6 Lineare Gleichungssysteme
|
|
|
- Gerhard Kappel
- vor 8 Jahren
- Abrufe
Transkript
1 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α ij, β i K und Unbekannten ξ i Dieses Gleichungssystem hat m Gleichungen mit n Unbekannten Wir setzen A = (α ij ) i m j n ξ ξ n K (m n) β x = K n, b = Dann ist obiges Gleichungssystem gerade β m K m ( ) Ax = b Schreibt man A als Matrix von Spaltenvektoren so lautet das Gleichungssystem auch A = (a,, a n ); a i = a i a mi ξ a + + ξ n a n = b K m Definition Die Matrix A heißt die Koeffizientenmatrix des Gleichungssystems, b nennt man auch die rechte Seite Das Gleichungsystem heißt homogen, falls b =, ansonsten inhomogen Fragestellungen bei linearen Gleichungssystemen () Lösbarkeit: D h unter welchen Bedingungen an A, b ist ( ) lösbar? (2) Universelle Lösbarkeit: D h unter welchen Bedingungen an A ist ( ) für alle b lösbar? (3) Lösungsraum: Beschreibung der Lösungsmenge (4) Eindeutigkeit: Unter welchen Bedingungen an A, b ist ( ) eindeutig lösbar?
2 4 (5) Berechenbarkeit: Man gebe einen Algorithmus zur Lösung von ( ) an Satz 6 Es sind äquivalent: (i) Ax = b ist lösbar (ii) b Im A (iii) Rang A = Rang(A, b) Definition (A, b) heißt die erweiterte Koeffizientenmatrix Beweis (i) (ii) (ii) (iii) (iii) (i) Ax = b lösbar Es gibt x K n mit Ax = b b Im A b Im A Es gibt x,, x n K mit x a + + x n a n = b b Span(a,, a n ) Span(a,, a n, b) = Span(a,, a n ) Rang(A, b) = Rang A Rang(A, b) = Rang A Abhlemma b Span(a,, a n ) Es gibt x,, x n K mit b = x a + + x n a n ( ) ist lösbar Satz 62 Es sind äquivalent: (i) ( ) ist universell lösbar (ii) Rang A = m Beweis Es gilt für die Abbildung A : K n K m, x Ax das folgende: Rang A = m A ist surjektiv Zu jedem b K m gibt es x mit Ax = b ( ) ist universell lösbar
3 6 LINEARE GLEICHUNGSSYSTEME 5 Satz 63 (i) Die Lösungsmenge L von Ax = ist ein linearer Unterraum Genauer gilt L = Ker A, dim L = n Rang A (ii) Die Lösungsmenge L b von Ax = b ist ein affiner Unterraum von K n D h ist u eine spezielle Lösung von Ax = b, so gilt Beweis (i) Es gilt Aus der Dimensionsformel folgt dann L b = u + L Ax = x Ker A dim Ker A + Rang A = n (ii) u + L L b : Es sei x L Dann gilt A(u + x) = Au + }{{} Ax = Au = b u + x L b = L b u + L : Es sei y L b Wir setzen x := (y u ) Dann ist y = x + u Ferner gilt Ax = A(y u ) = Ay Au = b b =, also x L D h y u + L Abb 32: Lösungsmenge L b als affiner Unterrraum Satz 64 Ax = b sei lösbar Dann sind äquivalent: (i) Ax = b ist eindeutig lösbar (ii) Ker A = {}
4 6 (iii) Rang A = n Beweis Da L b = u + L ist, gilt: Ax = b ist eindeutig lösbar Ax = ist eindeutig lösbar Ker A = {} Rang A = n Hierbei folgt die letzte Äquivalenz wieder aus der Dimensionsformel Quadratische Gleichungssysteme (m = n) Wir betrachten das Gleichungssystem ( ) Ax = b, A Mat(n; K); b K n Satz 65 Für quadratische Gleichungssysteme (m = n) sind äquivalent: (i) Ax = b ist für jedes b K n lösbar (ii) Ax = b ist für ein b K n eindeutig lösbar (iii) Ax = besitzt nur die Lösung x = (iv) (v) Ax = b ist für jedes b K n eindeutig lösbar A GL(n, K) Beweis Es gilt: (i) Ax = b ist universell lösbar (62) Rang A = m = n (v) (iii) Ker A = {} Rang A = n (v) (ii) (64) Rang A = n (62) (iv) (ii) ist trivial { Ax = b ist stets lösbar Ker A = {} (ii) (64) Ker A = A GL(n, K) (v) } (64) (iv) Bemerkung Es sei A GL(n, K) Dann erhält man die Lösung von Ax = b durch x = A b
5 6 LINEARE GLEICHUNGSSYSTEME 7 Der Gauß-Algorithmus Wir beschreiben nun einen Algorithmus zur Lösung eines linearen Gleichungssystems ( ) Ax = b Es besteht aus drei Schritten: I Vorwärtselimination II Lösbarkeitsentscheidung (nur für b ) III Rückwärtssubstitution I Vorwärtselimination Eliminationsschritt Wir fragen zunächst, ob α ist Falls nicht, suchen wir in der ersten Spalte ein Element α k und vertauschen die erste mit der k-ten Zeile Falls alle α k = sind, fahren wir mit der nächsten Spalte fort, bis wir ein Element α ij finden (Falls A = ist, so ist die Aufgabe trivial, weil dann entweder jedes x K n ein Lösung ist, falls b = ist, oder die Lösungsmenge leer ist, falls b ) Wir sind dann in der Situation, daß wir annehmen können, daß die ersten k Spalten von A gleich sind, und daß α k ist Wir ziehen dann das α ik α k -fache der ersten Zeile von der i-ten Zeile ab Das Ergebnis sieht für die erweiterte Koeffizientenmatrix dann wie folgt aus: Dabei bezeichnet eine von Null verschiedene Zahl und eine beliebige Zahl 2 Eliminationsschritt Wir wenden dasselbe Verfahren nun auf die eingezeichnete Restmatrix an Das Ergebnis ist eine Matrix in Zeilenstufenform: β β2 β3 βr βr+ βm
6 8 II Lösbarkeitsentscheidung Ist einer der Einträge β r+,, β m, so ist Rang(A, b) > Rang A = r, und das Gleichungssystem ist nicht lösbar III Rückwärtssubstitution Allgemeines Verfahren (i) Die zu Spalten ohne -Stelle gehörenden Unbekannten sind die freien Variablen Sie werden der Reihe nach gleich λ,, λ n r gesetzt (ii) Man löst dann das Gleichungssystem nach den zu den -Stellen gehörenden abhängigen Variablen aus und bestimmt diese nacheinander in Abhängigkeit von λ,, λ n r Alternatives Verfahren (i) Man ermittelt eine spezielle Lösung u von ( ), indem man λ = = λ n r = setzt (ii) Man ermittelt den Lösungsraum von Ax = : Setze β = = β m = und wähle für j =,, n r: { λ (j) für i j i = für i = j Die Auflösung nach den abhängigen Variablen gibt dann linear unabhängige Lösungen v,, v n r Die allgemeine Lösung ergibt sich dann nach Satz (63) durch x = u + c v + + c n r v n r (c,, c n r K) Beispiele () Wir betrachten das lineare Gleichungssystem (K = R) ξ + ξ 2 + ξ 3 = 2ξ ξ 2 + ξ 3 = 4ξ + 2ξ 2 ξ 3 = Dann kann man das Gauß-Verfahren etwa in der folgenden Form aufschreiben: ξ + ξ 2 + ξ 3 2ξ ξ 2 + ξ 3 4ξ + 2ξ 2 ξ 3 ξ + ξ 2 + ξ 3 3ξ 2 ξ 3 6ξ 2 + 3ξ 3 ξ + ξ 2 + ξ 3 3ξ 2 ξ 3 ξ 3 = = = = = 2 = 4 = = 2 = ξ ξ 2 ξ 3 Regie ] 2 ] ] 2
7 6 LINEARE GLEICHUNGSSYSTEME 9 Rückwärtssubstitution ergibt x 3 =, x 2 = 2 3, x = 3 Das Gleichungssystem ist eindeutig gelöst durch x = (2) Wir betrachten das lineare Gleichungssystem (K = R): ξ + ξ 2 + ξ 3 + ξ 4 + ξ 5 = Die erweiterte Koeffizizentenmatrix ist daher (A, b) = ξ 3 ξ 4 + ξ 5 = ξ 4 ξ 5 = 2 = 2 Im Sinne des oben erläuterten Schemas hat diese Matrix die Gestalt (A, b) = Wir haben also folgende freie Variable: Rückwärtssubstitution ergibt dann: x 2 = λ, x 5 = λ 2 x 4 = 2 + x 5 = 2 + λ 2 x 3 = + x 4 x 5 = 3 x = x 2 x 3 x 4 x 5 = 4 λ 2λ 2 Alternativ können wie zuerst eine spezielle Lösung bestimmen Für λ = λ 2 = erhält man 4 u = 3 2
8 Lösungen des homogenen Systems erhält man wie folgt: λ =, λ 2 = : Rückwärtssubstitution ergibt v = λ =, λ 2 = : Rückwärtssubstitution ergibt 2 v 2 = Damit erhält man den Lösungsraum des homogenen Systems als L = Span(v, v 2 ) (Man beachte, daß dim L = 2 = 5 Rang A ist) Die Lösungsmenge des linearen Gleichungssystems ( ) ist damit 4 2 L = u + L = { c + c 2 ; c, c 2 R}
Lineare Gleichungssysteme - Grundlagen
Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente
1 Transponieren, Diagonal- und Dreiecksmatrizen
Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix
37 Gauß-Algorithmus und lineare Gleichungssysteme
37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass
Der Kern einer Matrix
Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis
2.2 Lineare Gleichungssysteme (LGS)
2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +
( ) Lineare Gleichungssysteme
102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,
Lineare Gleichungssysteme
Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1
Matrizen, Determinanten, lineare Gleichungssysteme
Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n
6. Übungsblatt zur Mathematik I für Maschinenbau
Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 6. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 2/ 25..-.2. Aufgabe G (Lineare Gleichungssysteme)
Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok
Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html [email protected]
Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.
Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische
Ausgewählte Lösungen zu den Übungsblättern 4-5
Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit
3. Übungsblatt zur Lineare Algebra I für Physiker
Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte
Lineare Algebra I: Eine Landkarte
Bild F Algebra I: Eine Landkarte Faser Versuch einer Übersicht der Themen und Zusammenhänge der n Algebra 1. 1 Algebra I: Bild F Faser Sei B Basis von V. Jedes v V läßt sich eindeutig aus den Basisvektoren
Lineare Gleichungssysteme
Mathematik I für Biologen, Geowissenschaftler und Geoökologen 28. November 2011 Definition Beispiel: Wassermengen und Konzentrationen in einem Fluss Beispiel Zeilenstufenform Beispiel (Fortsetzung) Anhang
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange
5.7 Lineare Abhängigkeit, Basis und Dimension
8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n
2 Die Dimension eines Vektorraums
2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1
Mathematik IT 2 (Lineare Algebra)
Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof Dr L Cromme Mathematik IT (Lineare Algebra für die Studiengänge Informatik, IMT und ebusiness im Sommersemester 3 Lineare Gleichungssysteme
Kapitel 13. Lineare Gleichungssysteme und Basen
Kapitel 13. Lineare Gleichungssysteme und Basen Matrixform des Rangsatzes Satz. Sei A eine m n-matrix mit den Spalten v 1, v 2,..., v n. A habe den Rang r. Dann ist die Lösungsmenge L := x 1 x 2. x n x
Lineare Gleichungssysteme
Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder
1 Matrizenrechnung zweiter Teil
MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten
Lineare Gleichungssysteme (Teschl/Teschl 11.1)
Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...
3.4 Der Gaußsche Algorithmus
94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,
Lineare Algebra und analytische Geometrie I
Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 5 Verwandle große Schwierigkeiten in kleine und kleine in gar keine Chinesische Weisheit Das Lösen von
(Allgemeine) Vektorräume (Teschl/Teschl 9)
(Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:
Lösung Test 2 (Nachprüfung)
MLAE Mathematik: Lineare Algebra für ngenieure Herbstsemester Dr Christoph Kirsch ZHAW Winterthur Aufgabe : Lösung Test (Nachprüfung a Wir verwenden den Gauss-Jordan-Algorithmus, um die erweiterte Koeffizientenmatrix
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern
2.2 Lineare Gleichungssysteme
Lineare Algebra I WS 2015/16 c Rudolf Scharlau 55 22 Lineare Gleichungssysteme Das Lösen von Gleichungen (ganz unterschiedlichen Typs und unterschiedlichen Schwierigkeitsgrades) gehört zu den Grundproblemen
Lineare Algebra I Zusammenfassung
Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition
Vektorräume. Kapitel Definition und Beispiele
Kapitel 3 Vektorräume 3.1 Definition und Beispiele Sei (V,,0) eine abelsche Gruppe, und sei (K, +,, 0, 1) ein Körper. Beachten Sie, dass V und K zunächst nichts miteinander zu tun haben, deshalb sollte
8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten
Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A
Das Lösen linearer Gleichungssysteme
Das Lösen linearer Gleichungssysteme Lineare Gleichungen Die Gleichung a 1 x 1 + a 2 x 2 +... + a n x n = b ist eine lineare Gleichung in den n Variablen x 1, x 2,..., x n. Die Zahlen a 1, a 2,..., a n
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html
$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $
Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit
Erneut: Matrizen und lineare Abbildungen
Erneut: Matrizen und lineare Abbildungen Mit Hilfe der Matrixmultiplikation lässt sich die Korrespondenz zwischen linearen Abbildungen und Matrizen elegant ausdrücken: Satz. e 1, e 2,..., e n sei die Standardbasis
Lösungen der Aufgaben zu Abschnitt 5.4
A Filler: Elementare Lineare Algebra Lösungen zu Abschnitt 54 Lösungen der Aufgaben zu Abschnitt 54 B ist linear unabhängig, wenn die Vektorgleichung ( ) ( ) ( ) ( ) 456 λ + λ + λ = bzw das LGS λ +4λ +λ
Aufgaben zu Kapitel 14
Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt
4 Affine Koordinatensysteme
4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner
36 2 Lineare Algebra
6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so
5 Die Allgemeine Lineare Gruppe
5 Die Allgemeine Lineare Gruppe Gegeben sei eine nicht leere Menge G und eine Abbildung (Verknüpfung) : G G G, (a, b) a b( a mal b ) Das Bild a b von (a, b) heißt Produkt von a und b. Andere gebräuchliche
Lineare Algebra. I. Vektorräume. U. Stammbach. Professor an der ETH-Zürich
Lineare Algebra U Stammbach Professor an der ETH-Zürich I Vektorräume Kapitel I Vektorräume 1 I1 Lineare Gleichungssysteme 1 I2 Beispiele von Vektorräumen 7 I3 Definition eines Vektorraumes 8 I4 Linearkombinationen,
Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A
133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des
Lineare Gleichungssysteme: eine Ergänzung
Lineare Gleichungssysteme: eine Ergänzung Ein lineares Gleichungssystem, bei dem alle Einträge auf der rechten Seite gleich sind heiÿt homogenes lineares Gleichungssystem: a x + a 2 x 2 +... + a n x n
2.3 Lineare Abbildungen und Matrizen
2.3. LINEARE ABBILDUNGEN UND MATRIZEN 89 Bemerkung Wir sehen, dass die Matrix à eindeutig ist, wenn x 1,...,x r eine Basis ist. Allgemeiner kann man zeigen, dass sich jede Matrix mittels elementarer Zeilenumformungen
Lösung Test 1 (Nachprüfung)
MLAE Mathematik: Lineare Algebra für Ingenieure Frühlingssemester 6 Dr. Christoph Kirsch ZHAW Winterthur Lösung Test (Nachprüfung Aufgabe : a Gemäss den Algorithmen im Kap.. der Vorlesung bringen wir die
Lineare Algebra und Numerische Mathematik für D-BAUG
P. Grohs T. Welti F. Weber Herbstsemester 2 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Mittsemesterprüfung HS, Typ A Name a a Note Vorname Leginummer Datum 29..2 2 4 6 Total
Der Rangsatz für lineare Abbildungen
Der Rangsatz für lineare Abbildungen Satz Sei f : V W eine lineare Abbildung Dann gilt dim V = dim Kern(f) + dim Bild(f), also gleichbedeutend dim Kern(f) = dim V rg(f) Da uns in der Regel bei gegebenem
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 05.11.2013 Alexander Lytchak 1 / 14 Linearkombinationen Definition Es sei V ein reeller Vektorraum. Es sei (v i ) i
4 Elementare Vektorraumtheorie
4. ELEMENTARE VEKTORRAUMTHEORIE 51 4 Elementare Vektorraumtheorie Im folgenden sei K stets ein Körper. Definition. (i) Eine homogene Gleichung in den Unbekannten ξ 1,..., ξ n ist ein Ausdruck der Gestalt
4. Vektorräume und Gleichungssysteme
technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden
Serie 8: Fakultativer Online-Test
Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung
Numerische Lineare Algebra
Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)
A2.3 Lineare Gleichungssysteme
A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen
1 0 1, V 3 = M, und λ A = λa
Aufgabe 57. Magische Quadrate Eine reelle 3 3-Matrix A = a 11 a 12 a 13 a 21 a 22 a 23 heißt magisches Quadrat, falls alle Zeilensummen, alle Spaltensummen und die beiden Diagonalsummen a 11 + a 22 + a
Lösungen zum 5. Aufgabenblatt
SS 2012, Lineare Algebra 1 Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn
Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).
Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen
Quadratische Matrizen
Quadratische Matrizen (n n)-matrizen heißen quadratische Die entsprechenden linearen Abbildungen sind laut Definition Endomorphismen des R n (weil f A : R n R n ) Das Produkt von (n n)- Matrizen ist auch
LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow
LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Lineare Gleichungssysteme und Determinanten. Lineare Gleichungssysteme.2 Determinanten 3 iii 2 LINEARE GLEIHUNGSSYSTEME UND DETERMINANTEN KAPITEL
10.2 Linearkombinationen
147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition
8.2 Invertierbare Matrizen
38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Lineare Algebra: Determinanten und Eigenwerte
: und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b
Mathematik 1, Teil B. Inhalt:
FH Emden-Leer Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre 2.) Matrizen, Determinanten
Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz
Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis
Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung
Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele
Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7
Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe
Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren
Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(
Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya
Rang einer Matrix 1-E1 Ma 1 Lubov Vassilevskaya Unterdeterminante einer nichtquadratischen Matrix M ist eine nichtquadratische 2,3-Matrix: M = 6 2 3 0 5 7 Durch Streichen einer der drei Spalten kann man
2.2 Kern und Bild; Basiswechsel
22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare
Lineare Gleichungssysteme
Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare
Lineare Gleichungssysteme
Poelchau-Oberschule Berlin A. Mentzendorff September 2007 Lineare Gleichungssysteme Inhaltsverzeichnis 1 Grundlagen 2 2 Das Lösungsverfahren von Gauß 4 3 Kurzschreibweise und Zeilensummenkontrolle 6 4
Vektorräume und lineare Abbildungen
Kapitel 11. Vektorräume und lineare Abbildungen 1 11.1 Vektorräume Sei K ein Körper. Definition. Ein Vektorraum über K (K-Vektorraum) ist eine Menge V zusammen mit einer binären Operation + einem ausgezeichneten
Lineare Gleichungssysteme
Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein
7.1 Matrizen und Vektore
7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit
Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}.
Technische Universität Berlin Wintersemester 7/8 Institut für Mathematik 9. April 8 Prof. Dr. Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Nachklausur zur Linearen Algebra I Aufgabe ++ Punkte Definieren
3.5 Duale Vektorräume und Abbildungen
3.5. DUALE VEKTORRÄUME UND ABBILDUNGEN 103 3.5 Duale Vektorräume und Abbildungen Wir wollen im Folgenden auch geometrische Zusammenhänge mathematisch beschreiben und beginnen deshalb jetzt mit der Einführung
Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2
Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren
Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren oder: Wie rechnet eigentlich der TI 84, wenn lineare Gleichungssysteme gelöst werden? Hier wird an einem Beispiel das Gaußsche Verfahren zum
Affine Geometrie (Einfachere, konstruktive Version)
Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit
Lineare Abbildungen. i=0 c ix i n. K n K m
Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht
Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.
1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild
x+ 2y = 2 3x+ 3y+ 3z = 0
Mathematik für Informatiker III WS 5/ Musterlösung zur Klausur vom 8.. Anmerkung: Für die Aufgaben bis 4 gab es 4 Punkte, zusammen mit der Zusatzaufgabe 5 konnte man 4 Punkte erreichen. Um die Klausur
Lösungen zur Mathematik für Informatiker I
Lösungen zur Mathematik für Informatiker I Wintersemester 00/03 Prof Dr H Lenzing Blatt 7 Sei M Ihre Matrikelnummer mit den Ziffern m, m, m 3, m 4, m 5, m 6, m 7 Aufgabe 6 ( Bonuspunkt): Wir betrachten
Lineare Algebra und analytische Geometrie I Lösungsvorschlag zum 8. Tutoriumsblatt
Mathematisches Institut der Universität München Wintersemester 24/5 Daniel Rost Lukas-Fabian Moser Lineare Algebra und analytische Geometrie I Lösungsvorschlag zum 8. Tutoriumsblatt Aufgabe T-. a) Die
1 Linearkombinationen
Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Linearkombinationen Unter einer Linearkombination versteht man in der linearen Algebra einen Vektor, der sich durch
Lineare Hülle. span(a) := λ i v i : so dass k N, λ i R und v i A.
Lineare Hülle Def A sei eine nichtleere Teilmenge des Vektorraums (V,+, ) Die lineare Hülle von A (Bezeichung: span(a)) ist die Menge aller Linearkombinationen der Elemente aus A { k } span(a) := λ i v
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)
Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg Spezialfälle und Rechenregeln Spezialfälle der Matrimultiplikation A = (m
3 Lineare Differentialgleichungen
3 Lineare Differentialgleichungen In diesem Kapitel behandeln wir die allgemeine Theorie linearer Differentialgleichungen Sie werden zahlreiche Parallelen zur Theorie linearer Gleichungssysteme feststellen,
Anhang A. Etwas affine Geometrie. A.1 Die affine Hülle
Anhang A Etwas affine Geometrie In diesem Anhang stellen wir die wichtigsten Grundbegriffe aus der affinen Geometrie zusammen, soweit sie eben für uns von Nutzen sind. Für weiterführende Ergebnisse sei
