a 21 a a 2n.... a m1 a m2... a mn mit m Zeilen und n Spalten. Wir sprechen auch von einer (m n)-matrix. Bernhard Hanke 2 / 9
3 Wir betrachten daneben auch die erweiterte Koeffizientenmatrix a 11 a a 1n b 1 a 21 a a 2n b 2 (A b) :=..... a m1 a m2... a mn b m Dies ist eine (m (n + 1))-Matrix. Wir werden später Matrizen im Zusammenhang mit linearen Abbildungen noch genauer untersuchen. Hier dienen sie nur der bequemen Notation. Es ist klar, dass jede (m (n + 1))-Matrix die erweiterte Koeffizientenmatrix genau eines lineares Gleichungssystems mit m Gleichungen und n Unbekannten ist. Bernhard Hanke 3 / 9
4 Wir betrachten nun die folgenden Operationen, genannt elementare Zeilenumformungen auf der erweiterten Koeffizientenmatrix Vertauschung zweier Zeilen. Addition des λ-fachen der i 1 -ten Zeile zur i 2 -ten Zeile, wobei λ R und 1 i 1, i 2 m, i 1 i 2. Diese ändern die Lösungsmenge des zugrunde liegenden Gleichungssystems nicht: Proposition Angenommen, die erweiterten Koeffizientenmatrizen (A b) und (A b ) gehen durch elementare Zeilenumformungen auseinander hervor. Dann stimmen die Lösungsmengen der entsprechenden linearen Gleichungssysteme überein. Bernhard Hanke 4 / 9
5 Definition Ein lineares Gleichungssystem ist in Zeilenstufenform, falls die (nicht erweiterte) Koeffizientenmatrix A in Zeilenstufenform vorliegt: Entweder hat diese Matrix nur 0 als Einträge oder es gibt ein 1 r m und eine Folge 1 j 1 < j 2 <... < j r n mit den folgenden Eigenschaften: Für alle 1 i r gilt a ij = 0, falls j < j i. Es gilt a ij = 0, falls i > r Für alle 1 i r gilt a iji 0. Insbesondere sind alle Zeilen unterhalb der r-ten Zeile gleich 0. Die von Null verschiedenen Elemente a iji, i = 1,..., r heißen Pivotelemente des Gleichungssystems, bzw. der Koeffizientenmatrix. Proposition Jedes lineare Gleichungssystem lässt sich durch elementare Zeilenumformungen auf Zeilenstufenform bringen. Bernhard Hanke 5 / 9
6 Ist ein lineares Gleichungssystem in Zeilenstufenform gegeben, so lässt sich dieses sehr einfach lösen. Angenommen es existiert ein b i 0 mit i > r. Dann ist die Lösungsmenge leer. Andernfalls bestimmen wir die Lösungsmenge wie folgt: Für jede beliebige Wahl der n r Zahlen x j R für 1 j n, j j 1, j 2,..., j r, genannt freie Parameter, existiert genau eine Wahl der verbleibenden Komponenten x j1,..., x jr, so dass (x 1,..., x n ) das Gleichungssystem löst. Denn durch die r-te Gleichung ist wegen a rjr 0 und a rj = 0 für j < j r die Komponente x jr eindeutig durch die Komponenten x jr +1,..., x n, b r festgelegt: x jr = 1 a rjr (b r a r jr +1x jr a rn x n ). Danach legt die (r 1)-te Gleichung die Komponente x jr 1 eindeutig fest und so weiter. Umgekehrt sind natürlich durch jede Lösung (x 1,..., x n ) des Gleichungssystems die Komponenten x j, j j 1,..., j r eindeutig bestimmt. Bernhard Hanke 6 / 9
7 Zusammengefasst erhalten wir also: Satz Es sei wie oben ein lineares Gleichungssystem über R in Zeilenstufenform gegeben. Es sei L R n die Lösungsmenge. Dann existiert eine eineindeutige Beziehung zwischen Elementen von R n r und von L: Zu jedem (n r)-tupel (λ 1,..., λ n r ) R n r können wir die durch diese Elemente eindeutig bestimmte Lösung (x 1,..., x n ) des Gleichungssystems berechnen, bei der die freien Parameter x j, j j 1,..., j r gleich λ 1,..., λ n r gesetzt wurden. Umgekehrt bestimmt jedes n-tupel (x 1,..., x n ) L eindeutig die Komponenten x j, j j 1,..., j r. Bernhard Hanke 7 / 9
8 Dieses Theorem erlaubt es, die Lösungsmenge des Gleichungssystems in der sogenannten Parameterform anzugeben, wobei die Parameter λ 1,..., λ n r R frei gewält werden können. Da wir jedes lineare Gleichungssystem auf Zeilenstufenform bringen können ohne die Lösungsmenge zu ändern, haben wir somit eine Methode gefunden, beliebige lineare Gleichungssystem zu lösen. Als Beispiel betrachten wir das lineare Gleichungssystem 3x 6 + x 7 = 2 2x 2 + 4x 4 + 6x 5 + 5x 7 = 3 2x 2 + x 3 + 7x 4 + 8x 5 + x 6 + 5x 7 = 4 2x 2 + 4x 4 + 6x 5 + 3x 6 + 6x 7 = 5 über R. Dieses hat die erweiterte Koeffizientenmatrix (A b) := Bernhard Hanke 8 / 9
9 Durch elementare Zeilenumformungen wird daraus die erweiterte Koeffizientenmatrix deren (nicht erweiterte) Koeffizientenmatrix in Zeilenstufenform vorliegt. Die Lösungsmenge L dieses Gleichungssystems ist in Parameterform gegeben durch L = λ λ 2 3λ λ λ 2 2λ λ 4 λ 2 λ λ 4 λ 4 λ 1, λ 2, λ 3, λ 4 R R 7 wobei wir die Elemente in R 7 in Spaltenform notieren (d.h. die Komponenten untereinander statt nebeneinander schreiben). Bernhard Hanke 9 / 9
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange
4 Der Gauß Algorithmus
4 Der Gauß Algorithmus Rechenverfahren zur Lösung homogener linearer Gleichungssysteme Wir betrachten ein GLS (1) a 11 x 1 + a 1 x + + a 1n x n = a 1 x 1 + a x + + a n x n = a m1 x 1 + a m x + + a mn x
37 Gauß-Algorithmus und lineare Gleichungssysteme
37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass
1 Transponieren, Diagonal- und Dreiecksmatrizen
Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix
2.2 Lineare Gleichungssysteme (LGS)
2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +
1 Lineare Gleichungssysteme und Matrizen
1 Lineare Gleichungssysteme und Matrizen Das Studium linearer Gleichungssysteme und ihrer Lösungen ist eines der wichtigsten Themen der linearen Algebra. Wir werden zunächst einige grundlegende Begriffe
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html
6 Lineare Gleichungssysteme
6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α
Mathematik IT 2 (Lineare Algebra)
Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof Dr L Cromme Mathematik IT (Lineare Algebra für die Studiengänge Informatik, IMT und ebusiness im Sommersemester 3 Lineare Gleichungssysteme
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden
Lineare Algebra I (WS 12/13)
Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke, Universität Augsburg 15.10.2013 Alexander Lytchak 1 / 14 Organisation Alle wichtigen organisatorischen Information
Lineare Gleichungssysteme und Matrizen
Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x
Lineare Gleichungssysteme
Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Übersicht Lineare Gleichungssystem mit 2 Variablen 1 Lineare Gleichungssystem mit 2 Variablen Beispiele 2 Fakultät Grundlagen Folie: 2 Beispiel I Lineare
Lineare Gleichungssysteme - Grundlagen
Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente
3. Übungsblatt zur Lineare Algebra I für Physiker
Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte
Matrizen, Determinanten, lineare Gleichungssysteme
Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n
8.2 Invertierbare Matrizen
38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
( ) Lineare Gleichungssysteme
102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv
Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.
Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,
Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7
Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe
2.2 Lineare Gleichungssysteme
Lineare Algebra I WS 2015/16 c Rudolf Scharlau 55 22 Lineare Gleichungssysteme Das Lösen von Gleichungen (ganz unterschiedlichen Typs und unterschiedlichen Schwierigkeitsgrades) gehört zu den Grundproblemen
Der Kern einer Matrix
Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix
Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das
A2.3 Lineare Gleichungssysteme
A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen
3.4 Der Gaußsche Algorithmus
94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,
Lineare Gleichungssysteme
Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn
6. Übungsblatt zur Mathematik I für Maschinenbau
Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 6. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 2/ 25..-.2. Aufgabe G (Lineare Gleichungssysteme)
Lineare Gleichungssysteme
Mathematik I für Biologen, Geowissenschaftler und Geoökologen 28. November 2011 Definition Beispiel: Wassermengen und Konzentrationen in einem Fluss Beispiel Zeilenstufenform Beispiel (Fortsetzung) Anhang
Das Lösen linearer Gleichungssysteme
Das Lösen linearer Gleichungssysteme Lineare Gleichungen Die Gleichung a 1 x 1 + a 2 x 2 +... + a n x n = b ist eine lineare Gleichung in den n Variablen x 1, x 2,..., x n. Die Zahlen a 1, a 2,..., a n
Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS / Blatt 6 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag Wir verwenden das Unterraumkriterium,
Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).
Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen
2 Matrizenrechnung und Lineare Gleichungssysteme
Technische Universität München Florian Ettlinger Ferienkurs Lineare Algebra Vorlesung Dienstag WS 2011/12 2 Matrizenrechnung und Lineare Gleichungssysteme 2.1 Matrizenrechnung 2.1.1 Einführung Vor der
Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok
Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html [email protected]
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg Spezialfälle und Rechenregeln Spezialfälle der Matrimultiplikation A = (m
Lösung (die Geraden laufen parallel) oder unendlich viele Lösungen.
1 Albert Ludwigs Universität Freiburg Abteilung Empirische Forschung und Ökonometrie Mathematik für Wirtschaftswissenschaftler Dr. Sevtap Kestel Winter 2008 Kapitel 16 Determinanten und inverse Matrizen
Lineare Gleichungssysteme (Teschl/Teschl 11.1)
Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...
Brückenkurs Mathematik. Mittwoch Freitag
Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs
7 Lineare Gleichungssysteme
118 7 Lineare Gleichungssysteme Lineare Gleichungssysteme treten in vielen mathematischen, aber auch naturwissenschaftlichen Problemen auf; zum Beispiel beim Lösen von Differentialgleichungen, bei Optimierungsaufgaben,
Lineare Gleichungssysteme
Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1
Aufgaben zu Kapitel 14
Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt
Lineare Algebra und analytische Geometrie I
Prof Dr H Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 12 Wege entstehen dadurch, dass man sie geht Franz Kafka Invertierbare Matrizen Definition 121 Es sei K ein
β 1 x :=., und b :=. K n β m
44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix
Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A
133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des
Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya
Rang einer Matrix 1-E1 Ma 1 Lubov Vassilevskaya Unterdeterminante einer nichtquadratischen Matrix M ist eine nichtquadratische 2,3-Matrix: M = 6 2 3 0 5 7 Durch Streichen einer der drei Spalten kann man
Kapitel 16. Invertierbare Matrizen
Kapitel 16. Invertierbare Matrizen Die drei Schritte des Gauß-Algorithmus Bringe erweiterte Matrix [A b] des Gleichungssystems A x auf Zeilenstufenform [A b ]. Das System A x = b ist genau dann lösbar,
2 Die Dimension eines Vektorraums
2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1
Lösung Test 2 (Nachprüfung)
MLAE Mathematik: Lineare Algebra für ngenieure Herbstsemester Dr Christoph Kirsch ZHAW Winterthur Aufgabe : Lösung Test (Nachprüfung a Wir verwenden den Gauss-Jordan-Algorithmus, um die erweiterte Koeffizientenmatrix
Erneut: Matrizen und lineare Abbildungen
Erneut: Matrizen und lineare Abbildungen Mit Hilfe der Matrixmultiplikation lässt sich die Korrespondenz zwischen linearen Abbildungen und Matrizen elegant ausdrücken: Satz. e 1, e 2,..., e n sei die Standardbasis
Lineare Gleichungssysteme: eine Ergänzung
Lineare Gleichungssysteme: eine Ergänzung Ein lineares Gleichungssystem, bei dem alle Einträge auf der rechten Seite gleich sind heiÿt homogenes lineares Gleichungssystem: a x + a 2 x 2 +... + a n x n
1 Matrizenrechnung zweiter Teil
MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten
8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten
Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 05.11.2013 Alexander Lytchak 1 / 14 Linearkombinationen Definition Es sei V ein reeller Vektorraum. Es sei (v i ) i
4 Vorlesung: 21.11. 2005 Matrix und Determinante
4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer
Copyright, Page 1 of 5 Die Determinante
wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist
Kapitel 1. Matrizen und lineare Gleichungssysteme. 1.1 Matrizenkalkül (Vektorraum M(n,m); Matrixmultiplikation;
Kapitel 1 Matrizen und lineare Gleichungssysteme 11 Matrizenkalkül (Vektorraum M(n,m; Matrixmultiplikation; Transposition; Spalten- und Zeilenvektoren Matrizen sind im Prinzip schon bei der schematischen
Klausurähnliche Aufgaben
Sommersemester 2007/08 Lineare Algebra Klausurähnliche Aufgaben Aufgabe 1 Seien v 1, v 2, v 3, v 4, v 5, v 6 die Vektoren in R 5 mit v 1 = (1, 2, 3, 1, 2), v 2 = (2, 4, 6, 2, 4), v 3 = ( 1, 1, 3, 0, 3),
Dreiecke, Geraden, Lineare Gleichungssysteme
Dreiecke, Geraden, Lineare Gleichungssysteme Jörn Loviscach Versionsstand: 18. April 2009, 19:46 1 Cosinussatz Mit Hilfe des Skalarprodukts kann man den Cosinussatz [law of cosines] zeigen. Seien a und
5.7 Lineare Abhängigkeit, Basis und Dimension
8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n
4. Vektorräume und Gleichungssysteme
technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume
Das inhomogene System. A x = b
Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbestimmten hat immer mindestens die Lösung 0. Ist r der Rang von A, so hat das System n r Freiheitsgrade. Insbesondere gilt: Ist
Lineare Algebra und Numerische Mathematik für D-BAUG
P. Grohs T. Welti F. Weber Herbstsemester 2 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Mittsemesterprüfung HS, Typ A Name a a Note Vorname Leginummer Datum 29..2 2 4 6 Total
Lösungen zum 5. Aufgabenblatt
SS 2012, Lineare Algebra 1 Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com
Kapitel 15. Lösung linearer Gleichungssysteme
Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren
2.3 Lineare Abbildungen und Matrizen
2.3. LINEARE ABBILDUNGEN UND MATRIZEN 89 Bemerkung Wir sehen, dass die Matrix à eindeutig ist, wenn x 1,...,x r eine Basis ist. Allgemeiner kann man zeigen, dass sich jede Matrix mittels elementarer Zeilenumformungen
Vektor und Matrixnormen Vorlesung vom
Vektor und Matrixnormen Vorlesung vom 20.12.13 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse
$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $
Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit
7.1 Matrizen und Vektore
7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit
Lineare Algebra und analytische Geometrie I Lösungsvorschlag zum 8. Tutoriumsblatt
Mathematisches Institut der Universität München Wintersemester 24/5 Daniel Rost Lukas-Fabian Moser Lineare Algebra und analytische Geometrie I Lösungsvorschlag zum 8. Tutoriumsblatt Aufgabe T-. a) Die
bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR
LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine
Lineare Algebra und analytische Geometrie I
Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 5 Verwandle große Schwierigkeiten in kleine und kleine in gar keine Chinesische Weisheit Das Lösen von
Vektorräume. Kapitel Definition und Beispiele
Kapitel 3 Vektorräume 3.1 Definition und Beispiele Sei (V,,0) eine abelsche Gruppe, und sei (K, +,, 0, 1) ein Körper. Beachten Sie, dass V und K zunächst nichts miteinander zu tun haben, deshalb sollte
Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren
Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren oder: Wie rechnet eigentlich der TI 84, wenn lineare Gleichungssysteme gelöst werden? Hier wird an einem Beispiel das Gaußsche Verfahren zum
5 Die Allgemeine Lineare Gruppe
5 Die Allgemeine Lineare Gruppe Gegeben sei eine nicht leere Menge G und eine Abbildung (Verknüpfung) : G G G, (a, b) a b( a mal b ) Das Bild a b von (a, b) heißt Produkt von a und b. Andere gebräuchliche
10.2 Linearkombinationen
147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition
Klausurvorbereitungsblatt Lineare Algebra
Klausurvorbereitungsblatt Lineare Algebra Sommersemester 25 Aufgabe 2 2 Sei A 3 3 8 2 4 3 R4 5. 5 2 a) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems Ax b) Ist Ax b mit b lösbar? (Begründen
17. Das Gauß-Verfahren
7 Das Gauß-Verfahren 95 7 Das Gauß-Verfahren Nachdem wir jetzt viele Probleme der linearen Algebra (z B Basen von Vektorräumen zu konstruieren, Morphismen durch lineare Abbildungen darzustellen oder den
Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren
Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(
Mathematik 1, Teil B. Inhalt:
FH Emden-Leer Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre 2.) Matrizen, Determinanten
Mathematik für Wirtschaftswissenschaftler im WS 2013/14 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7
Mathematik für Wirtschaftswissenschaftler im WS 203/4 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7 Aufgabe 27 Sei eine lineare Abbildung f : R 4 R 3 gegeben durch f(x, x 2, x 3 ) = (2 x 3 x 2
Vektor und Matrixnormen Vorlesung vom
Vektor und Matrixnormen Vorlesung vom 18.12.15 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse
Chr.Nelius : Lineare Algebra II (SS 2005) 1. Wir wollen hier eine Beschreibung des Gauß-Algorithmus mit Hilfe der sog. Elementarmatrizen vornehmen.
ChrNelius : Lineare Algebra II (SS 2005) 1 Einschub A) Elementarmatrizen Wir wollen hier eine Beschreibung des Gauß-Algorithmus mit Hilfe der sog Elementarmatrizen vornehmen (A1) DEF: Seien r, s IN mit
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Das komplette Material finden Sie hier: School-Scout.de Thema: Lineare Algebra:
Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)
Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.
Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth
Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter
3.9 Elementarmatrizen
90 Kapitel III: Vektorräume und Lineare Abbildungen 3.9 Elementarmatrizen Definition 9.1 Unter einer Elementarmatrix verstehen wir eine Matrix die aus einer n n-einheitsmatrix E n durch eine einzige elementare
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter
Lineare Gleichungssysteme
Poelchau-Oberschule Berlin A. Mentzendorff September 2007 Lineare Gleichungssysteme Inhaltsverzeichnis 1 Grundlagen 2 2 Das Lösungsverfahren von Gauß 4 3 Kurzschreibweise und Zeilensummenkontrolle 6 4
Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben
Kapitel 16 Aufgaben Verständnisfragen Aufgabe 16.1 Ist das Produkt quadratischer oberer bzw. unterer Dreiecksmatrizen wieder eine obere bzw. untere Dreiecksmatrix? Aufgabe 16.2 Bekanntlich gilt im Allgemeinen
3.6 Eigenwerte und Eigenvektoren
3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse
