Definition von Sinus und Cosinus

Größe: px
Ab Seite anzeigen:

Download "Definition von Sinus und Cosinus"

Transkript

1 Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv, also gegen den Uhrzeigersinn). Dann definieren wir: sin ϕ := y und cos ϕ := x. Dadurch sind sin ϕ und cos ϕ für Winkel ϕ [0, π) erklärt. Für andere Werte ϕ R definieren wir sin ϕ := sin(ϕ kπ) und cos ϕ := cos(ϕ kπ), wobei k Z so gewählt ist, dass ϕ kπ [0, π) gilt. Die Funktionen sin ϕ und cos ϕ entstehen also durch π-periodische Fortsetzung von [0, π) auf R.

2 Eigenschaften von sin x und cos x Mit dem Satz des Pythagoras folgt: Additionstheoreme: sin x + cos x = 1 für alle x R. π x sin x 0 cos x 1 3 π 4 π π Für alle x, y R gilt sin(x + y) = sin x cos y + cos x sin y, cos(x + y) = cos x cos y sin x sin y. Folgerungen: sin(x + π ) = cos x, cos(x sin(x + π) = sin x, sin x = sin x cos x, + π ) = sin x cos(x + π) = cos x cos x = cos x sin x Bemerkungen Ist α ein Winkel in Gradmaß (also 360 für den Vollkreis), so muss zur Berechnung von Sinus und Cosinus α erst ins Bogenmaß umgerechnet werden, d.h. x = α π 360 Beispiel 3.17 sin 60 = sin π 6 = 1 Die Funktion sin : R R ist beschränkt, ungerade und π-periodisch. Die Funktion cos : R R ist beschränkt, gerade und π-periodisch. Es gilt B sin = B cos = [ 1, 1].

3 Tangens und Cotangens Mittels Sinus und Cosinus definiert man tan x = sin x { π } für x R \ cos x + kπ : k Z cot x = cos x für x R \ {kπ : k Z}. sin x Die Tangensfunktion tan ist π-periodisch, ungerade und im Intervall ( π/, π/) streng monoton wachsend. Die Bildmenge ist R. Der Graph des Cotangens ergibt sich aus dem Zusammenhang cot x = cos x sin x = sin(x + π/) cos(x + π/) = tan(x + π/). Anwendung: Berechnung von Längen In rechtwinkligen Dreiecken gilt: sin α = a c = Gegenkathete Hypothenuse cos α = b c = Ankathete Hypothenuse tan α = a b = Gegenkathete Ankathete cot α = b a = Ankathete Gegenkathete In beliebigen Dreiecken gilt: Sinussatz: sin α = sin β = sin γ a b c Cosinussatz: c = a + b a b cos γ

4 Ein Anwendungsbeispiel Beispiel 3.18 Die Verbindung F existiert in zwei räumlich verschiedenen Formen (Isomeren): F F F F Cis- F Trans- F Bei beiden Isomeren beträgt der --Abstand 0.15 nm, der -F-Abstand nm und die F---Winkel 115. Welchen Abstand haben die Fluoratome jeweils? Die Arcus-Funktionen Der Arcussinus: Wir betrachten f (x) = sin(x) auf D f = [ π, π ]. Dann ist f injektiv mit B f = [ 1, 1]. Also existiert die Umkehrfunktion arcsin : B f D f. Der Arcuscosinus: Schränken wir f (x) = cos(x) auf D f = [0, π] ein, dann ist f injektiv mit B f = [ 1, 1]. Also existiert die Umkehrfunktion arccos : B f D f. Der Arcustangens: f (x) = tan(x) ist auf D f = ( π, π ) injektiv mit B f = R. Daher existiert die Umkehrfunktion arctan : B f D f. arcsin(x) arccos(x) arctan(x)

5 Anwendungsbeispiel Beispiel 3.19 Die räumliche Struktur gewisser Kristalle bzw Moleküle, z.b. Methan (CH 4 ), ist ein Tetraeder. Wir berechnen den Tetraederwinkel ϕ. Hyperbolische Funktionen Sinus hyperbolicus: Cosinus hyperbolicus: sinh x := ex e x für x R cosh x := ex + e x für x R

6 Eigenschaften Für alle t R gilt (cosh t) (sinh t) = 1. (Die Gleichung y x = 1 beschreibt eine Hyperbel.) sinh : R R ist ungerade und streng monoton wachsend, also injektiv. Außerdem ist sinh surjektiv, also B sinh = R. Die Umkehrfunktion ist der Areasinus hyperbolicus arsinh : R R. cosh : R R ist gerade, also insbesondere nicht injektiv. Es gilt B cosh = [1, ). Schränkt man cosh auf [0, ) ein, dann ist cosh : [0, ) [1, ) bijektiv. Die Umkehrfunktion ist der Areacosinus hyperbolicus arcosh : [1, ) [0, ).

Die Funktion f (x) = e ix

Die Funktion f (x) = e ix Die Funktion f (x) = e ix Wir wissen e ix = 1, liegt also auf dem Einheitskreis. Mit wachsendem x läuft e ix immer wieder um den Einheitskreis herum. Die Laufrichtung ist gegen den Uhrzeigersinn (mathematisch

Mehr

TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN

TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN Zusammenfassung. Wir listen die wichtigsten Grundtatsachen trigonometrischer und hyperbolischer Funktionen auf... Sinus.. Trigonometrische Funktionen analytische

Mehr

Funktionen einer reellen Veränderlichen

Funktionen einer reellen Veränderlichen KAPITEL Funktionen einer reellen Veränderlichen.1 Eigenschaften von Funktionen........................... 39. Potenz- und Wurzelfunktionen............................ 1.3 Trigonometrische Funktionen.............................

Mehr

Funktionen einer reellen Veränderlichen

Funktionen einer reellen Veränderlichen KAPITEL Funktionen einer reellen Veränderlichen. Grundbegriffe Definition.. Eine Abbildung oder Funktion f ist eine Zuordnung(svorschrift), die jeder Zahl x aus dem Definitionsbereich D(f) der Funktion

Mehr

19. Weitere elementare Funktionen

19. Weitere elementare Funktionen 19. Weitere elementare Funktionen 1. Der Arcussinus Die Sinusfunktion y = f(x) = sin x (mit y = cos x) ist im Intervall [ π, π ] streng monoton wachsend und somit existiert dort eine Umkehrfunktion. f

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

11 Spezielle Funktionen und ihre Eigenschaften

11 Spezielle Funktionen und ihre Eigenschaften 78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen

Mehr

HM I Tutorium 8. Lucas Kunz. 12. Dezember 2018

HM I Tutorium 8. Lucas Kunz. 12. Dezember 2018 HM I Tutorium 8 Lucas Kunz. Dezember 08 Inhaltsverzeichnis Theorie. Stetigkeit und Grenzwerte............................ Sinus und Cosinus.................................3 Tangens und Cotangens............................

Mehr

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß). Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,

Mehr

V4. VORKURSWISSEN: Funktionen

V4. VORKURSWISSEN: Funktionen Prof. Dr. Wolfgang Konen Mathematik, WS05 09.0.05 V4. VORKURSWISSEN: Funktionen INHALT: V4. VORKURSWISSEN: Funktionen... V4.. Allgemeine Funktionseigenschaften... V4.. Funktionsübersicht... 6 4... Polynome

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Abbildungsverzeichnis Inhaltsverzeichnis Trigonometrische Funktionen Die hier behandelten trigonometrischen Funktionen sind sin, cos, tan, cot. Es zeigt sich, dass die Umkehrfunktionen der trigonometrischen

Mehr

1 Einleitung. 2 Sinus. Trigonometrie

1 Einleitung. 2 Sinus. Trigonometrie 1 Einleitung Die Trigonometrie (trigonon - griechisch für Dreieck) und die trigonometrischen Funktionen sind wichtige mathematische Werkzeuge zur Beschreibung der Natur. In der Physik werden trigonometrische

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (0.09.03 0.09.03) Dr. Jörg Horst WS 03-04 Mathematischer Vorkurs TU Dortmund Seite / 5 Mathematischer Vorkurs TU Dortmund Seite 6 / 5 Schenkel Winkelbereich Scheitel S

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 2.0. - Freitag 2.0. Vorlesung 5 Elementare Funktionen Kai Rothe Technische Universität Hamburg Dienstag 9.0. 0 Brückenkurs Mathematik, c K.Rothe, Vorlesung 5 Umkehrfunktion........................

Mehr

Kapitel 5 Trigonometrie

Kapitel 5 Trigonometrie Mathematischer Vorkurs TU Dortmund Seite / 7 Schenkel Winkelbereich Scheitel S α Winkel werden in Grad oder im Bogenmaß (auch Rad) angegeben: 360 =. y cot α r = sin α α cos α tan α x Durch diese Betrachtungen

Mehr

Die trigonometrischen Funktionen

Die trigonometrischen Funktionen Die trigonometrischen Funktionen Betrachte die Funktion f(x) = 1 x auf dem Intervall [ 1, 1]. Für x = 1 erhält man den Punkt P 1 = ( 1, ), für x = den Punkt P = (, 1) und für x = 1 den Punkt P 1 = (1,

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite / 50 Kapitel 5 Mathematischer Vorkurs TU Dortmund Seite 54 / 50 Scheitel S Schenkel α Winkelbereich Winkel werden in Grad

Mehr

HM I Tutorium 9. Lucas Kunz. 22. Dezember 2017

HM I Tutorium 9. Lucas Kunz. 22. Dezember 2017 HM I Tutorium 9 Lucas Kunz. Dezember 017 Inhaltsverzeichnis 1 Theorie 1.1 Exponentialfunktion.............................. 1. Sinus und Cosinus................................ 1.3 Tangens und Cotangens............................

Mehr

V4. VORKURSWISSEN: Funktionen

V4. VORKURSWISSEN: Funktionen Prof. Dr. Wolfgang Konen Mathematik, WS06 30.09.06 V4. VORKURSWISSEN: Funktionen INHALT: V4. VORKURSWISSEN: Funktionen... V4.. Allgemeine Funktionseigenschaften... V4.. Funktionsübersicht... 5 4... Polynome

Mehr

3.1 Rationale Funktionen

3.1 Rationale Funktionen 3.1 Rationale Funktionen EineFunktionf : R R der Formx P(x) Q(x) mit Polynomen P(x), Q(x) heißt rationale Funktion. Der maximale Definitionsbereich von f = P(x) Q(x) Sei x 0 R mit Q(x 0 ) = 0. Ferner sei

Mehr

1. Definition der trigonometrischen Funktionen für beliebige Winkel

1. Definition der trigonometrischen Funktionen für beliebige Winkel 1 Trigonometrie 2 1. Definition der trigonometrischen Funktionen für beliebige Winkel In einem Kreis mit Mittelpunkt M(0,0) und Radius r ist der zunächst spitze Winkel α gezeichnet. α legt auf dem Kreis

Mehr

Nullstellen. Häufig interessiert man sich für die Werte der unabhängigen Variable einer Funktion, für die der Funktionswert 0 ist:

Nullstellen. Häufig interessiert man sich für die Werte der unabhängigen Variable einer Funktion, für die der Funktionswert 0 ist: 15 y 10 5 5 x 10 15 Nullstellen Häufig interessiert man sich für die Werte der unabhängigen Variable einer Funktion, für die der Funktionswert 0 ist: 98 Sei f : R R eine Funktion. Ist x 0 D(f) eine reelle

Mehr

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115 5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 5 Satz 5.5.2 (Ableitung der Umkehrfunktion einer Winkelfunktionen) Die Umkehrfunktionen der trigonometrischen Funktionen sind nach Satz 5.2.3 auf den

Mehr

(k +2)(k +3) x 2 (k +3)!

(k +2)(k +3) x 2 (k +3)! 5.3. SINUS UND KOSINUS 9 5.35. Lemma. Es gilt (i) (ii) (iii) cos() < 0, sin(x) > 0 für alle x (0, ], x cos(x) ist streng monoton fallend in [0, ]. Beweis. (i) Es ist cos() = 1! + 4 6 4! 6! 8 10 8! 10!

Mehr

Beispiel zu Umkehrfunktionen des Sinus

Beispiel zu Umkehrfunktionen des Sinus Beispiel zu Umkehrfunktionen des Sinus Die Funktion f : [ π, π ] [, ], x sin(x) besitzt die Umkehrfunktion f Arcsin (Hauptzweig des Arcussinus). Wir betrachten die beiden Funktionen g : [ 3 π, 5 π] [,

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

Folgende Eigenschaft beschreibt eine gewisse Symmetrie des Funktionsgraphen:

Folgende Eigenschaft beschreibt eine gewisse Symmetrie des Funktionsgraphen: für alle x [0,2000]. Das Intervall [0,2000] könnte aus ökonomischer Sicht relevant sein, wenn etwa die Maximalauslastung bei 2000 produzierten Waschmaschinen liegt. Folgende Eigenschaft beschreibt eine

Mehr

Spezielle Klassen von Funktionen

Spezielle Klassen von Funktionen Spezielle Klassen von Funktionen 1. Ganzrationale Funktionen Eine Funktion f : R R mit f (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, n N 0 und a 0, a 1,, a n R, (a n 0) heißt ganzrationale Funktion n

Mehr

Münchner Volkshochschule. Themen

Münchner Volkshochschule. Themen Themen Logik und Mengenlehre Zahlensysteme und Arithmetik Gleichungen und Ungleichungen Lin. Gleichungssysteme und spez. Anwendungen Geometrie und Trigonometrie Vektoren in der Ebene und Punktemengen Funktionen

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 3. Reelle Funktionen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

10 Differenzierbare Funktionen

10 Differenzierbare Funktionen 10 Differenzierbare Funktionen 10.1 Definition: Es sei S R, x 0 S Häufungspunkt von S. Eine Funktion f : S R heißt im Punkt x 0 differenzierbar, wenn der Grenzwert f (x 0 ) := f(x 0 + h) f(x 0 ) lim h

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 26 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

2.3 Elementare Funktionen

2.3 Elementare Funktionen .3 Elementare Funktionen Trigonometrische Funktionen (Winkelfunktionen) Vorbemerkung. Wir definieren die Winkelfunktionen bezogen auf die Bogenlänge x auf dem Einheitskreis, d.h. für x [0,π]. Alternativ

Mehr

Mathematik W18. Mag. Christina Sickinger. Berufsreifeprüfung. Trigonometrie am rechtwinkligen Dreieck

Mathematik W18. Mag. Christina Sickinger. Berufsreifeprüfung. Trigonometrie am rechtwinkligen Dreieck Mathematik W18 Mag. Christina Sickinger Berufsreifeprüfung v 0 Mag. Christina Sickinger Mathematik W18 1 / 41 Das Problem v 0 Mag. Christina Sickinger Mathematik W18 2 / 41 Wir wollen das Problem lösen!

Mehr

Elementare Funktionen. Analysis I November 28, / 101

Elementare Funktionen. Analysis I November 28, / 101 Elementare Funktionen Analysis I November 28, 2017 76 / 101 Exponentialfunktion Buch Kap. 2.3 Exponentialfunktionen f(x) = a x, a > 0, D = R. Ist a = e (Eulerzahl e = 2, 71828...), sprechen wir von der

Mehr

Trigonometrische Gleichungen/Ungleichungen

Trigonometrische Gleichungen/Ungleichungen Trigonometrische Gleichungen/Ungleichungen Arkusfunktionen Arkussinus Der Arkussinus ist die Umkehrfunktion der Einschränkung der Sinusfunktion auf [, ]. Die Sinusfunktion sin : [, ] [, ] ist bijektiv

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 8/9) Kapitel 3:Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 4. November 8) Abbildungen / Funktionen Definition 3. Eine

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Vorlesung Mathematik für Ingenieure (WS /, SS, WS /3) Kapitel 3: Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 4. November 0) Abbildungen / Funktionen Definition 3. Eine

Mehr

Lösungen der Trainingsaufgaben aus. Toolbox Mathematik für MINT-Studiengänge

Lösungen der Trainingsaufgaben aus. Toolbox Mathematik für MINT-Studiengänge Lösungen der Trainingsaufgaben aus Toolbox Mathematik für MINT-Studiengänge 1 Geometrie mit Sinus, Cosinus und Tangens Version 22. Dezember 2016 Lösung zu Aufgabe 1.1 Gemäß Abbildung 1.1 und der Definition

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Trigonometrie INHALTSVERZEICHNIS 1. WINKELFUNKTIONEN IM RECHTWINKELIGEN DREIECK... 3. BOGENMASS... 3 3. TRIGONOMETRISCHE FUNKTIONEN BELIEBIGER WINKEL... 4 3.1. Einheitskreis (r =

Mehr

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Funktionen, Stetigkeit Dierentialrechnung Funktionen mit mehreren Variablen Integralrechnung Dierentialgleichungen Teil 2: Wahrscheinlichkeitsrechnung

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, II

KOMPETENZHEFT ZUR TRIGONOMETRIE, II KOMPETENZHEFT ZUR TRIGONOMETRIE, II 1. Aufgabenstellungen Aufgabe 1.1. Bestimme alle Winkel in [0 ; 360 ], die Lösungen der gegebenen Gleichung sind, und zeichne sie am Einheitskreis ein. 1) sin(α) = 0,4

Mehr

Vorlesung Mathematik für Ingenieure (WS 17/18, SS 18, WS 18/19)

Vorlesung Mathematik für Ingenieure (WS 17/18, SS 18, WS 18/19) 1 Vorlesung Mathematik für Ingenieure (WS 17/18, SS 18, WS 18/19) Kapitel 3: Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 20. November 2017) Abbildungen / Funktionen 2

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Vorlesung Mathematik für Ingenieure (WS /, SS, WS /3) Kapitel 3: Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 4. November ) Abbildungen / Funktionen Definition 3. Eine

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 27 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

Trigonometrie. Winkelfunktionen und Einheitskreis

Trigonometrie. Winkelfunktionen und Einheitskreis Trigonometrie Die Trigonometrie ist die Lehre der Winkel- oder Kreisfunktionen. Die auffälligste Eigenschaften der Funktionen der Trigonometrie ist die Periodizität: Trigonometrische Funktionen zeigen

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b. Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und

Mehr

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil 14 DIE EXPONENTIALFUNKTION IM KOMPLEXEN 73 Wegen (a, 0) + (c, 0) = (a + c, 0) (a, 0) (c, 0) = (ac, 0) kann man die Teilmenge {(a, 0) a R} mit den darauf eingeschränkten Verknüpfungen identifizieren mit

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 2008/09) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 9. November 2008) Die

Mehr

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Definition von Sinus, Cosinus und Tangens am Einheitskreis Im rechtwinkligen Dreieck ist der Winkel zwischen

Mehr

Winkel und Winkelmessung

Winkel und Winkelmessung 4. Trigonometrie Winkel und Winkelmessung Winkel... Teil der Ebene, der von zwei Strahlen ( Schenkeln ) mit gleichem Anfangspunkt ( Scheitel ) begrenzt wird Winkelmessung... Quantitative Erfassung der

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Vorlesung Mathematik für Ingenieure I (Wintersemester 007/08) Kapitel 3: Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 8. November 007) Abbildungen / Funktionen Definition

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Rainer Hauser September 013 1 Einleitung 1.1 Der Begriff Funktion Eine Funktion ordnet jedem Element m 1 einer Menge M 1 ein Element m einer Menge M zu. Man schreibt dafür f:

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

3.2. Polarkoordinaten

3.2. Polarkoordinaten 3.2. Polarkoordinaten Die geometrische Bedeutung der komplexen Multiplikation versteht man besser durch die Einführung von Polarkoordinaten. Der Betrag einer komplexen Zahl z x + i y ist r: z x 2 + y 2.

Mehr

2.4 Grenzwerte bei Funktionen

2.4 Grenzwerte bei Funktionen 28 Beispiel Im Beispiel am Ende von Abschnitt 2.1 (Seiten 22 und 24) haben wir gesehen, dass für die Anzahl a n von Bakterien nach n Tagen gilt a n = 2500 (1,04 n +1). Nach wieviel Tagen sind es eine Million

Mehr

Spezielle Funktionen. Definition 8.1 : Sei D C eine Kreisscheibe f : D C heißt Lipschitz (-stetig) oder dehnungsbeschränkt auf D

Spezielle Funktionen. Definition 8.1 : Sei D C eine Kreisscheibe f : D C heißt Lipschitz (-stetig) oder dehnungsbeschränkt auf D 8 Spezielle Funktionen werden in diesem Abschnitt definiert, also insbesondere Exponentialfunktion, Logarithmusfunktion, die trigonometrischen Funktionen sowie weitere wichtige Funktionen, die mit exp,

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. Dezember 2011)

Mehr

Kapitel 3. Funktionen. Grundbegriffe. Grenzwerte bei Funktionen. Stetigkeit. Die elementaren Funktionen. Anwendungen

Kapitel 3. Funktionen. Grundbegriffe. Grenzwerte bei Funktionen. Stetigkeit. Die elementaren Funktionen. Anwendungen Kapitel 3 Funktionen Grundbegriffe Grenzwerte bei Funktionen Stetigkeit Die elementaren Funktionen Anwendungen Funktionen Grundbegriffe Funktionen und ihre Darstellung Unter einer Abbildung von einer Menge

Mehr

Serie 1: Repetition von elementaren Funktionen

Serie 1: Repetition von elementaren Funktionen D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 1: Repetition von elementaren Funktionen Bemerkung: Die Aufgaben der Serie 1 bilden den Fokus der Übungsgruppen in der zweiten Semesterwoche

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 2 Wintersemester 2018/19 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2018 Steven Köhler Wintersemester 2018/19 Inhaltsverzeichnis Teil 1 Teil

Mehr

Berechnungen am rechtwinkligen Dreieck Der Einheitskreis. VI Trigonometrie. Propädeutikum Holger Wuschke. 21. September 2018

Berechnungen am rechtwinkligen Dreieck Der Einheitskreis. VI Trigonometrie. Propädeutikum Holger Wuschke. 21. September 2018 Propädeutikum 018 1. September 018 Denition Trigonometrie Die Trigonometrie beschäftigt sich mit dem Messen (µɛτ ρoν) von dreiseitigen (τ ρίγωνo) Objekten. Zunächst gilt in Dreiecken: A = 1 g h Abbildung:

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 2 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Verschiedene Winkel DEFINITION v 1 Mag. DI Rainer Sickinger Trigonometrie 2 / 1 Verschiedene Winkel Vermessungsaufgaben

Mehr

8.2. Integrationsregeln

8.2. Integrationsregeln 8.. Integrationsregeln Jeder Differentiationsregel entspricht wegen der Beziehung F ( x ) f( x ) F( x ) + C f( x ) dx eine Integrationsregel. Wir kennen schon die Additionsregel c f( x ) + d g( x )

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Mathematik-Übungskurs 8.05.19 bis 06.06.19 marius.wenz@fu-berlin.de Stichworte Dreiecke, Satz des Pythagoras, Kosinus- und Sinussätze, Einheitskreis, Radiant vs. Grad, Periodizität,

Mehr

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens

Mehr

Funktionen (Teschl/Teschl 5.2) Beispiele. Eine Funktion (oder Abbildung) f : M N,

Funktionen (Teschl/Teschl 5.2) Beispiele. Eine Funktion (oder Abbildung) f : M N, Funktionen (Teschl/Teschl 5.2) Eine Funktion (oder Abbildung) f : M N, x f (x) ordnet jedem Element x einer Menge M (Denitionsbereich) eindeutig ein Element y = f (x) einer Menge N (Werte- oder Bildbereich)

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz

(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz (3) Wurzelfunktionen Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz Definition y = f (x) g(y) = x gilt. Für jedes k N ist

Mehr

Vorkurs Analysis und lineare Algebra. Teil 4

Vorkurs Analysis und lineare Algebra. Teil 4 Vorkurs Analysis und lineare Algebra Teil 4 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Inhaltsverzeichnis Teil 1 Teil 2 Teil 3 Teil 4 Abbildungen & Funktionen Potenz, Wurzel, Exponential

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

Trigonometrische und hyperbolische Funktionen

Trigonometrische und hyperbolische Funktionen Trigonometrische und hyperbolische Funktionen Üben und Vertiefen durch Analogien Thilo Steinkrauß Herder-Gymnasium Berlin 9.09.203 / 22 Felix Klein 2 Kreis: Sinus und Cosinus Hyperbel: Sinus hyperbolicus

Mehr

E. AUSBAU DER INFINITESIMALRECHNUNG

E. AUSBAU DER INFINITESIMALRECHNUNG 151 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

f(y) f(x) = lim y x y x = 0.

f(y) f(x) = lim y x y x = 0. Analysis, Woche Differentialrechnung II. Mittelwertsatz und Folgen Satz. (Rolle) Sei a, b R mit a < b und f : [a, b] R eine Funktion. Nehmen wir an, dass f stetig ist, dass f (a,b) : (a, b) R differenzierbar

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Trigonometrie. 3. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter

Trigonometrie. 3. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter Trigonometrie 3. Kapitel aus meinem Lehrgang Geometrie Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 17. August 2008 Inhaltsverzeichnis 3 Trigonometrie 46 3.1 Warum Trigonometrie........................

Mehr

Vorkurs Mathematik Teil II. Analysis

Vorkurs Mathematik Teil II. Analysis Vorkurs Mathematik Teil II. Analysis Inhalt 1. Konvergenz 2. Grundlegendes über Funktionen, Stetigkeit, Ableitung und Integral 3. Der Hauptsatz der Differential- und Integralrechnung 4. Elementare Funktionen

Mehr

Motivation. Inhalt. Einführung in die Mathematik für Wirtschaftswissenschaften. Vorlesung im Wintersemester Kurt Frischmuth WS 2017

Motivation. Inhalt. Einführung in die Mathematik für Wirtschaftswissenschaften. Vorlesung im Wintersemester Kurt Frischmuth WS 2017 Inhalt 1 Motivation Einführung in die Mathematik für Wirtschaftswissenschaften Vorlesung im Wintersemester 2017 Kurt Frischmuth Institut für Mathematik, Universität Rostock WS 2017 2 Grundlagen Begriffe

Mehr

Das höhere Mathematikon

Das höhere Mathematikon Das höhere Mathematikon Christian Huber Diese Zusammenfassung ist ein Mix aus dem Skript von Herr Dr. Peer Kunstmann, der allseits beliebten Wikipedia, diversen anderen Onlinequellen und letztendlich meiner

Mehr

Potenz- / Wurzel- / Trigonom. / Arkus- / Exponential- / Log.-Funktionen

Potenz- / Wurzel- / Trigonom. / Arkus- / Exponential- / Log.-Funktionen Übung 6 Funktionen Potenz- / Wurzel- / Trigonom. / Arkus- / Exponential- / Log.-Funktionen PUZZLE Themen 1 Potenz- / Wurzelfunktionen 2 Trigonometrische Funktionen / Arkusfunktionen 3 Exponential- / Logarithmusfunktionen

Mehr

Formelsammlung spezieller Funktionen

Formelsammlung spezieller Funktionen Lehrstuhl A für Mathematik Aachen, en 70700 Prof Dr E Görlich Formelsammlung spezieller Funktionen Logarithmus, Eponential- un Potenzfunktionen Natürlicher Logarithmus Der Logarithmus ist auf (0, ) efiniert

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Prof. U. Stephan Wi-Ing 1.2

Prof. U. Stephan Wi-Ing 1.2 Seite 1 von 5 Prof. U. Stephan Wi-Ing 1. inweis: Dateien Starmath.ttf und Starbats.ttf im Verzeichnis C:\WINDOWS\FONTS erforderlich Ich vermisse im Vorspann "Was man weiß, was man wissen sollte" die trigonometrischen

Mehr

θ für alle n n 0, 0, dann divergiert a n. θ n, also die mit a n0 θ n 0

θ für alle n n 0, 0, dann divergiert a n. θ n, also die mit a n0 θ n 0 6 REIHEN 6. Konvergenzkriterien - 19 - Wenn man im Majorantenkriterium die geometrische Reihe als Majorante nimmt, erhält man das (6..18) Quotientenkriterium : Sei (a n ) n N0 eine Folge in C. Es gebe

Mehr

E. AUSBAU DER INFINITESIMALRECHNUNG 17. UMKEHRFUNKTIONEN (INVERSE FUNCTION)

E. AUSBAU DER INFINITESIMALRECHNUNG 17. UMKEHRFUNKTIONEN (INVERSE FUNCTION) 160 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

Die Bedeutung der Areafunktionen

Die Bedeutung der Areafunktionen Die Bedeutung der Areafunktionen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 8. März 003 Die Umkehrfunktionen der hyperbolischen Funktionen heißen Areafunktionen. Woher dieser Name kommt, und

Mehr

Mathematik 1 Übungsserie 3+4 ( )

Mathematik 1 Übungsserie 3+4 ( ) Technische Universität Ilmenau WS 2017/2018 Institut für Mathematik Thomas Böhme BT, EIT, II, MT, WSW Aufgabe 1 : Mathematik 1 Übungsserie 3+4 (23.10.2017-04.11.2017) Sei M eine Menge. Für eine Teilmenge

Mehr

Münchner Volkshochschule. Planung. Tag 09

Münchner Volkshochschule. Planung. Tag 09 Planung Tag 09 Prof.Dr. Nils Mahnke Mathematischer Vorkurs Folie: 26 Funktionen einer reellen Veränderlichen Sei f: D f R R eine Funktion und D f R symmetrisch bezüglich 0, d.h. x D f x D f Dann definiert

Mehr