5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115

Größe: px
Ab Seite anzeigen:

Download "5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115"

Transkript

1 5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 5 Satz (Ableitung der Umkehrfunktion einer Winkelfunktionen) Die Umkehrfunktionen der trigonometrischen Funktionen sind nach Satz auf den angegebenen Intervallen differenzierbar und die Ableitungen ergeben sich zu:. Für x ( π 2, π 2 ) ist arcsin (sin(x)) = cos(x). Damit ist für y (, ) arcsin (y) = y Für x (0, π) ist Damit ist für y (, ) arccos (cos(x)) = sin(x). arccos(y) =. y 2 3. Für x ( π 2, π 2 ) ist Damit ist für y (, ) 4. Für x ( π 2, π 2 ) ist Damit ist für y (, ) arctan (tan(x)) = tan (x). arctan (y) = + y 2. arccot (cot(x)) = cot (x). arccot (y) = + y 2. Beweis. Der erste Teil der Aussage folgt immer unmittelbar aus dem Satz zur Differenzierbarkeit der Umkehrfunktion Im Fall des arcsin ergibt sich fol-

2 6 KAPITEL 5. DIFFERENZIERBARE FUNKTIONEN gende Rechnung: setze y = sin(x). Dann ist arcsin (y) = cos(x) = y 2. Im Falle des arccos ist die Rechnung eine triviale Modifikation. Wir kommen zum Tangens und erhalten (dort wo tan (x) 0 ist) arctan (tan(x)) = Setze y = tan(x) und damit ergibt sich also ist cos 2 (x) = cos2 (x) + sin 2 (x) cos 2 x Alle anderen Fälle sind entsprechend. tan (x). arctan (y) = + y 2. = + tan 2 (x) = + y 2, Bemerkung (Zweige von Umkehrfunktionen) Natürlich kann man die Injektivität auch erzwingen dadurch, dass man die Funktionen auf ein anderes Intervall einschränkt. Die auf diese Weise gewonnen Umkehrfunktionen nennt man Zweige der jeweiligen Umkehrfunktion. Bemerkung (Sekans und Kosekans) Oft werden folgende Bezeichnungen verwendet: und sec(x) = cos(x), x π 2 + kπ csc(x) =, x kπ, k Z. sin(x) Diese Funktionen werden als Sekans und Kosekans bezeichnet. Definition (Hauptzweig) Die im Satz angegebenen Umkehrfunktionen werden jeweils als Hauptzweig der entsprechenden Funktion bezeichnet. Wir kommen nun noch zu den hyperbolischen Winkelfunktionen. Zunächst setzen

3 5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 7 wir für z C tanh(z) = sinh(z) cosh(z), coth(z) = cosh(z) sinh(z), wobei wir natürlich nur solche z zulassen, dass cosh(z) 0, bzw. sinh(z) 0. Man überlegt sich leicht einige qualitative Eigenschaften der Funktionen Sinus hyperbolicus, Kosinus hyperbolicus, Tangens und Cotangens hyperbolicus. Satz (Eigenschaften der hyperbolischen Winkelfunktionen). Die Funktion sinh(x) ist auf R streng monoton steigend, es gilt x ± sinh(x) = ±. Die Funktion ist ungerade. Es gibt eine einzige Nullstelle bei x = Die Funktion cosh(x) ist auf R gerade, sie ist streng monoton fallend auf (, 0) und streng monoton steigend auf (0, ). Es gilt x ± cosh(x) =. Bei x = 0 hat cosh eine globale Extremwertstelle, cosh(0) = ist ein lokales und globales Minimum. 3. Die Funktion tanh(x) ist für alle x R definiert. Es gilt tanh(x) für alle x R und x ± tanh(x) = ±. 4. Die Funktion coth(x) ist für alle x R, x 0 definiert und es gilt x 0,x>0 coth(x) =, coth ist ungerade und es gilt coth(x) und x coth(x) =. Beweis. () Die Ableitung von sinh ist cosh. Man sieht sofort, dass diese Funktion für reelle x nicht Null wird. Die Funktion ist aufgrund ihrer Definition ungerade und die Grenzwerteigenschaften folgen sofort aus denen für die Exponentialfunktion. Jede Nullstelle genügt der Gleichung e x = e x. Da für x > 0 gilt e x > und für x < 0 gilt e x <, folgt, dass diese Gleichung höchstens die Lösung x = 0 hat. Dies ist auch eine Lösung und es ist nichts weiter zu zeigen. (2) Geradheit und Monotonieeigenschaften folgen aus den entsprechenden Eigenschaften von sinh. Als einzige Extremwertstelle kommt die Nullstelle von sinh(x) in Frage und dort erhält man den Wert. Die Abschätzung cosh(x) ist eine unmittelbare Konsequenz der Definition. (3) Da für alle x gilt e x e x e x + e x, hat man sofort eine Schranke für tanh. Die Funktion ist offensichtlich ungerade und daher reicht es den Grenzwert für x zu untersuchen. Wir erhalten e x e x e x = =. x e x + e x x e x + e x

4 8 KAPITEL 5. DIFFERENZIERBARE FUNKTIONEN (4) Da sinh(0) = 0, ist die Unbeschränktheit nahe x = 0 klar, ebenso folgt aus der gerade gemachten Überlegung coth(x) für alle x und wie eben x coth(x) =. Bemerkung (Graphen) Wir betrachten die Graphen der hyperbolischen Winkelfunktionen in den folgenden Darstellungen. Nun überlegen wir uns wie eventuelle Umkehrfunktionen dieser Funktionen aus cosh cosh(x) Abbildung 5.3: Kosinus hyperbolicus 5000 sinh sinh(x) Abbildung 5.4: Sinus hyperbolicus sehen. Als Hilfsmittel verwenden wir eine Formel, die sofort aus dem Additionstheorem für cosh folgt, indem man es auf z + ( z) anwendet, also cosh 2 (z) sinh 2 (z) =. (5.)

5 5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN tanh tanh(x) Abbildung 5.5: Tangens hyperbolicus 0 8 coth cosh(x)/sinh(x) Abbildung 5.6: Cotangens hyperbolicus

6 20 KAPITEL 5. DIFFERENZIERBARE FUNKTIONEN Satz (Umkehrfunktionen trigonometrischer Funktionen). Die Funktion sinh ist bijektiv auf R, die Ableitung nirgends Null, also existiert eine Umkehrfunktion Arsinh : R R mit Damit ergibt sich Arsinh (sinh(x)) = Arsinh (y) = cosh(x). + y Die Funktion cosh ist auf (0, ) injektiv und umkehrbar, die Umkehrabbildung Arcosh : (, ) (0, ). Diese ist überall differenzierbar und für die Ableitung ergibt sich Arcosh (cosh(x)) = sinh(x) und damit für y > Arcosh (y) = y2. Beweis. Jeweils die erste Aussage ist wiederum eine sofortige Konsequenz aus der Differenzierbarkeit der Umkehrfunktion. Setzen wir y = sinh(x), so ergibt sich aus Gleichung (5.) cosh(x) = + y 2.

7 5.6. DIE REGELN VON DE L HOSPITAL Die Regeln von de l Hospital Lemma 5.6. (Grenzwerte für /x) (a) Es sei (0, c) ein offenes Intervall in R und f : (0, c) R eine differenzierbare Funktion mit x 0,x>0 = 0 und Dann gilt f (x) = M. x 0,x>0 x 0,x>0 x = M. (b) Ist f : (c, ) R differenzierbar mit so ist f (x) = M, x x x = M. Beweis. (a) Zu ε > 0 existiert ein δ > 0, so dass 0 < x < δ impliziert f (x) M < ε. Ist nun 0 < x < δ so ist nach dem Mittelwertsatz x f(0) = x 0 = f (ξ), wobei ξ (0, x). Damit ist x M = f (ξ) M < ε. Dies war zu zeigen. (b) Hier betrachten wir zunächst den Fall M = 0. Wegen x f (x) = M gibt es zu ε > 0 ein c > 0, so dass x > c impliziert f (x) < ε 2. Ist nun x > x 0 > c, so gilt f(x 0 ) ε 2 (x x 0). Damit ist für hinreichend großes x, genauer x > max{x 0, 2 f(x 0) }, ε x = f(x 0) x + f(x 0) x < ε 2 + ε 2 = ε.

8 22 KAPITEL 5. DIFFERENZIERBARE FUNKTIONEN Ist nun M beliebig, so betrachten wir die Funktion = Mx. Für diese gilt nun f (x) 0 mit x und 0 = x x = Mx x x = x x M. Satz (l Hospital 3 ) Gegeben sei ein Intervall der Form I = (a, b) mit a < b. Es seien f, g : I R differenzierbar. Wir setzen voraus g (x) 0 für alle x I und der Grenzwert f (x) x b,x<b g (x) = M R existiere. Dann gelten die beiden Aussagen:. Aus x b,x<b g(x) = x b,x<b = 0 folgt: (a) g(x) 0 für alle x I und (b) x b,x<b g(x) = M. 2. Aus x b,x<b g(x) = x b,x<b = ± folgt: (a) Es gibt ein x 0 (a, b) mit g(x) 0 für x > x 0 und (b) x b,x<b g(x) = M. Entsprechende Aussagen gelten auch für die Grenzwerte bei a. Beweis. Wir beginnen mit dem ersten Teil. Es gibt ein α < b mit g ist injektiv auf (α, b) und g(x) 0 für x (α, b), denn ist g(x) = g(y), so existiert nach dem Satz von Rolle ein ξ (x, y) mit g (ξ) = 0 im Widerspruch zur Voraussetzung g 0 und wäre g(x) = 0, so würde das gleiche Argument auf 3 Guillaume François Antoine l Hôpital, Marquis de Sainte Mesme ( ) war Mitglied des französischen Hochadels, widmete sich dennoch der Mathematik. Von Johann I Bernoulli wurde er in die damals neue Infinitesimalrechnung eingeführt und schloss mit ihm ein Abkommen, dass jener ihm gegen Bezahlung die Rechte an mathematischen Erkenntnissen abtrat. So gehen auch die hier genannten Regeln auf Johann I Bernoulli zurück, der nach dem Tode von l Hôpital die Entdeckerrechte einforderte.

9 5.6. DIE REGELN VON DE L HOSPITAL 23 dem Intervall (x, b) anwendbar sein. Also existiert eine stetige inverse Abbildung g : (0, β) (α, b). Für y (0, β) gilt f(g (y)) g(g (y)) = f(g (y)) y und der Grenzwert x 0 g(x) = f(g (y)) y 0 g(g (y)) = f(g (y)) y 0 y = M, denn d d y f(g (y)) = f (g (y)) g (g (y)). Der zweite Teil ist ganz ähnlich, nur bildet g auf ein Intervall der Form (β, ) ab. Es gibt ein α < b, so dass g auf (α, b) injektiv ist, zum Beweis dient das gleiche Argument wie oben. Damit ist g auf (α, b) streng monoton und g wechselt das Vorzeichen nicht. Insbesondere können wir obda annehmen, dass g > 0 auf (α, ) ist. Das Bild von (α, b) unter g ist also ein Intervall der Form (β, ). Setze F = f g. Es gilt Nun ist F (y) = f (g (y)) g (g (y)). F f (x) (y) = x b,x<b x b,x<b g (x) = M. Damit folgt aus dem Lemma F (y) y y = M. Dann ist x b,x<b g(x) = f(g (y)) y y = y F (y) y = M.

10 24 KAPITEL 5. DIFFERENZIERBARE FUNKTIONEN Bemerkung (Anwendungen der l Hospitalschen Regel). Wir betrachten für α > 0 log(x) x x. α Die Voraussetzungen zur Anwendung des Satzes von l Hospital sind erfüllt und wir erhalten log(x) = x x α x αx = 0. α 2. Den Grenzwert ( x 0,x 0 sin(x) ) x kann man erst durch die Umformung sin(x) x = x sin(x) x sin(x) in die erforderliche Gestalt bringen und ausrechnen, dass nach einer zweiten Anwendung von des Satzes von l Hospital folgt, dass dieser Grenzwert 0 ist. 5.7 Stammfunktionen Definition 5.7. (Stammfunktion) Ist f : (a, b) R stetig, so heißt eine Funktion F : (a, b) R Stammfunktion von f, falls F (x) = für alle x (a, b) gilt. Bemerkung (Nichteindeutigkeit der Stammfunktion) Eine Stammfunktion ist nicht eindeutig: ist F eine Stammfunktion von f, so gilt dies auch für F + c für jede reelle Zahl c. Satz (Differenzen von Stammfunktionen) Sind F, F 2 Stammfunktionen von der stetigen Funktion f auf (a, b), so gibt es ein c R mit F = F 2 + c. Beweis. Ist x 0 (a, b) und c = F (x 0 ) F 2 (x 0 ) und x (a, b), x x 0. Dann gibt es ein ξ (x, x 0 ) bzw. (x 0, x) mit (F (x) F 2 (x)) (F (x 0 ) F 2 (x 0 )) = (F (ξ) F 2(ξ))(x x 0 ) = (f (ξ) f (ξ))(x x 0 ) = 0.

11 5.7. STAMMFUNKTIONEN 25 Dann ist F (x) F 2 (x) = c. Damit können wir die Stammfunktionen einer großen Klasse von Funktionen (jeweils bis auf Angabe einer Konstanten) angeben. Hier eine kleine Auswahl: Funktion f Stammfunktion F x x 2 2 x a, a x a + xa+ log( x ) e x e x log(x) sin cos sinh x log(x) x cos sin cosh + x 2 arctan(x) y 2 arcsin(y)

12 26 KAPITEL 5. DIFFERENZIERBARE FUNKTIONEN

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Formelsammlung spezieller Funktionen

Formelsammlung spezieller Funktionen Lehrstuhl A für Mathematik Aachen, en 70700 Prof Dr E Görlich Formelsammlung spezieller Funktionen Logarithmus, Eponential- un Potenzfunktionen Natürlicher Logarithmus Der Logarithmus ist auf (0, ) efiniert

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

1. ( e -x + e -(- x) 1. . ( e x + e - x ) . ( e x - e - x 2. Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Analysis Übung 15 Folie 1

1. ( e -x + e -(- x) 1. . ( e x + e - x ) . ( e x - e - x 2. Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Analysis Übung 15 Folie 1 04.03.04 Übung 5a Analysis, Abschnitt.5, Folie Definition der hyperbolischen Funktionen: sinus hyperbolicus: sinh( ). ( e - e - ) cosinus hyperbolicus: cosh( ). ( e + e - ) tangens hyperbolicus: sinh(

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

9 Die trigonometrischen Funktionen und ihre Umkehrfunktionen

9 Die trigonometrischen Funktionen und ihre Umkehrfunktionen Übungsmaterial 9 Die trigonometrischen Funktionen und ihre Umkehrfunktionen Die trigonometrischen Funktionen sind die Sinus-, die Kosinus- und die Tangensfunktion. 9. Eigenschaften der trigonometrischen

Mehr

Vorkurs Mathematik 2014

Vorkurs Mathematik 2014 Dr. Mario Helm et al. Institut für Numerische Mathematik und Optimierung Fakultät für Mathematik und Informatik Vorkurs Mathematik 4 Winkelmessung und trigonometrische Funktionen 6.-..4 Winkel und Winkelmessung

Mehr

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10 Mathematik für Wirtschaftswissenschaften I Wintersemester 05/6 Universität Leipzig Lösungvorschläge Präsenzaufgaben Serien -0 Inhaltsverzeichnis Serie Serie 5 3 Serie 8 4 Serie 9 5 Serie 3 6 Serie 6 7

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim.

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim. 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert falls g(x), beide Funktionen gegen Null konvergieren, d.h. = g(x) = 0 beide Funktionen gegen Unendlich konvergieren, d.h.

Mehr

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Taylorentwicklung von Funktionen einer Veränderlichen

Taylorentwicklung von Funktionen einer Veränderlichen Taylorentwicklung von Funktionen einer Veränderlichen 17. Januar 2013 KAPITEL 1. MATHEMATISCHE GRUNDLAGEN 1 Kapitel 1 Mathematische Grundlagen 1.1 Stetigkeit, Differenzierbarkeit und C n -Funktionen Der

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Informatier II (Sommersemester 00) Lösungen zu Aufgabenblatt

Mehr

Einführung in die Physikalischen Rechenmethoden I + II

Einführung in die Physikalischen Rechenmethoden I + II Skriptum zur Vorlesung Einführung in die Physikalischen Rechenmethoden I + II Univ. Prof. Dr. Christoph Dellago Universität Wien Fakultät für Physik Institut für Experimentalphysik Boltzmanngasse 5, 1090

Mehr

Übungsaufgaben mit Lösungen

Übungsaufgaben mit Lösungen Priv. Doz. Dr. A. Wagner Aachen, 9. September 6 S. Bleß, M. Sc. Analysis Übungsaufgaben mit Lösungen im Vorkurs Mathematik 6, RWTH Aachen University Intervalle, Supremum und Infimum Für a, b R, a < b nennen

Mehr

Wichtige mathematische Symbole

Wichtige mathematische Symbole Wichtige mathematische Symbole Die folgende Liste enthält wichtige Zeichen und Symbole, die vor allem in der Mathematik, aber z.t. auch in den angewandten Fachbereichen Verwendung finden. Der Schwerpunkt

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α Grundwissen 0. Berechnungen an Kreis und Kugel a) Bogenmaß Beispiel: Gegeben ist ein Winkel α=50 ; dann gilt: b = b = π 50 0,8766 r r 360 Die (reelle) Zahl ist geeignet, die Größe eines Winkels anzugeben.

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : Ê Ê systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel Zuerst wollen wir die Gamma-Funktion definieren, die eine Verallgemeinerung von n! ist. Dazu benötigen wir einige Resultate. Lemma.

Mehr

Analysis II WS 11/12 Serie 9 Musterlösung

Analysis II WS 11/12 Serie 9 Musterlösung Analysis II WS / Serie 9 Musterlösung Aufgabe Bestimmen Sie die kritischen Punkte und die lokalen Extrema der folgenden Funktionen f : R R: a fx, y = x + y xy b fx, y = cos x cos y Entscheiden Sie bei

Mehr

Skriptum zu den Vorlesungen. Mathematik 1 und 2. - Analysis - Teil I

Skriptum zu den Vorlesungen. Mathematik 1 und 2. - Analysis - Teil I Skriptum zu den Vorlesungen Mathematik 1 und 2 - Analysis - Teil I Jürgen Garloff Hochschule Konstanz für Technik, Wirtschaft und Gestaltung Fakultät für Informatik Januar 2013 Vorbemerkung Das Skriptum

Mehr

Mathematik für Anwender I. Beispielklausur I mit Lösungen

Mathematik für Anwender I. Beispielklausur I mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31

Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31 Inhalt Vorwort... 5 1 Stammfunktionen... 7 1.1 Erklärung der Stammfunktionen........................................... 7 1.2 Eigenschaften der Stammfunktionen.................................... 10 1.3

Mehr

Kurven nach Formeln erstellen, Teil 3

Kurven nach Formeln erstellen, Teil 3 Kurven nach Formeln erstellen, Teil 3 Im dritten Teil möchte ich sie mit Funktionen und Konstanten vertraut machen, die sie in der Dialogbox Kurve nach Formel verwenden können. Dann werden wir uns ein

Mehr

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also Festlegung Definitionsbereich 11.1 Festlegung Definitionsbereich Festlegung: Wir betrachten Funktionen f : D Ñ R, deren Definitionsbereich eine endliche Vereinigung von Intervallen ist, also z.b. D ra,

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

7.8. Die Regel von l'hospital

7.8. Die Regel von l'hospital 7.8. Die Regel von l'hospital Der Marquis de l'hospital (sprich: lopital) war der erste Autor eines Buches über Infinitesimalrechnung (696) - allerdings basierte dieses Werk wesentlich auf den Ausführungen

Mehr

1. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013

1. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 O. Alaya, R. Bauer K. Sanei Kashani, F. Kissling, B. Krinn, J. Schmid, T. Vassias. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshinweise zu den

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Rainer Hauser September 013 1 Einleitung 1.1 Der Begriff Funktion Eine Funktion ordnet jedem Element m 1 einer Menge M 1 ein Element m einer Menge M zu. Man schreibt dafür f:

Mehr

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 4 Stetigkeit Peter Becker (H-BRS) Analysis Sommersemester 2016 254 / 543 Inhalt Inhalt 4 Stetigkeit Eigenschaften stetiger Funktionen Funktionenfolgen und gleichmäßige Konvergenz Umkehrfunktionen

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion.

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion. Tutorium Mathe 1 MT I Funktionen: Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren Man nennt die Untersuchung von Funktionen auch Kurvendiskussion 1 Definitionsbereich/Wertebereich

Mehr

g(x) = lim 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert Beispiel: Seif(x) = x 2 undg(x) = x.

g(x) = lim 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert Beispiel: Seif(x) = x 2 undg(x) = x. 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert falls x x 0 g(x), beide Funktionen gegen Null konvergieren, d.h. x x 0 = x x 0 g(x) = 0 beide Funktionen gegen Unendlich

Mehr

10. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit. Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden.

10. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit. Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden. 49. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit a Grenzwerte von Funktionen Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden. Einführende Beispiele: Untersuche

Mehr

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Komplexe Zahlen Definition komplexer Zahlen in der Gaußschen Zahlenebene, algebraische Form, trigonometrische Form, exponentielle

Mehr

5 Funktionen und Stetigkeit

5 Funktionen und Stetigkeit 5 Funktionen und Stetigkeit 5. Beispiele von Funktionen Für eine Menge D Ê bezeichnen wir die Abbildungen f : D Ê als Funktionen. D heißt Definitionsbereich, R(f) = f(d) = {y = f() für ein D} heißt Wertebereich

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

Mathematik Vorkurs. G. Finsel S. Heitmann K. Ronneberger. hochschule für angewandte wissenschaften. university of applied sciences

Mathematik Vorkurs. G. Finsel S. Heitmann K. Ronneberger. hochschule für angewandte wissenschaften. university of applied sciences Mathematik Vorkurs G. Finsel S. Heitmann K. Ronneberger. Auflage 004 Inhaltsverzeichnis 1 Zahlensysteme 4 1.1 Natürliche und ganze Zahlen........................ 4 1. Rationale Zahlen..............................

Mehr

n 1, n N \ {1}, 0 falls x = 0,

n 1, n N \ {1}, 0 falls x = 0, IV.1. Stetige Funktionen 77 IV. Stetigkeit IV.1. Stetige Funktionen Stetige Funktionen R R sind vielen sicher schon aus der Schule bekannt. Dort erwirbt man sich die naive Vorstellung, dass eine stetige

Mehr

4.7 Der Taylorsche Satz

4.7 Der Taylorsche Satz 288 4 Differenziation 4.7 Der Taylorsche Satz Die Differenzierbarkeit, also die Existenz der ersten Ableitung einer Funktion, erlaubt bekanntlich, diese Funktion lokal durch eine affine Funktion näherungsweise

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Lösungsvorschlag - Zusatzaufgaben (2)

Lösungsvorschlag - Zusatzaufgaben (2) HOCHSCHULE KARLSRUHE Sommersemester 014 Elektrotechnik - Sensorik Übung Mathematik I B.Sc. Paul Schnäbele Lösungsvorschlag - Zusatzaufgaben ) a) x ) fx) = D = R \ { } x + Es liegt keine gängige Symmetrie

Mehr

Lösungsvorschläge zum 14. Übungsblatt.

Lösungsvorschläge zum 14. Übungsblatt. Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine

Mehr

Elemente der Analysis I: Zusammenfassung und Formelsammlung

Elemente der Analysis I: Zusammenfassung und Formelsammlung Elemente der Analysis I: Zusammenfassung und Formelsammlung B. Schuster/ L. Frerick 9. Februar 200 Inhaltsverzeichnis Grundlagen 5. Mengen und Zahlen................................ 5.. Mengen...................................

Mehr

Vorlesung. Funktionen/Abbildungen

Vorlesung. Funktionen/Abbildungen Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/

Mehr

Lösungen der Übungsaufgaben von Kapitel 4

Lösungen der Übungsaufgaben von Kapitel 4 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 4 zu 4.1 4.1.1 Eine Funktion f : R R sei als Nullfunktion für x 0 und als x x für x 0 definiert.

Mehr

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,

Mehr

3 Grenzwerte, Stetigkeit und Beispiele reeller Funktionen

3 Grenzwerte, Stetigkeit und Beispiele reeller Funktionen 3 Grenzwerte, Stetigkeit und Beispiele reeller Funktionen 3. Grundlegende Eigenschaften In den nächsten Kapiteln beschäftigen wir uns mit Funktionen f : D f W f, bei denen sowohl der Definitions- als auch

Mehr

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Reelle Zahlen sind ideale Objekte, die es uns ermöglichen, eine transparente und leistungsfähige Theorie aufzubauen. Ein Computer kann jedoch nur mit Approximationen

Mehr

2.8 Trigonometrische Funktionen (Thema aus dem Bereich Analysis/Geometrie)

2.8 Trigonometrische Funktionen (Thema aus dem Bereich Analysis/Geometrie) .8 Trigonometrische Funktionen (Thema aus dem Bereich Analysis/Geometrie) Inhaltsverzeichnis Repetition und Einleitung Verhältnisse beim Kreis mit Radius r 3 3 Die Graphen der Sinus- und der Cosinusfunktion

Mehr

Analysis I/II, Information zum Repetitionsteil

Analysis I/II, Information zum Repetitionsteil Information Analysis I/II, Information zum Repetitionsteil Professor U. Stammbach Dieser Zusatz gehört zur Lehrveranstaltung Analysis I/II für die Studiengänge Maschinenbau/Verfahrenstechnik und Materialwissenschaften.

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 7

Zusatzmaterial zur Mathematik I für E-Techniker Übung 7 Mathemati I für E-Technier C. Erdmann WS 0/, Universität Rostoc, 7. Vorlesungswoche Zusatzmaterial zur Mathemati I für E-Technier Übung 7 Loale Etrema, Satz von Rolle, Mittelwertsatz Man sagt, in liegt

Mehr

10 - Elementare Funktionen

10 - Elementare Funktionen Kapitel 1 Mathematische Grundlagen Seite 1 10 Elementare Funktionen Definition 10.1 (konstante Funktion) Konstante Funktionen sind nichts weiter als Parallelen zur xachse, wenn man ihren Graphen in das

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

Differenzialrechnung

Differenzialrechnung Mathematik bla Differenzialrechnung Ort - Zeit - Geschwindigkeit E:\1_GYMER\_Unterricht\AUFGABEN\0_3 Differenzialrechnung\00_differenzialrechnung.docx 1 Das Weg-Zeit-Diagramm und die Geschwindigkeit Ordne

Mehr

3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen

3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen KAPITEL 3 INTERPOLATION UND APPROXIMATION 4 33 Newtonsche Interpolationsformel / Dividierte Differenzen Das Verfahren von Neville ist unpraktisch, wenn man das Polynom selbst sucht oder das Polynom an

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Beispielaufgaben rund um Taylor

Beispielaufgaben rund um Taylor Beispielaufgaben rund um Taylor Mirko Getzin Universität Bielefeld Fakultät für Mathematik 19. Februar 014 Keine Gewähr auf vollständige Richtigkeit und perfekter Präzision aller (mathematischen) Aussagen.

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Was bedeutet Trigonometrie und mit was beschäftigt sich die Trigonometrie?

Was bedeutet Trigonometrie und mit was beschäftigt sich die Trigonometrie? Einführung Was bedeutet und mit was beschäftigt sich die? Wortkunde: tri bedeutet 'drei' Bsp. Triathlon,... gon bedeutet 'Winkel'/'Eck' Bsp. Pentagon das Fünfeck mit 5 Winkeln metrie bedeutet 'Messung'

Mehr

Lösungen zu Aufgabenblatt 7P

Lösungen zu Aufgabenblatt 7P Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 205 9. Mai 205 Lösungen zu Aufgabenblatt 7P Aufgabe (Stetigkeit) (a) Für welche a, b R sind die folgenden Funktionen stetig in x 0

Mehr

Mathe-Übungsbeispiele für ein fixes Honorar rechnen Freie Zeiteinteilung + Heimarbeit Vergleichbar mit Nachhilfe, aber ohne Schülerkontakt

Mathe-Übungsbeispiele für ein fixes Honorar rechnen Freie Zeiteinteilung + Heimarbeit Vergleichbar mit Nachhilfe, aber ohne Schülerkontakt Mathe-Übungsbeispiele für ein fixes Honorar rechnen Freie Zeiteinteilung + Heimarbeit Vergleichbar mit Nachhilfe, aber ohne Schülerkontakt Gesucht Stuenten, ie minestens ie Vorlesungen aus en ersten 2

Mehr

Klausuraufgabensammlung Mathematik. Klausuraufgaben zur Mathematik 1-3 von Wolfgang Langguth

Klausuraufgabensammlung Mathematik. Klausuraufgaben zur Mathematik 1-3 von Wolfgang Langguth Hochschule für Technik und Wirtschaft des Saarlandes University of Applied Sciences Fakultät für Ingenieurswissenschaften Bachelorstudiengang Biomedizinische Technik Prof. Dr. W. Langguth Klausuraufgabensammlung

Mehr

56 Kapitel 6 Reelle Funktionen. B) Quadratische Funktionen: Eine Funktion der Gestalt. f(x) := ax 2 + bx + c (mit a 0)

56 Kapitel 6 Reelle Funktionen. B) Quadratische Funktionen: Eine Funktion der Gestalt. f(x) := ax 2 + bx + c (mit a 0) 55 6 Reelle Funktionen 6.1 Beispiele von Funktionen A) Lineare Funktionen: Seien a, b R, a 0. Dann heißt die Funktion f : R R, die durch definiert wird, eine lineare Funktion. 1 f(x) := ax + b Lineare

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Stetigkeit. Klaus-R. Loeffler. 1 Vorstellung, Definition und Folgerungen Stetigkeitscharakterisierung durch Folgen... 3

Stetigkeit. Klaus-R. Loeffler. 1 Vorstellung, Definition und Folgerungen Stetigkeitscharakterisierung durch Folgen... 3 Stetigkeit Klaus-R. Loeffler Inhaltsverzeichnis 1 Vorstellung, Definition und Folgerungen 1.1 Stetigkeitscharakterisierung durch Folgen......................... 3 Regeln zur Stetigkeit an einer Stelle

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0) 09.0.0. Kommissar K hat 3 Tatverdächtige P, Q und R. Er weiß: (a) Wenn sich Q oder R als Täter herausstellen, dann ist P unschuldig.

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: M. Boßle, B. Krinn Ü. Okur, M. Wied Blatt 4 Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 46. Konvergenz

Mehr

Lösungen ==================================================================

Lösungen ================================================================== Lösungen ================================================================== Aufgabe Bestimme f '(x) a) f(x) = e x f '(x) = e x ( ) = 4 e c x b) f(x) = x e x f '(x) = e x ( ) = + e x c) f(x) = 3 e (x+)

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben

Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Fachbereich Mathematik Vorkurs Mathematik WS 2012/13 Dies ist eine Sammlung von Aufgaben, die hauptsächlich Mittelstufenstoff wiederholen. Dabei

Mehr

8.3 Lösen von Gleichungen mit dem Newton-Verfahren

8.3 Lösen von Gleichungen mit dem Newton-Verfahren 09.2.202 8.3 Lösen von Gleichungen mit dem Newton-Verfahren Beispiel: + 2 e Diese Gleichung kann nicht nach aufgelöst werden, da die beiden nicht zusammengefasst werden können. e - - 2 0 Die gesuchten

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Um die Grundidee der Taylorentwicklung zu verstehen, betrachten wir zunächst eine Polynomfunktion f(x) = n

Um die Grundidee der Taylorentwicklung zu verstehen, betrachten wir zunächst eine Polynomfunktion f(x) = n VII.1. Taylorentwicklung 143 VII. Taylorreihen In diesem Kapitel werden wir eine Methode kennenlernen, differenzierbare Funktionen lokal durch Polynome zu approximieren. Im gleichen Sinne wie die Differenzierbarkeit

Mehr

Goniometrische Gleichungen:

Goniometrische Gleichungen: Mathematik/Di FH Regensburg 1 Goniometrische Gleichungen: Für die nachfolgenden Beispiele goniometrischer Gleichungen sind folgende Symmetriegleichungen für die trigonometrischen Funktionen zu beachten

Mehr