Vorlesung Mathematik für Ingenieure (WS 17/18, SS 18, WS 18/19)

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Mathematik für Ingenieure (WS 17/18, SS 18, WS 18/19)"

Transkript

1 1 Vorlesung Mathematik für Ingenieure (WS 17/18, SS 18, WS 18/19) Kapitel 3: Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 20. November 2017)

2 Abbildungen / Funktionen 2 Definition 3.1 Eine Abbildung (Funktion) f von einer Menge A in eine Menge B ist eine Vorschrift, die jedem Element x A genau ein Element f (x) B zuordnet. A heißt der Definitionsbereich und B heißt der Wertebereich von f. (Funktion vor allem, wenn B eine Menge von Zahlen ist.)

3 Bildmenge 3 Definition 3.2 Das Bild (Bildmenge) einer Abbildung f : A B ist f (A) := {f (x) x A} (die Menge aller y B, für die es ein x A gibt mit f (x) = y).

4 Urbildmenge 4 Definition 3.3 Ist f : A B eine Abbildung und Y B, so heißt f 1 (Y ) := {x A f (x) Y } das Urbild (Urbildmenge) von Y.

5 Komposition von Abbildungen 5 Definition 3.4 Sind f : A B und g : C D Abbildungen mit f (A) C, so heißt die Abbildung g f : A D x g(f (x)) die Komposition von f und g ( g und f, g Kringel f ).

6 Injektivität und Umkehrabbildung 6 Definition 3.5 Eine Abbildung f : A B heißt injektiv, falls für alle x, x A nur dann f (x) = f (x ) gilt, wenn x = x ist. Definition 3.6 Ist f : A B injektiv, so gibt es zu jedem y f (A) ein eindeutiges x A mit f (x) = y. Die Abbildung f 1 : f (A) A y das x A mit f (x) = y heißt die Umkehrabbildung (Umkehrfunktion) von f.

7 Eigenschaften von Umkehrabbildungen 7 Bemerkung 3.7 Ist f : A B injektiv und g : f (A) A die Umkehrabbildung von f, so gelten: g(f (x)) = x für alle x A f (g(y)) = y für alle y f (A) Die Abbildungen g f : A A und f g : f (A) f (A) sind also die Identitätsabbildungen A A, x x bzw. f (A) f (A), y y.

8 Quadrat- und Wurzelfunktion f : [0, [ R, x x 2 injektiv mit 8 f 1 : [0, [ [0, [, y x

9 Tangens und Arcustangens 9 tan :] π 2, π 2 [ R injektiv, Umkehrfunktion arctan : R ] π 2, π 2 [

10 Sinus und Arcussinus 10 sin : [ π 2, π 2 ] R injektiv, Umkehrfunktion arcsin : [ 1, 1] [ π 2, π 2 ]

11 Cosinus und Arcuscosinus 11 cos : [0, π] R injektiv, Umkehrabbildung arccos : [ 1, 1] [0, π]

12 Exponenzial- und Logarithmusfunktion 12 Die reelle Exponenzialfunktion R ]0, [, x e x ist injektiv; ihre Umkehrabbildung ist die (natürliche) Logarithmusfunktion ln :]0, [ R

13 Graph der Umkehrfunktion 13 Den Graph der Umkehrfunktion einer injektiven Funktion f : R X R erhält man durch Spiegelung des Graphen von f an der Winkelhalbierenden {(x, y) R 2 x = y}.

14 Beispiel: Quadratfunktion

15 Beispiel: Sinusfunktion

16 Beispiel: Exponenzialfunktion

17 Bijektive Abbildungen 17 Definition 3.8 Eine Abbildung f : A B heißt surjektiv, falls für alle y B (wenigstens) ein x A mit f (x) = y existiert (d.h. f (A) = B). Eine bijektive Abbildung ist eine Abbildung, die injektiv und surjektiv ist. Bemerkung 3.9 Bijektive Abbildungen f : A B haben Umkehrabildungen f 1 : B A, die auf ganz B definiert sind.

18 Polynomfunktion Definition 3.10 Eine Polynomfunktion (ein Polynom) ist eine Abbildung f : R R oder f : C C mit 18 f (z) = n a k z k = a 0 + a 1 z + a 2 z a n z n, k=0 wobei im ersten Fall a 0,..., a n R sein müssen (reelles Polynom) und im zweiten Fall a 0,..., a n C sein dürfen (komplexes Polynom). Die a k heißen die Koeffizienten von f. Falls a n 0 ist, ist n der Grad von f. Die Nullfunktion f (z) = 0 hat Grad.

19 Nullstellen 19 Definition 3.11 Eine Nullstelle einer Funktion f : R R oder f : C C ist ein z R bzw. z C mit f (z) = 0.

20 f : R R, f (x) = x

21 C R, z z

22 f (x) = x 3 5x 2 + x 5: f (x) und f (x)

23 C R, z z 3 5z 2 + z

24 C R, z z

25 C R, z z

26 C R, z z

27 Fundamentalsatz der Algebra 27 Satz 3.12 Ist f ein Polynom vom Grad n 1, so gibt es eine bis auf die Reihenfolge der Faktoren eindeutige Zerlegung f (z) = a n (z z 1 )(z z 2 ) (z z n ) von f in Linearfaktoren z z 1,..., z z n mit z 1,..., z n C. Die z 1,..., z n sind die komplexen Nullstellen von f ; sie müssen nicht unbedingt paarweise verschieden sein. Insbesondere hat ein Polynom vom Grad n 1 höchstens n Nullstellen.

28 Vielfachheit von Nullstellen 28 Definition 3.13 Ist f (z) = a n (z z 1 )(z z 2 ) (z z n ) und ist z C eine Nullstelle von f, so heißt die Zahl {k {1,..., n} z = z k } 1 die Vielfachheit der Nullstelle z von f.

29 C R, z f (z) (Beispiel)

30 Koeffizientenvergleich 30 Satz 3.14 Definieren f (z) = a k z k und g(z) = b k z k zwei Polynomfunktionen vom Grad n und stimmen f (z) und g(z) an wenigstens n + 1 Stellen überein, so gilt a k = b k für alle k (die beiden Funktionen sind also gleich).

31 Komplexe Nullstellen reeller Polynome 31 Satz 3.15 Ist z C eine Nullstelle eines Polynoms f (z) = n a k z k k=0 mit reellen Koeffizienten a 0, a 1,..., a k R, so ist auch die zu z komplex konjugierte Zahl z C eine Nullstelle von f.

32 Zerlegung reeller Polynome 32 Satz 3.16 Ein reelles Polynom f (x) = a k x k (mit a k R) lässt sich als Produkt von reellen Polynomen vom Grad 2 schreiben.

33 Polynominterpolation 33 Satz 3.17 Sind für n + 1 paarweise verschiedene x 1,..., x n+1 (in R bzw. C) beliebige Werte y 1,..., y n+1 (in R bzw. C) vorgegeben, so gibt es genau eine Polynomfunktion f : R R bzw. f : C C vom Grad n mit f (x 1 ) = y 1,..., f (x n+1 ) = y n+1.

34 Polynominterpolation ( 1, 4), (0, 3), (1, 6), (2, 2), (3, 1) f (x) = x x x x 4

35 Rationale Funktionen 35 Definition 3.18 Eine Funktion der Form f (z) = p(z) q(z) mit zwei Polynomfunktionen p(z) und q(z) (reell oder komplex) ist eine rationale Funktion. Die Nullstellen von q(z) sind die Pole von f (z). An den Polen ist f (z) nicht definiert.

36 f (x) = 1 x (x 0)

37 g(x) = 1 x+2 (x 2)

38 f (x) = 1 x 2 (x 0)

39 f (x) = x 3 +7x 2 (x 1)(x+2) 2 (x 4) (x { 2, 1, 4})

40 f (x) = 3x5 +2x 2 8 x 2 1 (x { 1, 1})

41 Polynomdivision mit Rest 41 Satz 3.19 Jede rationale Funktion f (z) kann man darstellen in der Form f (z) = g(z) + p(z) q(z), wobei g(z), p(z), q(z) Polynome sind und der Grad von p kleiner ist als der von q.

42 Polynomdivision und Nullstellen 42 Hat das Polynom p(z) eine Nullstelle z C so ergibt die Polynomdivision p(z) = g(z) Rest 0, z z und die Nullstellen von g(z) sind die noch fehlenden Nullstellen von p(z).

43 Kurven 43 Definition 3.20 Eine Kurve in R m ist eine Abbildung c : I R m eines Intervalls I R nach R m.

44 Kreisbewegung 44 c : [0, 3π 2 ] R2, t (cos t, sin t) Beschreibt eine Bewegung um drei Viertel des Einheitskreises (gegen den Uhrzeigersinn, startend in (1,0)) c([0, 3π 2 ]) (Bildmenge)

45 Parametrisierung von Funktionsgraphen 45 c : [0, [ R 2, t (t, sin t) Beschreibt eine Bewegung entlang des Graphen der Sinusfunktion (startend bei (0, 0), nach rechts) c([0, [) (Bildmenge)

46 Spirale 46 c : [0, 20] R 3, t (cos t, sin t, t 10 ) Beschreibt eine nach oben durchlaufende Spirale über dem Einheitskreis c([0, 20]) (Bildmenge)

47 Funktionsgraphen 47 Definition 3.21 Der Graph einer Funktion f : R n X R ist die Menge {(x 1,..., x n, f (x)) R n+1 x = (x 1,..., x n ) X } R n+1.

48 Beispiel Funktionsgraph f (x, y) = sin(x) cos(y)

49 Niveaumengen 49 Definition 3.22 Die Niveaumenge einer Funktion f : R n X R zum Wert α R ist die Menge {x X f (x) = α} R n (n = 2 : Niveaulinie, n = 3 : Niveaufläche ).

50 Beispiel: Niveaulinien f (x, y) = sin(x) cos(y) und α = 0.9

51 Beispiel: Niveaulinien f (x, y) = sin(x) cos(y) und α = 0.5

52 Beispiel: Niveaulinien f (x, y) = sin(x) cos(y) und α = 0

53 Contour-Plot f (x, y) = sin(x) cos(y)

54 Vektorfelder 54 Definition 3.23 Ein Vektorfeld ist eine Abbildung v : R n X R n. Veranschaulichung für n = 2, 3 (Kartesisches Koordinatensystem der Ebene bzw. des Raums) In jedem Punkt x X ist der zu v(x) R n gehörende Pfeil angeheftet.

55 Vektorfeld in R v(x, y) = ( y, x)

56 Vektorfeld in R w(x, y, z) = ( y, x, z)

57 Parametrisierungen von Flächen [ π 4, 3π 4 ] [0, 2π] R3 (u, v) (sin(u) cos(v), sin(u) sin(v), cos(u)) 1.0

58 Lineare Abbildungen 58 Definition 3.24 Eine lineare Abbildung zwischen zwei K-Vektorräumen V und W ist eine Abbildung ϕ : V W mit: ϕ(v + w) = ϕ(v) + ϕ(w) für alle v, w V ϕ(λv) = λϕ(v) für alle v V, λ K

59 Lineare Fortsetzung 59 Satz 3.25 Ist B V eine Basis des K-Vektorraums V und σ : B W eine beliebige Abbildung von B in einen K-Vektorraum W, so gibt es genau eine lineare Abbildung ϕ : V W mit ϕ(b) = σ(b) für alle b B.

60 Kern und Bild 60 Definition 3.26 Für eine lineare Abbildung ϕ : V W zwischen zwei K-Vektorräumen V und W heißen ker (ϕ) := ϕ 1 ({O W }) = {v V ϕ(v) = O W } V der Kern und im (ϕ) := ϕ(v ) = {ϕ(v) v V } W das Bild von ϕ.

61 Kern und Bild sind Unterräume 61 Bemerkung 3.27 Kern und Bild einer linearen Abbildung ϕ : V W sind Untervektorräume von V bzw. W ; insbesondere enthalten sie O V bzw. O W.

62 Injektive lineare Abbildungen 62 Satz 3.28 Eine lineare Abbildung ϕ : V W ist genau dann injektiv (d. h. ϕ(v) ϕ(w) für alle v w), wenn ker (ϕ) = {O V } ist.

63 Die Dimensionsformel 63 Satz 3.29 Ist V ein endlich-dimensionaler K-Vektorraum und ϕ : V W eine lineare Abbildung, so gilt die Dimensionsformel dim (ker ϕ) + dim (im ϕ) = dim (V ).

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Vorlesung Mathematik für Ingenieure (WS /, SS, WS /3) Kapitel 3: Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 4. November ) Abbildungen / Funktionen Definition 3. Eine

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Vorlesung Mathematik für Ingenieure (WS /, SS, WS /3) Kapitel 3: Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 4. November 0) Abbildungen / Funktionen Definition 3. Eine

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 8/9) Kapitel 3:Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 4. November 8) Abbildungen / Funktionen Definition 3. Eine

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Vorlesung Mathematik für Ingenieure I (Wintersemester 007/08) Kapitel 3: Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 8. November 007) Abbildungen / Funktionen Definition

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. Dezember 2011)

Mehr

Definition von Sinus und Cosinus

Definition von Sinus und Cosinus Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 2008/09) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 9. November 2008) Die

Mehr

Funktionen einer reellen Veränderlichen

Funktionen einer reellen Veränderlichen KAPITEL Funktionen einer reellen Veränderlichen.1 Eigenschaften von Funktionen........................... 39. Potenz- und Wurzelfunktionen............................ 1.3 Trigonometrische Funktionen.............................

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 1. Übung: Woche vom (komplexe Zahlen):

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 1. Übung: Woche vom (komplexe Zahlen): Übungsaufgaben 1. Übung: Woche vom 17.-21.10.16 (komplexe Zahlen): Heft Ü1: 3.9 (a,b); 3.10, 3.12 (a-c); 3.13 (a-c); 3.2 (a,b,d); 3.3 (c,d,f) Wiederholung Komplexe Zahlen Definition (Imaginäre Einheit,

Mehr

Funktionen einer reellen Veränderlichen

Funktionen einer reellen Veränderlichen KAPITEL Funktionen einer reellen Veränderlichen. Grundbegriffe Definition.. Eine Abbildung oder Funktion f ist eine Zuordnung(svorschrift), die jeder Zahl x aus dem Definitionsbereich D(f) der Funktion

Mehr

Die Funktion f (x) = e ix

Die Funktion f (x) = e ix Die Funktion f (x) = e ix Wir wissen e ix = 1, liegt also auf dem Einheitskreis. Mit wachsendem x läuft e ix immer wieder um den Einheitskreis herum. Die Laufrichtung ist gegen den Uhrzeigersinn (mathematisch

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 08/9 c Dr. K. Rothe Analysis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt Mengen Darstellung durch: a) Aufzählung

Mehr

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet.

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. 1 Der Funktionsbegriff Funktionen Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. Dabei nennt man die Menge A Definitionsmenge

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) 1 Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 14: Vektorräume und lineare Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 6. Oktober 2009) Vektorräume

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 3. Reelle Funktionen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

Funktionen (Teschl/Teschl 5.2) Beispiele. Eine Funktion (oder Abbildung) f : M N,

Funktionen (Teschl/Teschl 5.2) Beispiele. Eine Funktion (oder Abbildung) f : M N, Funktionen (Teschl/Teschl 5.2) Eine Funktion (oder Abbildung) f : M N, x f (x) ordnet jedem Element x einer Menge M (Denitionsbereich) eindeutig ein Element y = f (x) einer Menge N (Werte- oder Bildbereich)

Mehr

Vorkurs Analysis und lineare Algebra. Teil 4

Vorkurs Analysis und lineare Algebra. Teil 4 Vorkurs Analysis und lineare Algebra Teil 4 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Inhaltsverzeichnis Teil 1 Teil 2 Teil 3 Teil 4 Abbildungen & Funktionen Potenz, Wurzel, Exponential

Mehr

Münchner Volkshochschule. Themen

Münchner Volkshochschule. Themen Themen Logik und Mengenlehre Zahlensysteme und Arithmetik Gleichungen und Ungleichungen Lin. Gleichungssysteme und spez. Anwendungen Geometrie und Trigonometrie Vektoren in der Ebene und Punktemengen Funktionen

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

: das Bild von ) unter der Funktion ist gegeben durch

: das Bild von ) unter der Funktion ist gegeben durch % 1.3 Funktionen Seien und Mengen nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. Bezeichnungen: : Definitionsbereich : Bildbereich (Zielmenge) von Der Graph einer Funktion: graph!

Mehr

11 Spezielle Funktionen und ihre Eigenschaften

11 Spezielle Funktionen und ihre Eigenschaften 78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 8. September 2011 Für die Mathematik zentral sind Abbildungen und Funktionen. Häufig wird zwischen beiden Begriffen nicht unterschieden.

Mehr

3. Funktionen. 3.1 Grundbegriffe [Kö 4.1; Sch-St 4.3]

3. Funktionen. 3.1 Grundbegriffe [Kö 4.1; Sch-St 4.3] 13 3. Funktionen 3.1 Grundbegriffe [Kö 4.1; Sch-St 4.3] Definition 1. A und B seien Mengen. a Eine Abbildung (oder Funktion f von A nach B (Schreibweise: f: A B ist eine Vorschrift, die jedem x A genau

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

17 Lineare Abbildungen

17 Lineare Abbildungen Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:

Mehr

Lektion 7: Einführung in den Funktionsbegriff

Lektion 7: Einführung in den Funktionsbegriff Lektion 7: Einführung in den Funktionsbegriff Definition 1: Eine Funktion ist eine eindeutige Zuordnung. Jedem Wert des Definitionsbereiches ID f der Funktion (meistens die Menge der x-werte ) wird genau

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 4 Injektive und surjektive Abbildungen Definition 4.1. Es seien L und M Mengen und es sei eine Abbildung. Dann heißt F F

Mehr

Vektorräume und lineare Abbildungen

Vektorräume und lineare Abbildungen Kapitel 11. Vektorräume und lineare Abbildungen 1 11.1 Vektorräume Sei K ein Körper. Definition. Ein Vektorraum über K (K-Vektorraum) ist eine Menge V zusammen mit einer binären Operation + einem ausgezeichneten

Mehr

3.2. Polarkoordinaten

3.2. Polarkoordinaten 3.2. Polarkoordinaten Die geometrische Bedeutung der komplexen Multiplikation versteht man besser durch die Einführung von Polarkoordinaten. Der Betrag einer komplexen Zahl z x + i y ist r: z x 2 + y 2.

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Funktionen, Stetigkeit Dierentialrechnung Funktionen mit mehreren Variablen Integralrechnung Dierentialgleichungen Teil 2: Wahrscheinlichkeitsrechnung

Mehr

Kapitel 5. Reelle Funktionen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 5 Reelle Funktionen 1 / 81

Kapitel 5. Reelle Funktionen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 5 Reelle Funktionen 1 / 81 Kapitel 5 Reelle Funktionen Josef Leydold Auffrischungskurs Mathematik WS 207/8 5 Reelle Funktionen / 8 Reelle Funktion Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge als auch

Mehr

Kurve in der Ebene. Mit seiner Hilfe kann man sich. ein Bild von f machen.

Kurve in der Ebene. Mit seiner Hilfe kann man sich. ein Bild von f machen. Kapitel Elementare Funktionen (Prof. Michael Eiermann) In diesem Abschnitt werden wir einfache Funktionen untersuchen, die Ihnen wahrscheinlich schon bekannt sind. Uns interessieren Polynome, rationale

Mehr

Spezielle Klassen von Funktionen

Spezielle Klassen von Funktionen Spezielle Klassen von Funktionen 1. Ganzrationale Funktionen Eine Funktion f : R R mit f (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, n N 0 und a 0, a 1,, a n R, (a n 0) heißt ganzrationale Funktion n

Mehr

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich Kapitel 3: Abbildungen Seite 32 Kap 3: Abbildungen Kap. 3.1: Abbildungen (Funktion), Bild und Urbild Der Begriff der Abbildung ist wie auch der Begriff der Menge von fundamentaler Bedeutung für die Mathematik.

Mehr

Elementare Funktionen. Analysis I November 28, / 101

Elementare Funktionen. Analysis I November 28, / 101 Elementare Funktionen Analysis I November 28, 2017 76 / 101 Exponentialfunktion Buch Kap. 2.3 Exponentialfunktionen f(x) = a x, a > 0, D = R. Ist a = e (Eulerzahl e = 2, 71828...), sprechen wir von der

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

7. Einige Typen von speziellen Funktionen [Kö 8]

7. Einige Typen von speziellen Funktionen [Kö 8] 39 7. Einige Typen von speziellen Funktionen [Kö 8] 7. Analytische Funktionen [Kö 7.3, 4.] Definition. Es sei D C, f : D C und z 0 D ein Häufungspunkt von D. Die Funktion f heißt im Punkt z 0 analytisch,

Mehr

ANALYSIS 1 Kapitel 7: Einige Typen von speziellen Funktionen

ANALYSIS 1 Kapitel 7: Einige Typen von speziellen Funktionen ANALYSIS 1 Kapitel 7: Einige Typen von speziellen Funktionen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität

Mehr

Kapitel 2: Abbildungen und elementare Funktionen

Kapitel 2: Abbildungen und elementare Funktionen Kapitel 2: Abbildungen und elementare Funktionen Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Abbildungen und elementare Funktionen 1 / 18 Gliederung

Mehr

Unter einer Abbildung f von einer Menge A in eine Menge B versteht man eine Vorschrift, die jedem a A eindeutig ein bestimmtes b = f (a) B zuordnet:

Unter einer Abbildung f von einer Menge A in eine Menge B versteht man eine Vorschrift, die jedem a A eindeutig ein bestimmtes b = f (a) B zuordnet: Abbildung Unter einer Abbildung f von einer Menge A in eine Menge B versteht man eine Vorschrift, die jedem a A eindeutig ein bestimmtes b = f (a) B zuordnet: f : A B. Für die Elementzuordnung verwendet

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (0.09.03 0.09.03) Dr. Jörg Horst WS 03-04 Mathematischer Vorkurs TU Dortmund Seite / 5 Mathematischer Vorkurs TU Dortmund Seite 6 / 5 Schenkel Winkelbereich Scheitel S

Mehr

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit Kapitel 6 Grenzwerte von Funktionen und Stetigkeit 225 Relle Funktionen Im Folgenden betrachten wir reelle Funktionen f : D R, mit D R. Wir suchen eine formale Definition für den folgenden Sachverhalt.

Mehr

2015, MNZ. Jürgen Schmidt. 3.Tag. Vorkurs. Mathematik FUNKTIONEN WS 2015/16

2015, MNZ. Jürgen Schmidt. 3.Tag. Vorkurs. Mathematik FUNKTIONEN WS 2015/16 Vorkurs Mathematik FUNKTIONEN WS 05/6 3.Tag Funktionen einer Veränderlichen Eine Funktion f einer reellen Variablen Definition 3 ist eine eindeutige Zuordnungsvorschrift zwischen den Zahlen einer nichtleeren

Mehr

4. Funktionen und Relationen

4. Funktionen und Relationen 4. Funktionen und Relationen Nikolaus von Oresmes Richard Dedekind (1831-1916) René Descartes 1596-1650 Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 4: Funktionen und Relationen 4.1 Funktionen:

Mehr

Analysis 1. Einführung. 22. März Mathe-Squad GbR. Einführung 1

Analysis 1. Einführung. 22. März Mathe-Squad GbR. Einführung 1 Analysis 1 Einführung Mathe-Squad GbR 22. März 2017 Einführung 1 y 10 9 8 7 6 5 4 3 2 1 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 910 2 x /* */ Einführung Allgemeines 2 Allgemeines Funktion f(x) bildet jeden

Mehr

Kapitel 5 Trigonometrie

Kapitel 5 Trigonometrie Mathematischer Vorkurs TU Dortmund Seite / 7 Schenkel Winkelbereich Scheitel S α Winkel werden in Grad oder im Bogenmaß (auch Rad) angegeben: 360 =. y cot α r = sin α α cos α tan α x Durch diese Betrachtungen

Mehr

Übungen zur Diskreten Mathematik I Blatt 6

Übungen zur Diskreten Mathematik I Blatt 6 1 Blatt 6 Aufgabe 19 Es sei M := {n N : n 2} und R := {(n, m) M M : n teilt m}. a) Zeigen Sie, dass R eine Ordnungsrelation auf M ist. b) Überprüfen Sie, ob R eine totale Ordnung auf M ist. c) Zeigen Sie,

Mehr

68 3 Folgen und Reihen

68 3 Folgen und Reihen 68 3 Folgen und Reihen dh S 2m m1 monoton wachsend, nach oben beschränkt Satz 3115i S 2m m1 konvergent, s : s lim S 2m; andererseits ist S 2m+1 S 2m + a m 2m+1 lim S 2m+1 lim S 2m s, m m s 0 m m also ist

Mehr

V4. VORKURSWISSEN: Funktionen

V4. VORKURSWISSEN: Funktionen Prof. Dr. Wolfgang Konen Mathematik, WS05 09.0.05 V4. VORKURSWISSEN: Funktionen INHALT: V4. VORKURSWISSEN: Funktionen... V4.. Allgemeine Funktionseigenschaften... V4.. Funktionsübersicht... 6 4... Polynome

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@m.uni-saarland.de SS 07 Vorlesung 5 MINT Mathkurs SS 07 / 8 Vorlesung 5 (Lecture 5) Reelle Funktionen einer reellen Veränderlichen

Mehr

K3 K2 K x. plot x 2 C x K 2, x = K3..2 ;

K3 K2 K x. plot x 2 C x K 2, x = K3..2 ; Einige Graphen spezieller Funktionen Lineare Funktion: f = a C b. Der Graph ist eine Gerade (Linie), der Koeffizient a bei gibt die Steigung der Geraden (den Tangens des Winkels, den die Gerade mit der

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Abbildungsverzeichnis Inhaltsverzeichnis Trigonometrische Funktionen Die hier behandelten trigonometrischen Funktionen sind sin, cos, tan, cot. Es zeigt sich, dass die Umkehrfunktionen der trigonometrischen

Mehr

Kapitel 6. Funktionen. Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49

Kapitel 6. Funktionen. Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49 Kapitel 6 Funktionen Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49 Reelle Funktion Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge als auch die Wertemenge Teilmengen

Mehr

Mathematik I. Vorlesung 12. Lineare Abbildungen

Mathematik I. Vorlesung 12. Lineare Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 12 Lineare Abbildungen Definition 12.1. Es sei K ein Körper und es seien V und W K-Vektorräume. Eine Abbildung heißt lineare Abbildung,

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 2.0. - Freitag 2.0. Vorlesung 5 Elementare Funktionen Kai Rothe Technische Universität Hamburg Dienstag 9.0. 0 Brückenkurs Mathematik, c K.Rothe, Vorlesung 5 Umkehrfunktion........................

Mehr

1 Mengenlehre. Maturavorbereitung GF Mathematik. Aufgabe 1.1. Aufgabe 1.2. Bestimme A \ B. Aufgabe 1.3. Aufgabe 1.4. Bestimme B \ A. Aufgabe 1.

1 Mengenlehre. Maturavorbereitung GF Mathematik. Aufgabe 1.1. Aufgabe 1.2. Bestimme A \ B. Aufgabe 1.3. Aufgabe 1.4. Bestimme B \ A. Aufgabe 1. Maturavorbereitung GF Mathematik Kurzaufgaben 1 Mengenlehre Aufgabe 1.1 Gegeben sind die Mengen A = {1, 2, 3} und B = {2, 3, 6, 8}. Bestimme A B. Aufgabe 1.2 Gegeben sind die Mengen A = {1, 2, 3} und B

Mehr

Anmerkungen zu Mengen und Abbildungen

Anmerkungen zu Mengen und Abbildungen Anmerkungen zu Mengen und Abbildungen Kartesisches Produkt von n Mengen und n-stellige Relationen Sind M 1, M,, M n nichtleere Mengen, so ist ihr kartesisches Produkt erklärt als Menge aller geordneter

Mehr

Funktionen oder Abbildungen sind wir schon mehrere Male begegnet. Es wird Zeit mal genau fest zu legen, was gemeint ist.

Funktionen oder Abbildungen sind wir schon mehrere Male begegnet. Es wird Zeit mal genau fest zu legen, was gemeint ist. Analysis, Woche 5 Funktionen I 5. Definition Funktionen oder Abbildungen sind wir schon mehrere Male begegnet. Es wird Zeit mal genau fest zu legen, was gemeint ist. Definition 5. Eine Funktion f : A B

Mehr

Lineare Algebra II 3. Übungsblatt

Lineare Algebra II 3. Übungsblatt Lineare Algebra II 3. Übungsblatt Fachbereich Mathematik SS 2011 Prof. Dr. Kollross 27./28. April 2011 Susanne Kürsten Tristan Alex Minitest Aufgabe M1 (Formale Polynome) Betrachten Sie die folgenden Polynome

Mehr

α i e i. v = α i σ(e i )+µ

α i e i. v = α i σ(e i )+µ Beweis: Der Einfachheit halber wollen wir annehmen, dass V ein endlich-dimensionaler Vektorraum mit Dimension n ist. Wir nehmen als Basis B {e 1,e 2,...e n }. Für beliebige Elemente v V gilt dann v α i

Mehr

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich Kapitel 3: Abbildungen Seite 33 Kap 3: Abbildungen Kap. 3.1: Abbildungen (Funktion), Bild und Urbild Der Begriff der Abbildung ist wie auch der Begriff der Menge von fundamentaler Bedeutung für die Mathematik.

Mehr

2 Funktionen einer Variablen

2 Funktionen einer Variablen 2 Funktionen einer Variablen Wir haben im letzten Kapitel allgemeine Abbildungen zwischen beliebigen Mengen betrachtet. Hier wollen wir uns nun mit dem Fall beschäftigen, dass sowohl der input als auch

Mehr

V4. VORKURSWISSEN: Funktionen

V4. VORKURSWISSEN: Funktionen Prof. Dr. Wolfgang Konen Mathematik, WS06 30.09.06 V4. VORKURSWISSEN: Funktionen INHALT: V4. VORKURSWISSEN: Funktionen... V4.. Allgemeine Funktionseigenschaften... V4.. Funktionsübersicht... 5 4... Polynome

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG Aufgabe 1 Es sei K ein Körper, V ein K-Vektorraum, und seien v 1,..., v n V (n N). (a) Definieren Sie, wann die endliche Familie v 1,...,

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 22 3. Funktionen. Grenzwerte.

Mehr

θ für alle n n 0, 0, dann divergiert a n. θ n, also die mit a n0 θ n 0

θ für alle n n 0, 0, dann divergiert a n. θ n, also die mit a n0 θ n 0 6 REIHEN 6. Konvergenzkriterien - 19 - Wenn man im Majorantenkriterium die geometrische Reihe als Majorante nimmt, erhält man das (6..18) Quotientenkriterium : Sei (a n ) n N0 eine Folge in C. Es gebe

Mehr

10 Differenzierbare Funktionen

10 Differenzierbare Funktionen 10 Differenzierbare Funktionen 10.1 Definition: Es sei S R, x 0 S Häufungspunkt von S. Eine Funktion f : S R heißt im Punkt x 0 differenzierbar, wenn der Grenzwert f (x 0 ) := f(x 0 + h) f(x 0 ) lim h

Mehr

Kap 3: Abbildungen und Relationen

Kap 3: Abbildungen und Relationen Kapitel 3: Abbildungen Seite 33 Kap 3: Abbildungen und Relationen Kap. 3.1: Relationen zwischen Mengen bzw. in einer Menge Definition 1: Seien A und B zwei nichtleere Mengen. Jede beliebige Teilmenge R

Mehr

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88 4. Funktionen Buchholz / Rudolph: MafI 2 88 Kapitelgliederung 4.1 Grundlegende Denitionen 4.2 Polynome und rationale Funktionen 4.3 Beschränkte und monotone Funktionen 4.4 Grenzwerte von Funktionen 4.5

Mehr

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung Mathematik I Herbstsemester 208 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas / 70 5. Integralrechnung Grundbegriffe Das bestimmte Integral als Flächeninhalt Der Fundamentalsatz Partielle

Mehr

Funktionen. Kapitel 3

Funktionen. Kapitel 3 Kapitel 3 Funktionen Mit Funktionen werden Zusammenhänge zwischen (zwei oder mehr) Größen beschrieben. Beispielsweise hängen die Herstellungskosten eines Produktes von der Produktmenge ab, oder der Gewinn

Mehr

1. Definition der trigonometrischen Funktionen für beliebige Winkel

1. Definition der trigonometrischen Funktionen für beliebige Winkel 1 Trigonometrie 2 1. Definition der trigonometrischen Funktionen für beliebige Winkel In einem Kreis mit Mittelpunkt M(0,0) und Radius r ist der zunächst spitze Winkel α gezeichnet. α legt auf dem Kreis

Mehr

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008)

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008) Vorlesung Mathematik für Ingenieure II (Sommersemester 8) Kapitel : Differenzialrechnung R n R m Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 8. Mai 8) Differenzialrechnung R R 4

Mehr

Übungen zur Vorlesung Mathematik für Chemiker 1

Übungen zur Vorlesung Mathematik für Chemiker 1 Prof. Dr. D. Egorova Prof. Dr. B. Hartke Lösungen Aufgabe Übungen zur Vorlesung Mathematik für Chemiker WiSe 204/5 Blatt 2 0.-2..204 f( x) = f(x) = gerade f( x) = f(x) = ungerade 8 6 4 2. f ( x) = ( x

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 2: Vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 19. Oktober 2011) Vektoren in R n Definition 2.1

Mehr

Definition, Funktionsgraph, erste Beispiele

Definition, Funktionsgraph, erste Beispiele 5. Vorlesung im Brückenkurs Mathematik 07 Reelle Funktionen Dr. Markus Herrich Markus Herrich Reelle Funktionen Definition, Funktionsgraph, erste Beispiele Markus Herrich Reelle Funktionen Definition Eine

Mehr

Der Begriff der Funktion oder Abbildung ist von zentraler Bedeutung für die gesamte Mathematik. Wir führen ihn in der nachstehenden Definition ein.

Der Begriff der Funktion oder Abbildung ist von zentraler Bedeutung für die gesamte Mathematik. Wir führen ihn in der nachstehenden Definition ein. Kapitel 2 Funktionen 2.1 Funktionen 2.2 Monotone Funktionen 2.3 Polynome 2.4 Rationale Funktionen 2.5 Abzählbarkeit von Mengen 2.1 Funktionen Der Begriff der Funktion oder Abbildung ist von zentraler Bedeutung

Mehr

Funktionen einer Variablen

Funktionen einer Variablen Kapitel 2. Funktionen einer Variablen 2.1 Einführende Beispiele Kostenfunktion und Stückkostenfunktion: Das Unternehmen Miel produziert hochwertige Waschmaschinen. Es hat monatliche Fikosten von 170.000.

Mehr

2.3 Elementare Funktionen

2.3 Elementare Funktionen .3 Elementare Funktionen Trigonometrische Funktionen (Winkelfunktionen) Vorbemerkung. Wir definieren die Winkelfunktionen bezogen auf die Bogenlänge x auf dem Einheitskreis, d.h. für x [0,π]. Alternativ

Mehr

3. Für beliebiges A bezeichnet man die Menge A A manchmal auch mit A 2 (in Worten:

3. Für beliebiges A bezeichnet man die Menge A A manchmal auch mit A 2 (in Worten: 35 4 Paarungen 4. Produktmengen Die Mengen {x, y} und {y, x} sind gleich, weil sie die gleichen Elemente enthalten. Manchmal legt man aber zusätzlich Wert auf die Reihenfolge der Elemente. Die Objekte

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 2.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 2.1 .1 Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen & Gleichungssysteme Quadratische und Gleichungen

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

Einführung. Lineare Algebra I. Kapitel April 2013

Einführung. Lineare Algebra I. Kapitel April 2013 Einführung Lineare Algebra I Kapitel 1 9. April 2013 Lehrbuch. Jörg Liesen, Volker Mehrmann, Lineare Algebra: Ein Lehrbuch über die Theorie mit Blick auf die Praxis (Bachelorkurs Mathematik) [Taschenbuch],

Mehr

Zusammenfassung An1I HS2012 Analysis für Informatiker 1

Zusammenfassung An1I HS2012 Analysis für Informatiker 1 Zusammenfassung An1I HS2012 Analysis für Informatiker 1 Emanuel Duss emanuel.duss@gmail.com 19. November 2012 Analysis für Informatiker 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Grundlagen der Lehre von

Mehr

9 Die trigonometrischen Funktionen und ihre Umkehrfunktionen

9 Die trigonometrischen Funktionen und ihre Umkehrfunktionen Übungsmaterial 9 Die trigonometrischen Funktionen und ihre Umkehrfunktionen Die trigonometrischen Funktionen sind die Sinus-, die Kosinus- und die Tangensfunktion. 9. Eigenschaften der trigonometrischen

Mehr

(R4) Addition und Multiplikation erfüllen das Distributivgesetz a (b + c) = ab + ac und. Endomorphismenring d) K Körper, n N, R = K n n Matrizenring

(R4) Addition und Multiplikation erfüllen das Distributivgesetz a (b + c) = ab + ac und. Endomorphismenring d) K Körper, n N, R = K n n Matrizenring 5 Polynome 5.1 Ringe Definition 5.1.1. Eine Menge R zusammen mit zwei inversen Verknüpfungen (+ : R R R Addition, : R R R Multiplikation heißt Ring, wenn folgende Bedingungen gelten: Ring (R1 (R, + abelsche

Mehr

Vortragsübung am 25. April 2014

Vortragsübung am 25. April 2014 Seite von 6 Termin: 5. April 04 Vortragsübung am 5. April 04.. Berechnen Sie den Grenzwert lim n ( n + + n + + + ), n indem Sie ihn als Riemann-Summe eines Integrals auffassen... Bestimmen Sie folgende

Mehr

Kapitel 3 Relationen, Ordnung und Betrag

Kapitel 3 Relationen, Ordnung und Betrag Kapitel 3 Relationen, Ordnung und Betrag Kapitel 3 Relationen, Ordnung und Betrag Mathematischer Vorkurs TU Dortmund Seite 27 / 254 Kapitel 3 Relationen, Ordnung und Betrag Definition 3.1 (Relationen)

Mehr