Kapitel 15. Lösung linearer Gleichungssysteme

Größe: px
Ab Seite anzeigen:

Download "Kapitel 15. Lösung linearer Gleichungssysteme"

Transkript

1 Kapitel 15. Lösung linearer Gleichungssysteme

2 Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren einmal den begrifflichen Aspekt, d.h. befassen uns mit der Struktur der Lösungsmenge eines beliebigen linearen Gleichungssystems; Zum anderen untersuchen wir den praktischen Aspekt, d.h. algorithmische Verfahren zur schnellen Lösung eines konkreten Systems. Wir werden sehen, dass schon mit geringem begrifflichen Aufwand die praktische Lösung solcher Gleichungssysteme gelingt. 1

3 Koeffizientenmatrix und erweiterte Matrix Ein lineares Gleichungssystem a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n... = b 2. a m1 x 1 + a m2 x a mn x n = b m aus m Gleichungen in den n Unbekannten x 1, x 2,..., x n, ist bestimmt durch seine Koeffizientenmatrix A = a 11 a 1n..... und die rechte Seite b = b 1.. a m1 a mn b m Durch Zusammenfassen erhalten wir die erweiterte Matrix [A b] = a 11 a 1n b a mn a 1n b m 2

4 Matrizenschreibweise Das lineare Gleichungssystem mit erweiterter Koeffizientenmatrix [A b] schreiben wir in kompakter Matrizenschreibweise als A x = b. Wir interessieren uns für die Lösungsmenge L = {x R n A x = b}. Spezialfall: Falls A = E n die n n-einheitsmatrix ist, hat das System die Form E n x = b. Wegen E n x = x ist in diesem Fall das System somit eindeutig lösbar mit der einzigen Lösung x = b. 3

5 Die Struktur der Lösungsmenge von A x = b Satz. A sei eine m n-matrix vom Rang r und b R m. Dann gilt (a) Das lineare Gleichungssystem A x = b ist genau dann lösbar, wenn sich b als Linearkombination der Spalten a 1, a 2,..., a n von A schreiben lässt. (b) Die Lösungen des zugehörigen homogenen Gleichungssystems A x = 0 bilden einen Unterraum H des R n von der Dimension n r. (c) Ist x 0 eine Lösung von A x = b, so gilt: x ist genau dann ebenfalls eine Lösung von A x = b, wenn x = x 0 + h mit h H gilt. Mit anderen Worten: Entweder ist L = oder L = x 0 + H := {x 0 + h A h = 0} für eine spezielle Lösung x 0. 4

6 Beweis des Struktursatzes Beweis. Zu (a): Das behauptete Lösbarkeitskriterium folgt sofort aus A x = n i=1 x i.a i. Zu (b): Es ist H gerade der Kern der linearen Abbildung f : R n R m, x A x; insbesondere ist H ein Unterraum von R n. Der Rang von f ist gleich dem Rang von A; nach Rangsatz hat H folglich die Dimension n r. Zu (c): Nach Voraussetzung ist A x 0 = b. Folglich ist A x = b genau dann, wenn A (x x 0 ) = 0, äquivalent wenn x x 0 H gilt. 5

7 Was bedeutet Lösen eines linearen Gleichungssystems? Zunächst einmal die Feststellung, ob das System A x = b lösbar ist oder nicht. Falls das System lösbar ist, besteht eine Lösung aus folgenden Daten: (a) einer speziellen Lösung x 0, (b) einer Basis h 1,..., h n r des Lösungsraums des homogenen Systems A h = 0. Achtung: Falls das System lösbar, aber nicht eindeutig lösbar ist, können sehr verschiedene Auswahlen zu (a) und (b) völlig gleichwertige Lösungen sein! 6

8 Vorschau: Gauß-Algorithmus Die praktische Lösung eines numerisch gegebenen linearen Gleichungssystems A x = b erfolgt mittels des Gauß-Algorithmus. Dieser Algorithmus fußt auf zwei Säulen: (1) Der Beobachtung, dass gewisse elementare Abänderungen die Lösungsmenge eines linearen Gleichungssystems nicht ändern. (2) Der Möglichkeit, durch solche Abänderungen jedes Gleichungssystem auf sogenannte Zeilenstufenform zu bringen. Nach diesen Änderungen sind Lösbarkeit und gegebenenfalls die Lösungsmenge automatisch ablesbar. Benannt nach Carl Friedrich Gauß ( ), der uns schon bei der Gaußschen Zahlenebene begegnete.) 7

9 Elementare Zeilenoperationen Die Lösungsmenge eines linearen Gleichungssystems ändert sich nicht bei einer der folgenden Operationen (a) Vertauschen zweier Gleichungen. (b) Multiplikation beider Seiten einer Gleichung mit einem Faktor 0. (c) Addition eines Vielfachen einer Gleichung zu einer anderen Gleichung. Ein gegebenes System werden wir daher mit solchen elementaren Zeilenumformungen solange vereinfachen, bis wir die Lösungsmenge des vereinfachten und damit auch des ursprünglichen Systems ablesen können. 8

10 Beweis Beweis. (a), (b) sind klar, nur (c) bedarf der Begründung. Seien also i k aus dem Bereich 1,..., m. Wir betrachten die i-te und die k-te Gleichung: (1) (2) a i1 x 1 + a i2 x a in x n = b i a k1 x 1 + a k2 x a kn x n = b k. Jede Lösung der Gleichungen (1) und (2) ist auch eine Lösung von: (3) (a i1 + aa k1 )x 1 + (a i2 + aa k2 )x (a in + aa kn )x n = b i + ab k und damit der beiden Gleichungen: (4) (5) (a i1 + aa k1 )x 1 + (a i2 + aa k2 )x (a in + aa kn )x n = b i + ab k a k1 x 1 + a k2 x a kn x n = b k. Halten wir fest: Jede Lösung von (1) und (2) ist auch eine von (4) und (5). Aus (4) und (5) erhalten wir aber (1) und (2) zurück, indem wir das ( a)-fache der Gleichung (5) zur Gleichung (4) addieren. Mit obigem Schluss ist jede Lösung von (4) und (5) dann auch eine von (1) und (2). 9

11 Elementare Zeilenumformungen Für die zugehörige erweiterte Matrix [A b] des Gleichungssystems A x = b liest sich das so: Jede Operation vom Typ Vertauschen zweier Zeilen, Multiplikation einer Zeile mit einem Faktor 0, Addition eines Vielfachen einer Zeile zu einer anderen Zeile, macht aus [A, b] eine neue erweiterte Matrix [A b ], für welche das zugeordnete Gleichungssystem A x = b dieselbe Lösungsmenge hat wie das System A x = b. 10

12 Vorläufiger Lösungsansatz Da wir Gleichungen der Form E x = b, E die n n-einheitsmatrix, trivialerweise lösen durch x = b können, werden wir zu folgendem allerdings vorläufigem Lösungsansatz für ein lineares Gleichungssystem A x = b mit quadratischer Matrix A geführt: Idee: Forme [A b] solange durch elementare Zeilenumformungen um bis die Form [E c] erreicht ist, wobei E die n n-einheitsmatrix ist. In diesem Fall ist x = c die eindeutig bestimmte Lösung von A x = b. 11

13 Überprüfung der Idee I Häufig klappt s: Das lineare Gleichungssystem führt zur erweiterten Matrix x 1 + 2x 2 + 0x 3 = 1 2x 1 + 3x 2 + 0x 3 = 1 3x 1 + 4x 2 + 1x 3 = und den markierten elementaren Zeilenumformungen. Folglich ist das Gleichungssystem eindeutig lösbar mit Lösung x 1 x 2 = 1 1. x

14 Überprüfung der Idee II Mitunter klappt s nicht: Das lineare Gleichungssystem führt zur erweiterten Matrix x 1 + 1x 2 + 6x 3 = 18 2x 1 + 1x 2 + 4x 3 = 13 1x 1 + 1x 2 + 2x 3 = und den markierten elementaren Zeilenumformungen. Die erhaltene Matrix [A, b ] lässt sich nicht auf die Form [E c] bringen. Grund: Das zu [A b ] gehörige Gleichungssystem ist nicht lösbar, da schon allein seine letzte Gleichung 0x 1 + 0x 2 + 0x 3 = 2 nicht lösbar ist. 13

15 Bewertung der Beispiele Unsere Idee Umformung in Richtung Einheitsmatrix war zu optimistisch. Nur für eindeutig lösbare Systeme kann die Reduktion der erweiterten Matrix auf die Form [E c] überhaupt gelingen. Gleichwohl zeigt Beispiel II, dass die eingeschlagene Strategie auch dort trägt, wo die eindeutige Lösbarkeit nicht gegeben ist. Sogar die Nichtlösbarkeit eines Systems konnten wir auf diesem Wege entscheiden. Neue Umformstrategie : Bringe die erweiterte Matrix auf eine Form, die der Einheitsmatrix möglichst nahe kommt. Dies Ziel werden wir mit der Zeilenstufenform erreichen. 14

16 Matrizen in Zeilenstufenform Wir sehen hier ein typisches Beispiel einer m n-matrix in Zeilenstufenform A = i 1 i 2 i 3 i 4 Eine Treppenlinie trennt einen unteren Bereich ab, der nur aus Nulleinträgen besteht. In unserem Fall haben wir r = 4 Stufen an den Positionen 1 i 1 < i 2 < < i r n. 15

17 Eigenschaften der Stufenform (S1) In den r Stufen der Treppe, d.h. an den markierten Stellen i 1, i 2,..., i r stehen der Reihe nach die Einheitsvektoren e 1, e 2,..., e r. (S2) Die übrigen Einträge des oberen Bereichs können beliebig gewählt werden. Im Bereich unterhalb der Treppenlinie gibt es nur Einträge gleich Null. (S3) Die zu den Stufen i 1, i 2,..., i r gehörigen Spalten erzeugen alle anderen Spalten von A. (S4) Der Rang von A ist folglich gleich der Anzahl r der Stufen der Matrix von Stufenform. (S5) Kein Stufenvektor lässt sich aus den vorangehenden Spalten erzeugen. 16

18 Elementare Zeilenumformungen und Zeilenstufenform Satz. Jede m n-matrix lässt sich durch elementare Zeilenumformungen auf Zeilenstufenform bringen. Wir üben das Verfahren zunächst an Beispielen und diskutieren Anwendungen, bevor wir den generellen Beweis führen. Vorschau: Es wird sich herausstellen, dass die entsprechende Umformung in Zeilenstufenform genau die Technik ist, die wir zur vollständigen Lösung eines linearen Gleichungssystems benötigen. 17

19 Umformung in Zeilenstufenform Die letzte Matrix ist in Zeilenstufenform mit drei Stufen in den Spalten 1, 2 und 4. Sie hat daher den Rang drei. Wir werden gleich sehen, dass dann auch die anderen Matrizen den Rang drei haben. 18

20 Zeilenumformungen und Rang Satz. Elementare Zeilenumformungen bewahren den Rang. Beweis. Die Matrix B entstehe aus der m n-matrix A durch elementare Zeilenumformungen. Die homogenen linearen Gleichungssysteme A x = 0 und B x = 0 gehen dann ebenfalls durch elementare Zeilenumformungen auseinander hervor und haben daher denselben Lösungsraum H. Der Rangsatz für Matrizen sagt dann, dass die Matrizen A und B jeweils denselben Rang n dim H haben. 19

21 Lösbarkeitskriterium Satz. Das lineare Gleichungssystem A x = b ist genau dann lösbar, wenn nach Umformung der erweiterten Matrix [A b] in Treppenform [B c] die letzte Spalte c kein Stufenvektor ist. Beweis. Da sich die Lösungsmenge durch elementare Zeilenumformungen nicht verändert, ist A x = b genau dann lösbar, wenn B x = c lösbar ist. Dies ist äquivalent dazu, dass sich c aus den Spaltenvektoren von B linear kombinieren lässt. Nach (S3) und (S5) ist dies genau dann der Fall, wenn c kein Stufenvektor ist. Wir werden gleich sehen, wie wir im lösbaren Fall eine spezielle Lösung finden. 20

22 Finden einer speziellen Lösung A sei eine m n-matrix und b eine n-spalte. Die erweiterte Matrix [A b] befinde sich in Zeilenstufenform, wobei sich die Stufen in den Positionen 1 i 1 < i 2 < < i r n befinden, also b kein Stufenvektor ist. Weglassen aller Nullzeilen führt zu einer r (n+1)-matrix, mit r n. Wir füllen nun die resultierende Matrix solange mit Nullzeilen auf, bis in der i-ten Stufe stets der Einheitsvektor e i steht (für alle i = 1,..., r) und wir insgesamt n Zeilen haben. Dies liefert eine erweiterte Matrix [B c], wobei B das Format n n hat. Achtung: Falls der i-te Eintrag c i 0, so ist die i-te Spalte von B eine Stufe, also gleich e i. Es folgt, dass x = c eine spezielle Lösung des Systems ist. 21

23 Anwendungsbeispiel spezielle Lösung Die erweiterte Matrix [A b] = befindet sich schon in Zeilenstufenform. Die letzte Spalte ist keine Stufe, daher ist das System lösbar. Auffüllen mit Nullzeilen liefert das äquivalente System: [A b ] = Wir beachten, dass Nullen in der Hauptdiagonalen von A in derselben Zeile einen Nulleintrag in b hervorrufen. Es folgt: b ist eine spezielle Lösung von A x = b

24 Kommentar: spezielle Lösung(en) Zusammenfassung: Falls [A, b] Zeilenstufenform hat und die letzte Spalte keine Stufe ist, erhalten wir nach geeignetem Streichen und Neueinfügen von Nullzeilen eine erweiterte Matrix [A b ], deren rechte Seite b eine Lösung von A x = b ist. Hinweis: Dieses einfache Rezept zum Finden einer speziellen Lösung darf nicht zum Schluss verleiten, b sei die einzige Lösung von A x = b. 23

25 Homogene Systeme in Zeilenstufenform Wir nehmen jetzt an, dass A eine Matrix in Zeilenstufenform ist. Durch Streichen und Neueinfügen von Nullzeilen sei schon erreicht, dass A quadratisch, vom Format n n ist und die Stufenvektoren ihre Eins in der Hauptdiagonalen haben. Wir wissen, dass die Anzahl der Stufen(vektoren) gleich dem Rang r von A ist. Ferner ist nach Konstruktion A eine obere Dreiecksmatrix. Entsprechend hat das homogene lineare Gleichungssystem A x = b einen Lösungsraum H R n der Dimension n r. Wir können jetzt eine Basis von H wie folgt angeben: Die n r Spalten von A, die nicht Stufenvektoren von A sind, haben sämtlich als Hauptdiagonaleintrag eine Null. Ersetzen wir in diesen Spalten jeweils den Hauptdiagonaleintrag 0 durch -1, so erhalten wir n r Vektoren h 1, h 2,..., h n r, die eine Basis von H bilden. 24

26 Nachweis: Lösungen von A x = 0 Klar ist zunächst, dass die Spaltenvektoren h 1, h 2,..., h n r ein linear unabhängiges System bilden. Ferner ist jedes h i tatsächlich eine Lösung von A x = 0: Hierzu beachten wir, wie h i aus einem Nichtstufenvektor, sagen wir der Spalte a j, hervorgeht. Nach (S3) ist a j eine Linearkombination der Stufenvektoren; die auftretenden Koeffizienten sind gerade die Koeffizienten a ij von a j. Somit gilt a j = a i1.a a i j 1.a j 1 + a i j+1.a j a i n.a n. Indem wir a j, behaftet mit dem Faktor bringen, folgt A h i = 0. 1, auf die rechte Seite der Gleichung Wir schließen, dass h 1, h 2,..., h n r ein linear unabhängiges System im n r-dimensionalen Lösungsraum H ist. Es folgt mit einem Dimensionsargument, dass dieses System eine Basis von H ist. 25

27 Der Gauß-Algorithmus I Wir haben damit alle Bausteine für den Gauß-Algorithmus beisammen: Schritt 1: Die erweiterte Matrix [A b] des zu untersuchenden linearen Gleichungssystems wird zunächst durch elementare Zeilenumformungen auf Zeilenstufenform [A b ] gebracht. Falls die letzte Spalte b ein Stufenvektor ist, ist das System A x = b nicht lösbar, andernfalls ist es lösbar. Schritt 2: Durch geeignetes Streichen und Auffüllen von Nullzeilen wird [A b ] so zu [A b ] umgeformt, dass A eine quadratische Matrix ist und die Einsen der Stufenvektoren in der Hauptdiagonale von A stehen. Es ist dann b eine spezielle Lösung von A x = b. 26

28 Der Gauß-Algorithmus II Schritt 3: Wir ersetzen die Hauptdiagonaleinträge Null von A in den Spalten, die nicht Stufenvektoren sind, jeweils durch 1 und erhalten ein System von n r (r=anzahl der Stufenvektoren) Spaltenvektoren h 1, h 2,..., h n r, welches eine Basis des Lösungsraums H des homogenen Gleichungssystems A x = 0 bildet. Die allgemeine Lösung des Gleichungssystems A x = b hat dann die Form x = b + n r i=1 α i.h i, mit beliebigen Skalaren α i. 27

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns anschließend mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren einmal den begrifflichen Aspekt, d.h.

Mehr

Erneut: Matrizen und lineare Abbildungen

Erneut: Matrizen und lineare Abbildungen Erneut: Matrizen und lineare Abbildungen Mit Hilfe der Matrixmultiplikation lässt sich die Korrespondenz zwischen linearen Abbildungen und Matrizen elegant ausdrücken: Satz. e 1, e 2,..., e n sei die Standardbasis

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Erstellen von x-y-diagrammen in OpenOffice.calc

Erstellen von x-y-diagrammen in OpenOffice.calc Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

3. LINEARE GLEICHUNGSSYSTEME

3. LINEARE GLEICHUNGSSYSTEME 176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an

Mehr

Sonderrundschreiben. Arbeitshilfe zu den Pflichtangaben in Immobilienanzeigen bei alten Energieausweisen

Sonderrundschreiben. Arbeitshilfe zu den Pflichtangaben in Immobilienanzeigen bei alten Energieausweisen Sonderrundschreiben Arbeitshilfe zu den Pflichtangaben in Immobilienanzeigen bei alten Energieausweisen Sonnenstraße 11-80331 München Telefon 089 / 5404133-0 - Fax 089 / 5404133-55 info@haus-und-grund-bayern.de

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHISCHE UIVERSITÄT MÜCHE Zentrum Mathematik PRF. R.R. JÜRGE RICHTER-GEBERT, VAESSA KRUMMECK, MICHAEL PRÄHFER Höhere Mathematik für Informatiker I (Wintersemester 003/004) Aufgabenblatt 1 (4. ktober 003)

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang sysplus.ch outlook - mail-grundlagen Seite 1/8 Outlook Mail-Grundlagen Posteingang Es gibt verschiedene Möglichkeiten, um zum Posteingang zu gelangen. Man kann links im Outlook-Fenster auf die Schaltfläche

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775, Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b AGROPLUS Buchhaltung Daten-Server und Sicherheitskopie Version vom 21.10.2013b 3a) Der Daten-Server Modus und der Tresor Der Daten-Server ist eine Betriebsart welche dem Nutzer eine grosse Flexibilität

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf.

Mehr

Fallbeispiel: Eintragen einer Behandlung

Fallbeispiel: Eintragen einer Behandlung Fallbeispiel: Eintragen einer Behandlung Im ersten Beispiel gelernt, wie man einen Patienten aus der Datenbank aussucht oder falls er noch nicht in der Datenbank ist neu anlegt. Im dritten Beispiel haben

Mehr

Import und Export von Übergängern

Import und Export von Übergängern Import und Export von Übergängern SibankPLUS bietet Ihnen eine komfortable Schnittstelle, um den Wechsel der Schüler nach der Stufe 4 von der Grundschule auf eine weiterführende Schule zu verarbeiten.

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

4. BEZIEHUNGEN ZWISCHEN TABELLEN

4. BEZIEHUNGEN ZWISCHEN TABELLEN 4. BEZIEHUNGEN ZWISCHEN TABELLEN Zwischen Tabellen können in MS Access Beziehungen bestehen. Durch das Verwenden von Tabellen, die zueinander in Beziehung stehen, können Sie Folgendes erreichen: Die Größe

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Simplex-Umformung für Dummies

Simplex-Umformung für Dummies Simplex-Umformung für Dummies Enthält die Zielfunktion einen negativen Koeffizienten? NEIN Optimale Lösung bereits gefunden JA Finde die Optimale Lösung mit dem Simplex-Verfahren! Wähle die Spalte mit

Mehr

PowerPoint: Text. Text

PowerPoint: Text. Text PowerPoint: Anders als in einem verarbeitungsprogramm steht in PowerPoint der Cursor nicht automatisch links oben auf einem Blatt in der ersten Zeile und wartet auf eingabe. kann hier vielmehr frei über

Mehr

2.3 Umformung auf Zeilenstufenform

2.3 Umformung auf Zeilenstufenform 4 Kapitel II: Lineare Gleichungen 23 Umformung auf Zeilenstufenform Montag, 17 November 23 Wir sehen hier ein typisches Beispiel einer m n-matrix in Zeilenstufenform 1 1 1 A = 1 i 1 i 2 i 3 i 4 Eine Treppenlinie

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

P&P Software - Adressexport an Outlook 05/29/16 14:44:26

P&P Software - Adressexport an Outlook 05/29/16 14:44:26 Adressexport an Outlook Wozu? Aus EASY können viele Daten im Excelformat ausgegeben werden. Diese Funktion kann zum Beispiel zum Export von Lieferantenadressen an Outlook genutzt werden. Hinweis Wir können

Mehr

1. Adressen für den Serienversand (Briefe Katalogdruck Werbung/Anfrage ) auswählen. Die Auswahl kann gespeichert werden.

1. Adressen für den Serienversand (Briefe Katalogdruck Werbung/Anfrage ) auswählen. Die Auswahl kann gespeichert werden. Der Serienversand Was kann man mit der Maske Serienversand machen? 1. Adressen für den Serienversand (Briefe Katalogdruck Werbung/Anfrage ) auswählen. Die Auswahl kann gespeichert werden. 2. Adressen auswählen,

Mehr

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu])

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) 3.7 Erstellen einer Collage Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) Dann Größe des Dokuments festlegen beispielsweise A4 (weitere

Mehr

Materialverflechtung

Materialverflechtung Materialverflechtung In einem Unternehmen mit mehrstufigem Fertigungsablauf seien die festen Mengenbeziehungen zwischen Rohstoffen, Zwischen- und Endprodukten durch folgenden Graph gegeben: 00 0 6 E E

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

SCHRITT 1: Öffnen des Bildes und Auswahl der Option»Drucken«im Menü»Datei«...2. SCHRITT 2: Angeben des Papierformat im Dialog»Drucklayout«...

SCHRITT 1: Öffnen des Bildes und Auswahl der Option»Drucken«im Menü»Datei«...2. SCHRITT 2: Angeben des Papierformat im Dialog»Drucklayout«... Drucken - Druckformat Frage Wie passt man Bilder beim Drucken an bestimmte Papierformate an? Antwort Das Drucken von Bildern ist mit der Druckfunktion von Capture NX sehr einfach. Hier erklären wir, wie

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

AutoCAD 2007 - Dienstprogramm zur Lizenzübertragung

AutoCAD 2007 - Dienstprogramm zur Lizenzübertragung AutoCAD 2007 - Dienstprogramm zur Lizenzübertragung Problem: Um AutoCAD abwechselnd auf mehreren Rechnern einsetzen zu können konnte man bis AutoCAD 2000 einfach den Dongle umstecken. Seit AutoCAD 2000i

Mehr

Plotten von Linien ( nach Jack Bresenham, 1962 )

Plotten von Linien ( nach Jack Bresenham, 1962 ) Plotten von Linien ( nach Jack Bresenham, 1962 ) Ac Eine auf dem Bildschirm darzustellende Linie sieht treppenförmig aus, weil der Computer Linien aus einzelnen (meist quadratischen) Bildpunkten, Pixels

Mehr

Satzhilfen Publisher Seite Einrichten

Satzhilfen Publisher Seite Einrichten Satzhilfen Publisher Seite Einrichten Es gibt verschiedene Möglichkeiten die Seite einzurichten, wir fangen mit der normalen Version an, Seite einrichten auf Format A5 Wählen Sie zunächst Datei Seite einrichten,

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl

Mehr

Datenbanken Kapitel 2

Datenbanken Kapitel 2 Datenbanken Kapitel 2 1 Eine existierende Datenbank öffnen Eine Datenbank, die mit Microsoft Access erschaffen wurde, kann mit dem gleichen Programm auch wieder geladen werden: Die einfachste Methode ist,

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Das Festkomitee hat die Abi-Seite neu konzipiert, die nun auf einem (gemieteten) Share Point Server

Das Festkomitee hat die Abi-Seite neu konzipiert, die nun auf einem (gemieteten) Share Point Server Hallo Leute Das Festkomitee hat die Abi-Seite neu konzipiert, die nun auf einem (gemieteten) Share Point Server (= echtes - zeug ) liegt! Die neue Form hat insbesondere folgende Vorteile: Du bekommst einen

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

MORE Profile. Pass- und Lizenzverwaltungssystem. Stand: 19.02.2014 MORE Projects GmbH

MORE Profile. Pass- und Lizenzverwaltungssystem. Stand: 19.02.2014 MORE Projects GmbH MORE Profile Pass- und Lizenzverwaltungssystem erstellt von: Thorsten Schumann erreichbar unter: thorsten.schumann@more-projects.de Stand: MORE Projects GmbH Einführung Die in More Profile integrierte

Mehr

Anleitung über den Umgang mit Schildern

Anleitung über den Umgang mit Schildern Anleitung über den Umgang mit Schildern -Vorwort -Wo bekommt man Schilder? -Wo und wie speichert man die Schilder? -Wie füge ich die Schilder in meinen Track ein? -Welche Bauteile kann man noch für Schilder

Mehr

Klassenarbeit zu linearen Gleichungssystemen

Klassenarbeit zu linearen Gleichungssystemen Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Bestimme die Lösungsmenge der Gleichungssysteme mit Hilfe des Additionsverfahrens: x + 4y = 8 5x y = x y = x y = Aufgabe : Bestimme die Lösungsmenge

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr