Mathematischer Vorkurs NAT-ING II

Größe: px
Ab Seite anzeigen:

Download "Mathematischer Vorkurs NAT-ING II"

Transkript

1 Mathematischer Vorkurs NAT-ING II ( ) Dr. Jörg Horst WS Mathematischer Vorkurs TU Dortmund Seite / 5

2 Mathematischer Vorkurs TU Dortmund Seite 6 / 5

3 Schenkel Winkelbereich Scheitel S α Winkel werden in Grad oder im Bogenmaß (auch Rad) angegeben: 360 =π. y cot α r = sin α α cos α tan α x Durch diese Betrachtungen am Einheitskreis werden vier Funktionen definiert. Mathematischer Vorkurs TU Dortmund Seite 63 / 5

4 Definition 5. (Winkelfunktionen) Name D W Sinus sin R [, ] Cosinus cos R [, ] Tangens tan R \ { k+ π k Z} R Cotangens cot R \ {kπ k Z} R Mathematischer Vorkurs TU Dortmund Seite 64 / 5

5 Die Graphen der Sinus- und Cosinusfunktionen y y = sin x y = cos x π π x Mathematischer Vorkurs TU Dortmund Seite 65 / 5

6 Die Graphen der Tangens- und Cotangensfunktionen: y y = tan x y = cot x π 4 π 3π 4 π 5π 4 3π x Mathematischer Vorkurs TU Dortmund Seite 66 / 5

7 Satz 5. (Interpretation am rechtwinkligen Dreieck) C A b α c a B Mit diesen Bezeichnungen gilt dann sin α = a b, cos α = c und tan α = a b c Mathematischer Vorkurs TU Dortmund Seite 67 / 5

8 Definition 5.3 (Periodische Funktionen) Es sei T > 0. Eine Funktion f : R R heißt T -periodisch, wenn f(x + T ) = f(x) für alle x R. Definition 5.4 (Symmetrie von Funktionen) Es sei I R ein um 0 symmetrisches Intervall. Eine Funktion f : I R heißt gerade, wenn f( x) = f(x) für alle x I..... ungerade, wenn f( x) = f(x) für alle x I. Mathematischer Vorkurs TU Dortmund Seite 68 / 5

9 Satz 5.5 (Eigenschaften der Winkelfunktionen). sin sowie cos sind π- und tan sowie cot sind π- periodisch.. sin(x + π) = sin x und cos(x + π) = cos x. 3. sin(x + π ) = cos x und cos(x + π ) = sin x. 4. tan x = sin x und cotx = cos x tan x. 5. cos ist eine gerade Funktion und sin, tan und cot sind ungerade Funktionen. 6. Für alle x R gilt sin x und cos x. 7. sin(x) = 0 genau dann, wenn x = kπ mit k Z. cos(x) = 0 genau dann, wenn x = k+ π mit k Z. 8. sin x + cos x = der Trigonometrische Pythagoras. 9. cos x = + tan x und sin x = + cot x. Mathematischer Vorkurs TU Dortmund Seite 69 / 5

10 Satz 5.6 (Einschränkungen der Winkelfunktionen) Die folgenden Einschränkungen der Winkelfunktionen sind streng monoton und wegen Satz 4.0 damit bijektiv auf das jeweilige Bild. sin [ [ ] : π π, π, π ] [, ] ist streng monoton wachsend. cos [0,π] : [0, π] [, ] ist streng monoton fallend. 3 tan ] ] [ : π π, π, π [ R ist streng monoton wachsend. 4 cot ]0,π[ :]0, π[ R ist streng monoton fallend. Mathematischer Vorkurs TU Dortmund Seite 70 / 5

11 Wegen Satz 4.8 können wir von diesen Einschränkungen aus Satz 5.6 die Umkehrfunktionen angeben. Definition 5.7 (Arcusfunktionen) Die Umkehrfunktionen der Winkelfunktionen werden Arcusfunktionen genannt und sind. arcsin : [, ] [ π, π ]. arccos : [, ] [0, π] 3. arctan : R ] π, π [ 4. arccot : R ] 0, π[ Die Graphen der Arcusfunktionen sehen wie folgt aus (siehe Bemerkung 4.9): Mathematischer Vorkurs TU Dortmund Seite 7 / 5

12 y y = arccos x y π π y = arcsin x y = arccot x π 4 π x y = arctan x x π π Mathematischer Vorkurs TU Dortmund Seite 7 / 5

13 Beim Rechnen mit den Winkelfunktionen sind folgende Additionstheoreme sehr nützlich: Satz 5.8 (Additionstheoreme) sin(x ± y) = sin x cos y ± sin y cos x cos(x ± y) = cos x cos y sin x sin y tan x ± tan y 3 tan(x ± y) = tan x tan y Daraus erhält man dann Folgerung 5.9 (Doppelte Winkel). sin x = sin x cos x. cos x = cos x sin x 3. tan x = tan x tan x 4. cos x = ( + cos x) und sin x = ( cos x) Mathematischer Vorkurs TU Dortmund Seite 73 / 5

14 Eine kleine Beweisskizze für die Additionstheoreme: sin x cos y cos x sin y x cos x cos y cos y sin y sin x sin y x y x + y cos(x + y) sin(x + y) Mathematischer Vorkurs TU Dortmund Seite 74 / 5

15 Und nun noch ein paar spezielle Werte der Winkelfunktionen (und mit 5.5, 5.8 und 5.9 dann natürlich weitere) x in Grad x in Rad 0 π 6 sin x 0 cos x 3 π 4 π 3 π 3 0 tan x cotx Mathematischer Vorkurs TU Dortmund Seite 75 / 5

16 Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 5

17 Kapitel 6 Folgen und Stetigkeit Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : N R. Statt f(n) schreiben wir x n und schreiben abkürzend (x n ) := (x 0, x,..., x k,...) für die Sammlung aller Bilder. x n heißt n-tes Folgenglied. Bemerkung: Manchmal macht es Sinn den Definitionsbereich einzuschränken, dieser sollte allerdings dann keine Lücken haben. Beispiele: (n) hat den Definitionsbereich N. ( ) n hat den Definitionsbereich N +. ( ) (n+)(n 4) hat den Definitionsbereich N 5. Mathematischer Vorkurs TU Dortmund Seite 77 / 5

18 Kapitel 6 Folgen und Stetigkeit Technisches Hilfsmittel zur Beschreibung des Verhaltens von Zahlenfolgen: Definition (ɛ-umgebung) Für a R und ɛ > 0 heißt das offene Intervall ]a ɛ, a + ɛ[= {x R x a < ɛ} die ɛ-umgebung von a und wird mit U ɛ (a) bezeichnet. Mathematischer Vorkurs TU Dortmund Seite 78 / 5

19 Kapitel 6 Folgen und Stetigkeit Was bedeutet Eine Folge läuft gegen einen festen Wert? Definition 6.3 (Konvergenz von Zahlenfolgen) Eine Folge (x n ) heißt konvergent gegen den Grenzwert a, wenn gilt ɛ > 0 n 0 N n n 0 : x n a < ɛ. Wir schreiben: lim n x n = a oder manchmal auch x n a (n ) und sagen: (x n ) geht gegen a für n gegen unendlich, oder auch: (x n ) konvergiert gegen a. Satz 6.4 Eine konvergente Folge besitzt einen eindeutigen Grenzwert. lim x n = a ist gleichbedeutend mit lim x n a = 0. n n 3 Ist lim n y n = 0 und 0 x n y n für alle n, so gilt lim n x n = 0. Mathematischer Vorkurs TU Dortmund Seite 79 / 5

20 Kapitel 6 Folgen und Stetigkeit Und nun halten wir noch fest, was es bedeutet, wenn eine Folge nicht konvergiert. Von Nicht-Konvergenz gibt es verschiedene Abstufungen. Definition 6.5 (Divergenz). Eine Folge, die nicht konvergent ist, heißt divergent.. Eine Folge (x n ) heißt uneigentlich konvergent, wenn gilt M R n 0 N n n 0 : x n > M Wir schreiben in diesem Fall lim n x n = oder x n (n ). Analog macht man das für. Mathematischer Vorkurs TU Dortmund Seite 80 / 5

21 Kapitel 6 Folgen und Stetigkeit Beispiele 6.6: Jede Folge, die konstant wird (dh. es gibt eine Zahl m N, so dass x n = x m für alle n m) ist konvergent. Die Folge ( ) ( n =,, 3,... ) konvergiert gegen 0. Genauso auch die Folge ( ) n (falls k > 0). k 3 Ist die Folge (x n ) uneigentlich konvergent und ist x n 0 für alle n, so konvergiert die Folge ( x n ) gegen 0. 4 Die Folge ( ( ) n) ist divergent. Mathematischer Vorkurs TU Dortmund Seite 8 / 5

22 Kapitel 6 Folgen und Stetigkeit Definition 6.7 (Teilfolge) Eine Teilfolge einer Folge erhält man, indem man aus ihr eine beliebige Anzahl von Gliedern weg läßt, wobei aber unendlich viele Glieder übrigbleiben müssen. Satz 6.8 (Eigenschaften von Teilfolgen) Ist eine Folge konvergent gegen a, so konvergiert jede Teilfolge ebenfalls gegen a. Hat eine Folge zwei Teilfolgen, die gegen unterschiedliche Grenzwerte konvergieren, dann ist die Folge divergent. Mathematischer Vorkurs TU Dortmund Seite 8 / 5

23 Kapitel 6 Folgen und Stetigkeit Satz 6.9 (Rechenregeln für konvergente Folgen) Es seien (x n ) bzw. (y n ) konvergente Folgen und außerdem sei c R. Dann gilt lim (x n ± y n ) = lim x n ± lim y n. n n n lim (cx n) = c lim x n. n n 3 lim n (x ny n ) = lim n x n lim n y n. x n 4 lim = n y n lim n x n lim n y n (hierbei sei natürlich y n 0 und lim n y n 0). 5 Ist x n y n oder x n < y n, dann gilt lim n x n lim n y n. Mathematischer Vorkurs TU Dortmund Seite 83 / 5

24 Kapitel 6 Folgen und Stetigkeit Definition 6.0 (Grenzwert einer Funktion) Es sei D R eine Teilmenge und ˆx D. Weiter sei f : D \ {ˆx} R eine Funktion. f hat in ˆx den Grenzwert ŷ wenn gilt: Für jede Folge (x n ) in D \ {ˆx} mit lim n x n = ˆx gilt lim n f(x n) = ŷ. Man schreibt dann lim x ˆx f(x) = ŷ. Die Definition läßt sich auch auf ˆx = ± oder ŷ = ± erweitern. Mathematischer Vorkurs TU Dortmund Seite 84 / 5

25 Kapitel 6 Folgen und Stetigkeit Definition 6. (Stetigkeit) Es sei f : D R eine Funktion auf der Teilmenge D R. Dann heißt stetig in x 0 D, wenn lim x x 0 f(x) = f(x 0 )... stetig, wenn f in jedem Punkt aus D stetig ist. Beispiele 6.:. Die Identität und die Betragsfunktion sind stetig.. Die Signum-Funktion σ : R R mit σ(x) := ist nicht stetig. { falls x 0 falls x < 0 3. Die Funktion f mit f(x) = x ist stetig auf ihrem Definitionsbereich D = R \ {0}. 4. Die Wurzelfunktionen f : R 0 R 0 mit f(x) = n x sind stetig. Mathematischer Vorkurs TU Dortmund Seite 85 / 5

26 Kapitel 6 Folgen und Stetigkeit Satz 6.3 (Rechenregeln für Grenzwerte) Es seien f, g : D \ {x 0 } R Funktionen mit lim x x 0 f(x) = a und lim x x 0 g(x) = b, sowie c R. Dann gilt lim x x 0 (f(x) ± g(x)) = a ± b. lim x x 0 (cf(x)) = ca. 3 lim x x 0 (f(x)g(x)) = ab. f(x) 4 lim x x 0 g(x) = a b (falls b 0). Beispiele 6. [cont.]: 5. Die Potenzfunktionen sind stetig und die Polynome sind stetig. Mathematischer Vorkurs TU Dortmund Seite 86 / 5

27 Kapitel 6 Folgen und Stetigkeit Satz 6.4 Es seien f, g : D R stetig in x 0 D und c R. Dann sind auch f ± g, cf, fg und f g stetig (wobei im letzten Fall g(x) 0 für alle x D vorausgesetzt werden muss). Ist f : D R stetig in x 0 D und g : ˆD R mit f(d) ˆD stetig in f(x 0 ) ˆD, so ist g f stetig in x 0. Satz 6.5 Die Winkelfunktionen und ihre Umkehrfunktionen sind stetig auf ihren Definitionsbereichen. Beispiele 6. [cont.]: 6. f : x x + ist stetig. 7. x arctan(sin(x)) ist stetig. Mathematischer Vorkurs TU Dortmund Seite 87 / 5

28 Kapitel 6 Folgen und Stetigkeit Nullstellensatz 6.6 Ist f : [a, b] R eine stetige Funktion mit f(a)f(b) < 0, so gibt es ein x [a, b] mit f(x) = 0. Beispiel: Das Polynom f mit f(x) = x 3 + x x erfüllt f( 3) = 8 < 0 und f() =, hat also eine Nullstelle in [ 3, ] (sogar drei:, und ). Zwischenwertsatz 6.7 Es sei f : [a, b] R eine stetige Funktion und es gelte f(a) f(b). Dann gibt es zu jedem y zwischen f(a) und f(b) ein x [a, b], so dass f(x) = y. Beispiel [cont.]: Das Polynom f mit f(x) = x 3 + x x nimmt sogar jeden Wert in [ 8, ] im Intervall [ 3, ] an. Mathematischer Vorkurs TU Dortmund Seite 88 / 5

Kapitel 5 Trigonometrie

Kapitel 5 Trigonometrie Mathematischer Vorkurs TU Dortmund Seite / 7 Schenkel Winkelbereich Scheitel S α Winkel werden in Grad oder im Bogenmaß (auch Rad) angegeben: 360 =. y cot α r = sin α α cos α tan α x Durch diese Betrachtungen

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite / 50 Kapitel 5 Mathematischer Vorkurs TU Dortmund Seite 54 / 50 Scheitel S Schenkel α Winkelbereich Winkel werden in Grad

Mehr

Die trigonometrischen Funktionen

Die trigonometrischen Funktionen Die trigonometrischen Funktionen Betrachte die Funktion f(x) = 1 x auf dem Intervall [ 1, 1]. Für x = 1 erhält man den Punkt P 1 = ( 1, ), für x = den Punkt P = (, 1) und für x = 1 den Punkt P 1 = (1,

Mehr

11 Spezielle Funktionen und ihre Eigenschaften

11 Spezielle Funktionen und ihre Eigenschaften 78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs (2. September 2013) Frank Reidegeld TU Dortmund WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund

Mehr

Die Funktion f (x) = e ix

Die Funktion f (x) = e ix Die Funktion f (x) = e ix Wir wissen e ix = 1, liegt also auf dem Einheitskreis. Mit wachsendem x läuft e ix immer wieder um den Einheitskreis herum. Die Laufrichtung ist gegen den Uhrzeigersinn (mathematisch

Mehr

Funktionen einer reellen Veränderlichen

Funktionen einer reellen Veränderlichen KAPITEL Funktionen einer reellen Veränderlichen.1 Eigenschaften von Funktionen........................... 39. Potenz- und Wurzelfunktionen............................ 1.3 Trigonometrische Funktionen.............................

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge

Mehr

Definition von Sinus und Cosinus

Definition von Sinus und Cosinus Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 27 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

Funktionen einer reellen Veränderlichen

Funktionen einer reellen Veränderlichen KAPITEL Funktionen einer reellen Veränderlichen. Grundbegriffe Definition.. Eine Abbildung oder Funktion f ist eine Zuordnung(svorschrift), die jeder Zahl x aus dem Definitionsbereich D(f) der Funktion

Mehr

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil 14 DIE EXPONENTIALFUNKTION IM KOMPLEXEN 73 Wegen (a, 0) + (c, 0) = (a + c, 0) (a, 0) (c, 0) = (ac, 0) kann man die Teilmenge {(a, 0) a R} mit den darauf eingeschränkten Verknüpfungen identifizieren mit

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 7 Differenzierbarkeit Mathematischer Vorkurs TU Dortmund Seite

Mehr

3 Folgen, Reihen und stetige Funktionen

3 Folgen, Reihen und stetige Funktionen Höhere Mathematik 101 3 Folgen, Reihen und stetige Funktionen 3.1 Folgen und Reihen: Definitionen und Beispiele Eine reelle oder komplexe Zahlenfolge ist eine Abbildung, die jeder natürlichen Zahl n eine

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Mathematischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 211 Willkommen an der TU Dortmund Organisatorisches Mathematischer Vorkurs

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 26 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

10 Differenzierbare Funktionen

10 Differenzierbare Funktionen 10 Differenzierbare Funktionen 10.1 Definition: Es sei S R, x 0 S Häufungspunkt von S. Eine Funktion f : S R heißt im Punkt x 0 differenzierbar, wenn der Grenzwert f (x 0 ) := f(x 0 + h) f(x 0 ) lim h

Mehr

Nullstellen. Häufig interessiert man sich für die Werte der unabhängigen Variable einer Funktion, für die der Funktionswert 0 ist:

Nullstellen. Häufig interessiert man sich für die Werte der unabhängigen Variable einer Funktion, für die der Funktionswert 0 ist: 15 y 10 5 5 x 10 15 Nullstellen Häufig interessiert man sich für die Werte der unabhängigen Variable einer Funktion, für die der Funktionswert 0 ist: 98 Sei f : R R eine Funktion. Ist x 0 D(f) eine reelle

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

c < 1, (1) c k x k0 c k = x k0

c < 1, (1) c k x k0 c k = x k0 4.14 Satz (Quotientenkriterium). Es sei (x k ) Folge in K. Falls ein k 0 existiert, so dass für k k 0 gilt x k 0 und x k+1 x k c < 1, (1) so ist x k absolut konvergent. Beweis. Aus (1) folgt mit vollständiger

Mehr

(k +2)(k +3) x 2 (k +3)!

(k +2)(k +3) x 2 (k +3)! 5.3. SINUS UND KOSINUS 9 5.35. Lemma. Es gilt (i) (ii) (iii) cos() < 0, sin(x) > 0 für alle x (0, ], x cos(x) ist streng monoton fallend in [0, ]. Beweis. (i) Es ist cos() = 1! + 4 6 4! 6! 8 10 8! 10!

Mehr

Mathematischer Vorkurs (2017)

Mathematischer Vorkurs (2017) Mathematischer Vorkurs (2017) Skript für die Natur- und Ingenieurwissenschaften Mathematischer Vorkurs TU Dortmund (2017) Seite 1 / 142 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund (2017)

Mehr

3.1 Rationale Funktionen

3.1 Rationale Funktionen 3.1 Rationale Funktionen EineFunktionf : R R der Formx P(x) Q(x) mit Polynomen P(x), Q(x) heißt rationale Funktion. Der maximale Definitionsbereich von f = P(x) Q(x) Sei x 0 R mit Q(x 0 ) = 0. Ferner sei

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

Folgende Eigenschaft beschreibt eine gewisse Symmetrie des Funktionsgraphen:

Folgende Eigenschaft beschreibt eine gewisse Symmetrie des Funktionsgraphen: für alle x [0,2000]. Das Intervall [0,2000] könnte aus ökonomischer Sicht relevant sein, wenn etwa die Maximalauslastung bei 2000 produzierten Waschmaschinen liegt. Folgende Eigenschaft beschreibt eine

Mehr

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Funktionen, Stetigkeit Dierentialrechnung Funktionen mit mehreren Variablen Integralrechnung Dierentialgleichungen Teil 2: Wahrscheinlichkeitsrechnung

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 2008/09) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 9. November 2008) Die

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Willkommen an der TU Dortmund Mathematischer Vorkurs NAT-ING (0.09. 0.09.03) Organisatorisches Dr. Robert Strehl WS 03-04 Mathematischer Vorkurs TU Dortmund Seite / Mathematischer Vorkurs TU Dortmund Seite

Mehr

2.3 Elementare Funktionen

2.3 Elementare Funktionen .3 Elementare Funktionen Trigonometrische Funktionen (Winkelfunktionen) Vorbemerkung. Wir definieren die Winkelfunktionen bezogen auf die Bogenlänge x auf dem Einheitskreis, d.h. für x [0,π]. Alternativ

Mehr

Kapitel 3. Funktionen. Grundbegriffe. Grenzwerte bei Funktionen. Stetigkeit. Die elementaren Funktionen. Anwendungen

Kapitel 3. Funktionen. Grundbegriffe. Grenzwerte bei Funktionen. Stetigkeit. Die elementaren Funktionen. Anwendungen Kapitel 3 Funktionen Grundbegriffe Grenzwerte bei Funktionen Stetigkeit Die elementaren Funktionen Anwendungen Funktionen Grundbegriffe Funktionen und ihre Darstellung Unter einer Abbildung von einer Menge

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

Winkel und Winkelmessung

Winkel und Winkelmessung 4. Trigonometrie Winkel und Winkelmessung Winkel... Teil der Ebene, der von zwei Strahlen ( Schenkeln ) mit gleichem Anfangspunkt ( Scheitel ) begrenzt wird Winkelmessung... Quantitative Erfassung der

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. Dezember 2011)

Mehr

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115 5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 5 Satz 5.5.2 (Ableitung der Umkehrfunktion einer Winkelfunktionen) Die Umkehrfunktionen der trigonometrischen Funktionen sind nach Satz 5.2.3 auf den

Mehr

2.4 Grenzwerte bei Funktionen

2.4 Grenzwerte bei Funktionen 28 Beispiel Im Beispiel am Ende von Abschnitt 2.1 (Seiten 22 und 24) haben wir gesehen, dass für die Anzahl a n von Bakterien nach n Tagen gilt a n = 2500 (1,04 n +1). Nach wieviel Tagen sind es eine Million

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

Vorkurs Analysis und lineare Algebra. Teil 4

Vorkurs Analysis und lineare Algebra. Teil 4 Vorkurs Analysis und lineare Algebra Teil 4 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Inhaltsverzeichnis Teil 1 Teil 2 Teil 3 Teil 4 Abbildungen & Funktionen Potenz, Wurzel, Exponential

Mehr

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie Ferienkurs Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit, Konvergenz, Topologie Lösung 2.03.202. Gleichmäßige Konvergenz Entscheiden Sie, ob die folgenden auf (0,

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

2.2 Reellwertige Funktionen

2.2 Reellwertige Funktionen 4 Kapitel. Differentialrechnung in einer Variablen. Reellwertige Funktionen Ein zentraler Begriff der Mathematik ist der Begriff der Abbildung oder Funktion, und dieses Konzept taucht in den verschiedensten

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Kapitel 3: Folgen und Reihen

Kapitel 3: Folgen und Reihen Kapitel 3: und Reihen Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 3: und Reihen 1 / 29 Gliederung 1 Grundbegriffe 2 Abbildungen und elementare

Mehr

Vorkurs Mathematik Teil II. Analysis

Vorkurs Mathematik Teil II. Analysis Vorkurs Mathematik Teil II. Analysis Inhalt 1. Konvergenz 2. Grundlegendes über Funktionen, Stetigkeit, Ableitung und Integral 3. Der Hauptsatz der Differential- und Integralrechnung 4. Elementare Funktionen

Mehr

Spezielle Klassen von Funktionen

Spezielle Klassen von Funktionen Spezielle Klassen von Funktionen 1. Ganzrationale Funktionen Eine Funktion f : R R mit f (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, n N 0 und a 0, a 1,, a n R, (a n 0) heißt ganzrationale Funktion n

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs 30. September 2012 Inhaltsverzeichnis 1 Mengen........................ 3 2 Zahlen........................ 7 3 Relationen, Ordnung und Betrag.............. 14 4 Abbildungen und Funktionen...............

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 2.0. - Freitag 2.0. Vorlesung 5 Elementare Funktionen Kai Rothe Technische Universität Hamburg Dienstag 9.0. 0 Brückenkurs Mathematik, c K.Rothe, Vorlesung 5 Umkehrfunktion........................

Mehr

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b. Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und

Mehr

1. Definition der trigonometrischen Funktionen für beliebige Winkel

1. Definition der trigonometrischen Funktionen für beliebige Winkel 1 Trigonometrie 2 1. Definition der trigonometrischen Funktionen für beliebige Winkel In einem Kreis mit Mittelpunkt M(0,0) und Radius r ist der zunächst spitze Winkel α gezeichnet. α legt auf dem Kreis

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

HM I Tutorium 9. Lucas Kunz. 22. Dezember 2017

HM I Tutorium 9. Lucas Kunz. 22. Dezember 2017 HM I Tutorium 9 Lucas Kunz. Dezember 017 Inhaltsverzeichnis 1 Theorie 1.1 Exponentialfunktion.............................. 1. Sinus und Cosinus................................ 1.3 Tangens und Cotangens............................

Mehr

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1.

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1. 8. GRENZWERTE UND STETIGKEIT VON FUNKTIONEN 51 e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme cos(x+y) = cos(x) cos(y) sin(x) sin(y) und sin(x+y) = cos(x) sin(y)+sin(x) cos(y). f. Für eine

Mehr

Analysis I. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 6. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 2017 1 Erinnerung Eine Abbildung f : X Y heisst injektiv, falls 1, 2 X : 1 2 f( 1 ) f( 2 ). (In Worten:

Mehr

7. Einige Typen von speziellen Funktionen [Kö 8]

7. Einige Typen von speziellen Funktionen [Kö 8] 39 7. Einige Typen von speziellen Funktionen [Kö 8] 7. Analytische Funktionen [Kö 7.3, 4.] Definition. Es sei D C, f : D C und z 0 D ein Häufungspunkt von D. Die Funktion f heißt im Punkt z 0 analytisch,

Mehr

Münchner Volkshochschule. Themen

Münchner Volkshochschule. Themen Themen Logik und Mengenlehre Zahlensysteme und Arithmetik Gleichungen und Ungleichungen Lin. Gleichungssysteme und spez. Anwendungen Geometrie und Trigonometrie Vektoren in der Ebene und Punktemengen Funktionen

Mehr

Elementare Funktionen. Analysis I November 28, / 101

Elementare Funktionen. Analysis I November 28, / 101 Elementare Funktionen Analysis I November 28, 2017 76 / 101 Exponentialfunktion Buch Kap. 2.3 Exponentialfunktionen f(x) = a x, a > 0, D = R. Ist a = e (Eulerzahl e = 2, 71828...), sprechen wir von der

Mehr

HM I Tutorium 8. Lucas Kunz. 12. Dezember 2018

HM I Tutorium 8. Lucas Kunz. 12. Dezember 2018 HM I Tutorium 8 Lucas Kunz. Dezember 08 Inhaltsverzeichnis Theorie. Stetigkeit und Grenzwerte............................ Sinus und Cosinus.................................3 Tangens und Cotangens............................

Mehr

3.2 Trigonometrische Funktionen

3.2 Trigonometrische Funktionen 3. Trigonometrische Funktionen Vorbemerkung. Wir definieren die Winkelfunktionen bezogen auf die Bogenlänge x auf dem Einheitskreis, d.h. für x [0,π]. Alternativ werden die Argumente der Winkelfunktionen

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

6.4 Stetige Funktionen

6.4 Stetige Funktionen 6.4 Stetige Funktionen Eine Funktion f heißt stetig im Punkt a, falls sie dort definiert ist und folgende Gleichung erfüllt: lim /a f = f a Ist dies für alle Punkte des Definitionsbereichs A erfüllt, so

Mehr

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88 4. Funktionen Buchholz / Rudolph: MafI 2 88 Kapitelgliederung 4.1 Grundlegende Denitionen 4.2 Polynome und rationale Funktionen 4.3 Beschränkte und monotone Funktionen 4.4 Grenzwerte von Funktionen 4.5

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 3. Reelle Funktionen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

θ für alle n n 0, 0, dann divergiert a n. θ n, also die mit a n0 θ n 0

θ für alle n n 0, 0, dann divergiert a n. θ n, also die mit a n0 θ n 0 6 REIHEN 6. Konvergenzkriterien - 19 - Wenn man im Majorantenkriterium die geometrische Reihe als Majorante nimmt, erhält man das (6..18) Quotientenkriterium : Sei (a n ) n N0 eine Folge in C. Es gebe

Mehr

TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN

TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN Zusammenfassung. Wir listen die wichtigsten Grundtatsachen trigonometrischer und hyperbolischer Funktionen auf... Sinus.. Trigonometrische Funktionen analytische

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

Analysis I. 8. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 8. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 8. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 9, 207 Grenzwerte Korollar 5.2.2 (Bernoulli-de l Hôpital) Seien f, g : [a, b] R stetig und differenzierbar

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 22 3. Funktionen. Grenzwerte.

Mehr

2.5 Komplexe Wurzeln. Mathematik für Naturwissenschaftler I 2.5

2.5 Komplexe Wurzeln. Mathematik für Naturwissenschaftler I 2.5 Mathematik für Naturwissenschaftler I 2.5 Die Periodizität von e z ist der Grund, warum im Komplexen Logarithmen etwas schwieriger zu behandeln sind als im Reellen: Der natürliche Logarithmus ist die Umkehrung

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2012 Konvergenz Definition Fourierreihen Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn es ein

Mehr

Abbildung 14: Winkel im Bogenmaß

Abbildung 14: Winkel im Bogenmaß Mathematik für Naturwissenschaftler I. (7) Trigonometrische Funktionen (in R): Trigonometrische Funktionen wie sin x und cos x stehen üblicherweise in Zusammenhang mit Winkeln. Während im Alltag Winkel

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

ANALYSIS 1 Kapitel 7: Einige Typen von speziellen Funktionen

ANALYSIS 1 Kapitel 7: Einige Typen von speziellen Funktionen ANALYSIS 1 Kapitel 7: Einige Typen von speziellen Funktionen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität

Mehr

1.2 Einfache Eigenschaften von Funktionen

1.2 Einfache Eigenschaften von Funktionen 1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine

Mehr

Dezimalzahlen. Analysis 1

Dezimalzahlen. Analysis 1 Dezimalzahlen Definition. Eine endliche Dezimalzahl besteht aus - einem Vorzeichen +,, oder 0 - einer natürlichen Zahl d 0 - einer endlichen Folge von Ziffern d 1,...,d l von 0 bis 9. Die Länge l kann

Mehr

3 Grenzwert und Stetigkeit 1

3 Grenzwert und Stetigkeit 1 3 Grenzwert und Stetigkeit 3. Grenzwerte bei Funktionen In diesem Abschnitt gilt: I ist immer ein beliebiges Intervall, 0 I oder einer der Endpunkte. 3.. Definition Sei I Intervall, 0 IR und 0 I oder Endpunkt

Mehr

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit Kapitel 6 Grenzwerte von Funktionen und Stetigkeit 225 Relle Funktionen Im Folgenden betrachten wir reelle Funktionen f : D R, mit D R. Wir suchen eine formale Definition für den folgenden Sachverhalt.

Mehr

3 Stetigkeit und Grenzwerte von Funktionen

3 Stetigkeit und Grenzwerte von Funktionen 54 3 STETIGKEIT UND GRENZWERTE VON FUNKTIONEN = q + q+ = q. 3 Stetigkeit und Grenzwerte von Funktionen 3. Stetigkeit Definition 3.. Seien M, N C und sei f : M N eine Funktion. Sei ξ M. Dann heißt f stetig

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 25.06.2018 20. Juni 2018 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2018 Steven Köhler 20. Juni 2018 Konvergenz

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 13.1.016 Zwischenwertsatz und klassische Funktionen In diesem Abschnitt haben wir es mit Funktionen zu tun, die auf einem Intervall definiert sind. Eine Menge I R ist genau dann ein

Mehr

V4. VORKURSWISSEN: Funktionen

V4. VORKURSWISSEN: Funktionen Prof. Dr. Wolfgang Konen Mathematik, WS05 09.0.05 V4. VORKURSWISSEN: Funktionen INHALT: V4. VORKURSWISSEN: Funktionen... V4.. Allgemeine Funktionseigenschaften... V4.. Funktionsübersicht... 6 4... Polynome

Mehr

Potenz- / Wurzel- / Trigonom. / Arkus- / Exponential- / Log.-Funktionen

Potenz- / Wurzel- / Trigonom. / Arkus- / Exponential- / Log.-Funktionen Übung 6 Funktionen Potenz- / Wurzel- / Trigonom. / Arkus- / Exponential- / Log.-Funktionen PUZZLE Themen 1 Potenz- / Wurzelfunktionen 2 Trigonometrische Funktionen / Arkusfunktionen 3 Exponential- / Logarithmusfunktionen

Mehr

Analysis I. Guofang Wang , Universität Freiburg

Analysis I. Guofang Wang , Universität Freiburg Universität Freiburg 10.1.2017, 11.1.2017 Definition 1.1 (Ableitung) Die Funktion f : I R n hat in x 0 I die Ableitung a R n (Notation: f (x 0 ) = a), falls gilt: f(x) f(x 0 ) lim = a. (1.1) x x 0 x x

Mehr

Klausur Analysis für Informatiker Musterlösung

Klausur Analysis für Informatiker Musterlösung Prof. Dr. Torsten Wedhorn WS 9/ Dr. Ralf Kasprowitz Elena Fink Klausur Analysis für Informatiker Musterlösung 9.2.2 Name, Vorname Studienfach Matrikelnummer Semester Übungsgruppe Zugelassene Hilfsmittel:

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. Analysis I, WiSe 2013/14, 04.02.2014 (Iske), Version A 1 Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. a) Welche der folgenden Aussagen über Folgen sind sinnvoll und

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 8 10. November 2009 Kapitel 2. Konvergenz von Folgen und Reihen Definition 27. Eine (reelle bzw. komplexe) Zahlenfolge ist eine R- bzw. C-wertige

Mehr