Definition von Sinus und Cosinus
|
|
|
- Martin Acker
- vor 9 Jahren
- Abrufe
Transkript
1 Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv, also gegen den Uhrzeigersinn). Dann definieren wir: sin ϕ := y und cos ϕ := x. Dadurch sind sin ϕ und cos ϕ für Winkel ϕ [0, π) erklärt. Für andere Werte ϕ R definieren wir sin ϕ := sin(ϕ kπ) und cos ϕ := cos(ϕ kπ), wobei k Z so gewählt ist, dass ϕ kπ [0, π) gilt. Die Funktionen sin ϕ und cos ϕ entstehen also durch π-periodische Fortsetzung von [0, π) auf R.
2 Eigenschaften von sin x und cos x Mit dem Satz des Pythagoras folgt: Additionstheoreme: sin x + cos x = 1 für alle x R. π x sin x 0 cos x 1 3 π 4 π π Für alle x, y R gilt sin(x + y) = sin x cos y + cos x sin y, cos(x + y) = cos x cos y sin x sin y. Folgerungen: sin(x + π ) = cos x, cos(x sin(x + π) = sin x, sin x = sin x cos x, + π ) = sin x cos(x + π) = cos x cos x = cos x sin x Bemerkungen Ist α ein Winkel in Gradmaß (also 360 für den Vollkreis), so muss zur Berechnung von Sinus und Cosinus α erst ins Bogenmaß umgerechnet werden, d.h. x = α π 360 Beispiel 3.17 sin 60 = sin π 6 = 1 Die Funktion sin : R R ist beschränkt, ungerade und π-periodisch. Die Funktion cos : R R ist beschränkt, gerade und π-periodisch. Es gilt B sin = B cos = [ 1, 1].
3 Tangens und Cotangens Mittels Sinus und Cosinus definiert man tan x = sin x { π } für x R \ cos x + kπ : k Z cot x = cos x für x R \ {kπ : k Z}. sin x Die Tangensfunktion tan ist π-periodisch, ungerade und im Intervall ( π/, π/) streng monoton wachsend. Die Bildmenge ist R. Der Graph des Cotangens ergibt sich aus dem Zusammenhang cot x = cos x sin x = sin(x + π/) cos(x + π/) = tan(x + π/). Anwendung: Berechnung von Längen In rechtwinkligen Dreiecken gilt: sin α = a c = Gegenkathete Hypothenuse cos α = b c = Ankathete Hypothenuse tan α = a b = Gegenkathete Ankathete cot α = b a = Ankathete Gegenkathete In beliebigen Dreiecken gilt: Sinussatz: sin α = sin β = sin γ a b c Cosinussatz: c = a + b a b cos γ
4 Ein Anwendungsbeispiel Beispiel 3.18 Die Verbindung F existiert in zwei räumlich verschiedenen Formen (Isomeren): F F F F Cis- F Trans- F Bei beiden Isomeren beträgt der --Abstand 0.15 nm, der -F-Abstand nm und die F---Winkel 115. Welchen Abstand haben die Fluoratome jeweils? Die Arcus-Funktionen Der Arcussinus: Wir betrachten f (x) = sin(x) auf D f = [ π, π ]. Dann ist f injektiv mit B f = [ 1, 1]. Also existiert die Umkehrfunktion arcsin : B f D f. Der Arcuscosinus: Schränken wir f (x) = cos(x) auf D f = [0, π] ein, dann ist f injektiv mit B f = [ 1, 1]. Also existiert die Umkehrfunktion arccos : B f D f. Der Arcustangens: f (x) = tan(x) ist auf D f = ( π, π ) injektiv mit B f = R. Daher existiert die Umkehrfunktion arctan : B f D f. arcsin(x) arccos(x) arctan(x)
5 Anwendungsbeispiel Beispiel 3.19 Die räumliche Struktur gewisser Kristalle bzw Moleküle, z.b. Methan (CH 4 ), ist ein Tetraeder. Wir berechnen den Tetraederwinkel ϕ. Hyperbolische Funktionen Sinus hyperbolicus: Cosinus hyperbolicus: sinh x := ex e x für x R cosh x := ex + e x für x R
6 Eigenschaften Für alle t R gilt (cosh t) (sinh t) = 1. (Die Gleichung y x = 1 beschreibt eine Hyperbel.) sinh : R R ist ungerade und streng monoton wachsend, also injektiv. Außerdem ist sinh surjektiv, also B sinh = R. Die Umkehrfunktion ist der Areasinus hyperbolicus arsinh : R R. cosh : R R ist gerade, also insbesondere nicht injektiv. Es gilt B cosh = [1, ). Schränkt man cosh auf [0, ) ein, dann ist cosh : [0, ) [1, ) bijektiv. Die Umkehrfunktion ist der Areacosinus hyperbolicus arcosh : [1, ) [0, ).
Die Funktion f (x) = e ix
Die Funktion f (x) = e ix Wir wissen e ix = 1, liegt also auf dem Einheitskreis. Mit wachsendem x läuft e ix immer wieder um den Einheitskreis herum. Die Laufrichtung ist gegen den Uhrzeigersinn (mathematisch
TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN
TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN Zusammenfassung. Wir listen die wichtigsten Grundtatsachen trigonometrischer und hyperbolischer Funktionen auf... Sinus.. Trigonometrische Funktionen analytische
Funktionen einer reellen Veränderlichen
KAPITEL Funktionen einer reellen Veränderlichen.1 Eigenschaften von Funktionen........................... 39. Potenz- und Wurzelfunktionen............................ 1.3 Trigonometrische Funktionen.............................
Funktionen einer reellen Veränderlichen
KAPITEL Funktionen einer reellen Veränderlichen. Grundbegriffe Definition.. Eine Abbildung oder Funktion f ist eine Zuordnung(svorschrift), die jeder Zahl x aus dem Definitionsbereich D(f) der Funktion
19. Weitere elementare Funktionen
19. Weitere elementare Funktionen 1. Der Arcussinus Die Sinusfunktion y = f(x) = sin x (mit y = cos x) ist im Intervall [ π, π ] streng monoton wachsend und somit existiert dort eine Umkehrfunktion. f
Die elementaren Funktionen (Überblick)
Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und
Die elementaren Funktionen (Überblick)
Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und
Die elementaren Funktionen (Überblick)
Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und
11 Spezielle Funktionen und ihre Eigenschaften
78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen
Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).
Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,
V4. VORKURSWISSEN: Funktionen
Prof. Dr. Wolfgang Konen Mathematik, WS05 09.0.05 V4. VORKURSWISSEN: Funktionen INHALT: V4. VORKURSWISSEN: Funktionen... V4.. Allgemeine Funktionseigenschaften... V4.. Funktionsübersicht... 6 4... Polynome
Trigonometrische Funktionen
Abbildungsverzeichnis Inhaltsverzeichnis Trigonometrische Funktionen Die hier behandelten trigonometrischen Funktionen sind sin, cos, tan, cot. Es zeigt sich, dass die Umkehrfunktionen der trigonometrischen
1 Einleitung. 2 Sinus. Trigonometrie
1 Einleitung Die Trigonometrie (trigonon - griechisch für Dreieck) und die trigonometrischen Funktionen sind wichtige mathematische Werkzeuge zur Beschreibung der Natur. In der Physik werden trigonometrische
Mathematischer Vorkurs NAT-ING II
Mathematischer Vorkurs NAT-ING II (0.09.03 0.09.03) Dr. Jörg Horst WS 03-04 Mathematischer Vorkurs TU Dortmund Seite / 5 Mathematischer Vorkurs TU Dortmund Seite 6 / 5 Schenkel Winkelbereich Scheitel S
Brückenkurs Mathematik. Dienstag Freitag
Brückenkurs Mathematik Dienstag 2.0. - Freitag 2.0. Vorlesung 5 Elementare Funktionen Kai Rothe Technische Universität Hamburg Dienstag 9.0. 0 Brückenkurs Mathematik, c K.Rothe, Vorlesung 5 Umkehrfunktion........................
Kapitel 5 Trigonometrie
Mathematischer Vorkurs TU Dortmund Seite / 7 Schenkel Winkelbereich Scheitel S α Winkel werden in Grad oder im Bogenmaß (auch Rad) angegeben: 360 =. y cot α r = sin α α cos α tan α x Durch diese Betrachtungen
Die trigonometrischen Funktionen
Die trigonometrischen Funktionen Betrachte die Funktion f(x) = 1 x auf dem Intervall [ 1, 1]. Für x = 1 erhält man den Punkt P 1 = ( 1, ), für x = den Punkt P = (, 1) und für x = 1 den Punkt P 1 = (1,
Mathematischer Vorkurs
Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite / 50 Kapitel 5 Mathematischer Vorkurs TU Dortmund Seite 54 / 50 Scheitel S Schenkel α Winkelbereich Winkel werden in Grad
V4. VORKURSWISSEN: Funktionen
Prof. Dr. Wolfgang Konen Mathematik, WS06 30.09.06 V4. VORKURSWISSEN: Funktionen INHALT: V4. VORKURSWISSEN: Funktionen... V4.. Allgemeine Funktionseigenschaften... V4.. Funktionsübersicht... 5 4... Polynome
1. Definition der trigonometrischen Funktionen für beliebige Winkel
1 Trigonometrie 2 1. Definition der trigonometrischen Funktionen für beliebige Winkel In einem Kreis mit Mittelpunkt M(0,0) und Radius r ist der zunächst spitze Winkel α gezeichnet. α legt auf dem Kreis
Nullstellen. Häufig interessiert man sich für die Werte der unabhängigen Variable einer Funktion, für die der Funktionswert 0 ist:
15 y 10 5 5 x 10 15 Nullstellen Häufig interessiert man sich für die Werte der unabhängigen Variable einer Funktion, für die der Funktionswert 0 ist: 98 Sei f : R R eine Funktion. Ist x 0 D(f) eine reelle
5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115
5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 5 Satz 5.5.2 (Ableitung der Umkehrfunktion einer Winkelfunktionen) Die Umkehrfunktionen der trigonometrischen Funktionen sind nach Satz 5.2.3 auf den
Beispiel zu Umkehrfunktionen des Sinus
Beispiel zu Umkehrfunktionen des Sinus Die Funktion f : [ π, π ] [, ], x sin(x) besitzt die Umkehrfunktion f Arcsin (Hauptzweig des Arcussinus). Wir betrachten die beiden Funktionen g : [ 3 π, 5 π] [,
8 Reelle Funktionen. 16. Januar
6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt
Spezielle Klassen von Funktionen
Spezielle Klassen von Funktionen 1. Ganzrationale Funktionen Eine Funktion f : R R mit f (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, n N 0 und a 0, a 1,, a n R, (a n 0) heißt ganzrationale Funktion n
Münchner Volkshochschule. Themen
Themen Logik und Mengenlehre Zahlensysteme und Arithmetik Gleichungen und Ungleichungen Lin. Gleichungssysteme und spez. Anwendungen Geometrie und Trigonometrie Vektoren in der Ebene und Punktemengen Funktionen
GRUNDLAGEN MATHEMATIK
Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 3. Reelle Funktionen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen
10 Differenzierbare Funktionen
10 Differenzierbare Funktionen 10.1 Definition: Es sei S R, x 0 S Häufungspunkt von S. Eine Funktion f : S R heißt im Punkt x 0 differenzierbar, wenn der Grenzwert f (x 0 ) := f(x 0 + h) f(x 0 ) lim h
2.3 Exponential- und Logarithmusfunktionen
26 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche
Mathematik W18. Mag. Christina Sickinger. Berufsreifeprüfung. Trigonometrie am rechtwinkligen Dreieck
Mathematik W18 Mag. Christina Sickinger Berufsreifeprüfung v 0 Mag. Christina Sickinger Mathematik W18 1 / 41 Das Problem v 0 Mag. Christina Sickinger Mathematik W18 2 / 41 Wir wollen das Problem lösen!
Elementare Funktionen. Analysis I November 28, / 101
Elementare Funktionen Analysis I November 28, 2017 76 / 101 Exponentialfunktion Buch Kap. 2.3 Exponentialfunktionen f(x) = a x, a > 0, D = R. Ist a = e (Eulerzahl e = 2, 71828...), sprechen wir von der
Trigonometrische Gleichungen/Ungleichungen
Trigonometrische Gleichungen/Ungleichungen Arkusfunktionen Arkussinus Der Arkussinus ist die Umkehrfunktion der Einschränkung der Sinusfunktion auf [, ]. Die Sinusfunktion sin : [, ] [, ] ist bijektiv
Lösungen der Trainingsaufgaben aus. Toolbox Mathematik für MINT-Studiengänge
Lösungen der Trainingsaufgaben aus Toolbox Mathematik für MINT-Studiengänge 1 Geometrie mit Sinus, Cosinus und Tangens Version 22. Dezember 2016 Lösung zu Aufgabe 1.1 Gemäß Abbildung 1.1 und der Definition
HTBLA VÖCKLABRUCK STET
HTBLA VÖCKLABRUCK STET Trigonometrie INHALTSVERZEICHNIS 1. WINKELFUNKTIONEN IM RECHTWINKELIGEN DREIECK... 3. BOGENMASS... 3 3. TRIGONOMETRISCHE FUNKTIONEN BELIEBIGER WINKEL... 4 3.1. Einheitskreis (r =
KOMPETENZHEFT ZUR TRIGONOMETRIE, II
KOMPETENZHEFT ZUR TRIGONOMETRIE, II 1. Aufgabenstellungen Aufgabe 1.1. Bestimme alle Winkel in [0 ; 360 ], die Lösungen der gegebenen Gleichung sind, und zeichne sie am Einheitskreis ein. 1) sin(α) = 0,4
2.3 Exponential- und Logarithmusfunktionen
27 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche
Trigonometrie. Winkelfunktionen und Einheitskreis
Trigonometrie Die Trigonometrie ist die Lehre der Winkel- oder Kreisfunktionen. Die auffälligste Eigenschaften der Funktionen der Trigonometrie ist die Periodizität: Trigonometrische Funktionen zeigen
f(x 0 ) = lim f(b k ) 0 0 ) = 0
5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.
f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.
Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und
(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil
14 DIE EXPONENTIALFUNKTION IM KOMPLEXEN 73 Wegen (a, 0) + (c, 0) = (a + c, 0) (a, 0) (c, 0) = (ac, 0) kann man die Teilmenge {(a, 0) a R} mit den darauf eingeschränkten Verknüpfungen identifizieren mit
Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)
Vorlesung Mathematik für Ingenieure (Wintersemester 2008/09) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 9. November 2008) Die
Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1
Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Definition von Sinus, Cosinus und Tangens am Einheitskreis Im rechtwinkligen Dreieck ist der Winkel zwischen
Winkel und Winkelmessung
4. Trigonometrie Winkel und Winkelmessung Winkel... Teil der Ebene, der von zwei Strahlen ( Schenkeln ) mit gleichem Anfangspunkt ( Scheitel ) begrenzt wird Winkelmessung... Quantitative Erfassung der
Trigonometrische Funktionen
Trigonometrische Funktionen Rainer Hauser September 013 1 Einleitung 1.1 Der Begriff Funktion Eine Funktion ordnet jedem Element m 1 einer Menge M 1 ein Element m einer Menge M zu. Man schreibt dafür f:
13 Die trigonometrischen Funktionen
13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion
D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x
D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +
3.2. Polarkoordinaten
3.2. Polarkoordinaten Die geometrische Bedeutung der komplexen Multiplikation versteht man besser durch die Einführung von Polarkoordinaten. Der Betrag einer komplexen Zahl z x + i y ist r: z x 2 + y 2.
2.4 Grenzwerte bei Funktionen
28 Beispiel Im Beispiel am Ende von Abschnitt 2.1 (Seiten 22 und 24) haben wir gesehen, dass für die Anzahl a n von Bakterien nach n Tagen gilt a n = 2500 (1,04 n +1). Nach wieviel Tagen sind es eine Million
Spezielle Funktionen. Definition 8.1 : Sei D C eine Kreisscheibe f : D C heißt Lipschitz (-stetig) oder dehnungsbeschränkt auf D
8 Spezielle Funktionen werden in diesem Abschnitt definiert, also insbesondere Exponentialfunktion, Logarithmusfunktion, die trigonometrischen Funktionen sowie weitere wichtige Funktionen, die mit exp,
Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)
1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. Dezember 2011)
Kapitel 3. Funktionen. Grundbegriffe. Grenzwerte bei Funktionen. Stetigkeit. Die elementaren Funktionen. Anwendungen
Kapitel 3 Funktionen Grundbegriffe Grenzwerte bei Funktionen Stetigkeit Die elementaren Funktionen Anwendungen Funktionen Grundbegriffe Funktionen und ihre Darstellung Unter einer Abbildung von einer Menge
Serie 1: Repetition von elementaren Funktionen
D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 1: Repetition von elementaren Funktionen Bemerkung: Die Aufgaben der Serie 1 bilden den Fokus der Übungsgruppen in der zweiten Semesterwoche
Berechnungen am rechtwinkligen Dreieck Der Einheitskreis. VI Trigonometrie. Propädeutikum Holger Wuschke. 21. September 2018
Propädeutikum 018 1. September 018 Denition Trigonometrie Die Trigonometrie beschäftigt sich mit dem Messen (µɛτ ρoν) von dreiseitigen (τ ρίγωνo) Objekten. Zunächst gilt in Dreiecken: A = 1 g h Abbildung:
Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1
Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Verschiedene Winkel DEFINITION v 1 Mag. DI Rainer Sickinger Trigonometrie 2 / 1 Verschiedene Winkel Vermessungsaufgaben
8.2. Integrationsregeln
8.. Integrationsregeln Jeder Differentiationsregel entspricht wegen der Beziehung F ( x ) f( x ) F( x ) + C f( x ) dx eine Integrationsregel. Wir kennen schon die Additionsregel c f( x ) + d g( x )
Trigonometrische Funktionen
Trigonometrische Funktionen Mathematik-Übungskurs 8.05.19 bis 06.06.19 [email protected] Stichworte Dreiecke, Satz des Pythagoras, Kosinus- und Sinussätze, Einheitskreis, Radiant vs. Grad, Periodizität,
22 Die trigonometrischen Funktionen und die Hyperbelfunktionen
22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens
FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.
FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f
(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz
(3) Wurzelfunktionen Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz Definition y = f (x) g(y) = x gilt. Für jedes k N ist
GRUNDLAGEN MATHEMATIK
Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen
Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.
(4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist
Trigonometrische und hyperbolische Funktionen
Trigonometrische und hyperbolische Funktionen Üben und Vertiefen durch Analogien Thilo Steinkrauß Herder-Gymnasium Berlin 9.09.203 / 22 Felix Klein 2 Kreis: Sinus und Cosinus Hyperbel: Sinus hyperbolicus
E. AUSBAU DER INFINITESIMALRECHNUNG
151 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch
K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis
Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).
Übungen zu Einführung in die Analysis
Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung
Trigonometrie. 3. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter
Trigonometrie 3. Kapitel aus meinem Lehrgang Geometrie Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 17. August 2008 Inhaltsverzeichnis 3 Trigonometrie 46 3.1 Warum Trigonometrie........................
Motivation. Inhalt. Einführung in die Mathematik für Wirtschaftswissenschaften. Vorlesung im Wintersemester Kurt Frischmuth WS 2017
Inhalt 1 Motivation Einführung in die Mathematik für Wirtschaftswissenschaften Vorlesung im Wintersemester 2017 Kurt Frischmuth Institut für Mathematik, Universität Rostock WS 2017 2 Grundlagen Begriffe
Potenz- / Wurzel- / Trigonom. / Arkus- / Exponential- / Log.-Funktionen
Übung 6 Funktionen Potenz- / Wurzel- / Trigonom. / Arkus- / Exponential- / Log.-Funktionen PUZZLE Themen 1 Potenz- / Wurzelfunktionen 2 Trigonometrische Funktionen / Arkusfunktionen 3 Exponential- / Logarithmusfunktionen
Formelsammlung spezieller Funktionen
Lehrstuhl A für Mathematik Aachen, en 70700 Prof Dr E Görlich Formelsammlung spezieller Funktionen Logarithmus, Eponential- un Potenzfunktionen Natürlicher Logarithmus Der Logarithmus ist auf (0, ) efiniert
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als
E. AUSBAU DER INFINITESIMALRECHNUNG 17. UMKEHRFUNKTIONEN (INVERSE FUNCTION)
160 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch
Die Bedeutung der Areafunktionen
Die Bedeutung der Areafunktionen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 8. März 003 Die Umkehrfunktionen der hyperbolischen Funktionen heißen Areafunktionen. Woher dieser Name kommt, und
Mathematik 1 Übungsserie 3+4 ( )
Technische Universität Ilmenau WS 2017/2018 Institut für Mathematik Thomas Böhme BT, EIT, II, MT, WSW Aufgabe 1 : Mathematik 1 Übungsserie 3+4 (23.10.2017-04.11.2017) Sei M eine Menge. Für eine Teilmenge
Münchner Volkshochschule. Planung. Tag 09
Planung Tag 09 Prof.Dr. Nils Mahnke Mathematischer Vorkurs Folie: 26 Funktionen einer reellen Veränderlichen Sei f: D f R R eine Funktion und D f R symmetrisch bezüglich 0, d.h. x D f x D f Dann definiert
