3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen

Größe: px
Ab Seite anzeigen:

Download "3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen"

Transkript

1 KAPITEL 3 INTERPOLATION UND APPROXIMATION 4 33 Newtonsche Interpolationsformel / Dividierte Differenzen Das Verfahren von Neville ist unpraktisch, wenn man das Polynom selbst sucht oder das Polynom an mehreren Stellen auswerten will Für diese Fälle eignet sich der Newton-Algorithmus Wir schreiben: p(f,, n )=a + a ( )+a ( )( )+ + a n ( ) ( n ) (35) Beobachtungen: (i) Darstellungen eines Polynoms p() vom Grad n: a) p() =c + c + + c n n + c n n zur Basis der Monome {,,,, n } b) p() =b L ()+b L ()+ + b n L n () zur Basis der Lagrange-Polynome {L (),, L n ()} c) p() =a + a w ()+ + a n w n () zur Newton-Basis {w (),, w n ()} mit Einfache Folgerung a n = c n und da w n ( i ) = für i =,, n i w i () = ( j ) j= p(f,, n )=p(f,, n )+a n w n (), (36) (ii) Das Polynom p() in Darstellung (35) bzw (i) c) lässt sich (wie auch die Darstellung in (i) a)) durch das so genannte Horner-Schema auswerten: ( ( ) )) p(ξ) =a +(ξ ) a +(ξ ) a + (ξ n ) (a n +(ξ n )a n, wobei die Koeffizienten a i nacheinander aus den Beziehungen f = p( )=a f = p( )=a +( )a (37) f = p( )=a +( )a +( )( )a, usw bestimmt werden können Aufwand der Koeffizientenbestimmung durch (37): a : Additionen, Division a : 4 Additionen, Multiplikationen, Division a 3 : 6 Additionen, 4 Multiplikationen, Division a i :i Additionen, (i ) Multiplikationen, Division Insgesamt: n Divisionen n(n ) Multiplikationen n(n + ) Additionen Definition 9 Wir nennen den Koeffizienten a n in (36) die n-te dividierte Differenz von f zu den Stützstellen,, n, und wir schreiben f[,, n ] := a n

2 KAPITEL 3 INTERPOLATION UND APPROXIMATION 43 Wir nennen die Koeffizienten bezüglich der Newton-Basis (die a i in obiger Beobachtung (i) c)) die dividierten Differenzen von f zu den Stützstellen,, n Frage: Lassen sich die dividierten Differenzen billiger bestimmen als durch Darstellung (37)? Definiere jeweils die -te Differenz von f zu der Stützstelle i durch Wir finden mit Formel (34) und somit f[ i ] := f i p(f i, i+ ) = ( i )p(f i+ ) ( i+ )p(f i ) }{{} i i+ =f[ i]+( i)f[ i, i+] = ( i )f[ i+ ] ( i+ )f[ i ] i i+ f[ i, i+ ]= ( i )f[ i+ ] ( i )f[ i ] i i+ = f[ i] f[ i+ ] i i+, i dh die -te dividierte Differenz zweier (benachbarter) Stellen lassen sich leicht aus den entsprechenden Stützwerten durch dividierte Differenzen berechnen Wir gehen nun davon aus, dass die (n )-ten dividierten Differenzen f[,, n ] und f[,, n ] bekannt sind Wiederum mit Formel (34) und (36) finden wir p(f,, n )=p(f,, n )+f[,, n ]w n () Nach Koeffizientenvergleich des Faktors n erhalten wir = ( )p(f,, n ) ( n )p(f,, n ) n f[,, n ]= f[,, n ] f[,, n ] n = f[,, n ] f[,, n ] n Anordnung der dividierten Differenzen im so genannten Differenzenschema: f = f[ ] f = f[ ] f[, ] f = f[ ] f[, ] f[,, ] f n = f[ n ] f[ n, n ] f[,, n ] f n = f[ n ] f[ n, n ] f[,, n ] f[,, n ]

3 KAPITEL 3 INTERPOLATION UND APPROXIMATION 44 Die Hauptdiagonale liefert die Koeffizienten von p(f,, n ) Aufwand: -te Spalte: n Additionen, n Divisionen 3-te Spalte: (n ) Additionen, n Divisionen Insgesamt: n i= i = n(n+) Divisionen n i= i = n(n + ) Additionen Billiger als Koeffizientenbestimmung durch (37) Satz 8 (Newtonsche Interpolationsformel) Zu n + Stützpunkten ( i,f i ), i =,, n mit paarweise verschiedenen Stützstellen i eistiert genau ein Interpolationspolynom p() vom Grad n, welches gegeben ist durch p() =f[ ]+( )f[, ]+ +( ) ( n )f[,, n ], wobei die dividierten Differenzen gegeben sind durch für k n i f[ i ] := f i, f[ i,, i+k ]= f[ i,, i+k ] f[ i+,, i+k ] i i+k 34 Das Restglied der Polynominterpolation Wir untersuchen nun die Approimationseigenschaft des Interpolationspolynoms p() von f in den Stützstellen,, n, dh den Fehler f() p() Satz 9 Sei f :[a, b] R mindestens (n + )-mal stetig differenzierbar und p() das Interpolationspolynom von f in den Stützstellen,, n [a, b] vom Grad n Dann eistiert zu jedem [a, b] eine Zwischenstelle ξ = ξ() (a, b) mit f() p() =w n+ () f (n+) (ξ) (n + )! Beweis: Wir setzen F () =f() p() K w n+ () und bestimmen für ein i, i =,, n, die Konstante K so, dass F ( ) = gilt Dies ist möglich da w n+ ( ) Insgesamt besitzt F somit n + Nullstellen und nach dem Satz von Rolle die Ableitung F noch n + Nullstellen usw Schließlich besitzt F (n+) = f (n+) () K(n + )! eine Nullstelle ξ = ξ( ) Daher gilt =f (n+) (ξ) K(n + )! und mit Auflösung nach K die Behauptung des Satzes

4 KAPITEL 3 INTERPOLATION UND APPROXIMATION 45 Mit Darstellung (36) und dem vorangegangenen Beweis gilt falls i < < i f[,, i,, i,, n ]= f (n+) (ξ) (n + )!, Betrachten wir die Funktionsklasse F = {f C n+ ([a, b]) ma τ [a,b] f (n+) (τ) M(n + )!} für eine Konstante M>, so hängt der Approimationsfehler offenbar entscheidend von der Wahl der Stützstellen,, n in Form von w n+ () = ( ) ( n ) ab In der Tat ist die Approimationseigenschaft von Interpolationspolynomen im Allgemeinen nicht so gut, wie der Weierstraßsche Approimationssatz Satz 5 vermuten lässt Im nächsten Abschnitt werden wir jedoch zeigen wie sich ma [a,b] w n+() bei entsprechender Wahl der Stützstellen minimieren lässt 35 Tschebyscheff-Interpolation Ziel: Approimation von f :[a, b] R durch Interpolationspolynome mit möglichst günstigen Stützstellen (gute Kondition, optimale Approimation von f F) Ohne Einschränkung sei [a, b] =[, ] Denn mit der affine Transformation [, ] [a, b] a+b b a y a+b b a y + b a = y lässt sich das Intervall [a, b] in das Intervall [, ] überführen ohne die Interpolations- und Approimationseigenschaften zu verändern Wir definieren rekursiv die Tschebyscheff-Polynome T () = T () = T n+ () = T n () T n () Das Polynom T n vom Grad n ist ebenfalls gegeben durch: T n () = cos(n arccos ) Beweis durch Induktion: n = und n = klar Sei die Behauptung für n gezeigt Mit der Definition der Teschbyscheff-Polynome gilt: T n+ () = T n () T n () = cos(n arccos ) cos((n ) arccos ) = cos(arccos ) cos(n arccos ) cos((n ) }{{}} arccos {{ } ) = =:ϕ }{{} =cos((n+)ϕ)+cos((n )ϕ) = cos((n + )ϕ)

5 KAPITEL 3 INTERPOLATION UND APPROXIMATION 46 Beachte: Nach dem Additionstheorem des Cosinus gilt: cos(nϕ + ϕ) + cos(nϕ ϕ) = cos(nϕ) cos(ϕ) Folgerungen: (i) Die Nullstellen von T n sind cos ( k+ n π), k =,, n (ii) T n (cos kπ n )=( )k für k =,, n (iii) T n () für (iv) Der Koeffizient von n ist n Beispiel 6 T () = T 3 () = 3 3 T 4 () = T_ - - T_3 - - T_4 Abbildung 3: Tschebyscheff-Polynome T,T 3 und T 4 Satz Unter allen (,, n ) T R n+ wird ma w n+() minimal, wenn die i genau die Nullstellen des (n + )-ten Tschebyscheff-Polynoms T n+ sind, dh wenn [,] ( ) k + k = cos n + π für k =,, n gilt Der minimale Wert ist n Zum Beweis des Satzes benutzen wir folgendes Resultat: Lemma 4 Sei q() = n n + ein Polynom vom Grad n ungleich des n-ten Tschebyscheff- Polynoms T n Dann gilt: ma q() > = ma T n() [,] [,]

T n (1) = 1 T n (cos π n )= 1. deg T n q n 1.

T n (1) = 1 T n (cos π n )= 1. deg T n q n 1. KAPITEL 3. INTERPOLATION UND APPROXIMATION 47 Beweis: Wir nehmen an qx) für alle x [, ] und führen diese Annahme zu einem Widerspruch. Es gilt nach Folgerung ii) T n ) T n cos π n ). Wir betrachten die

Mehr

6 Polynominterpolation

6 Polynominterpolation Vorlesungsskript HM-Numerik (SS 2014): Kapitel 6 Version: 1 Juli 2014 6 Polynominterpolation Gegeben: Wertepaare { (x i,f i ) R 2 i = 0,,n } Gesucht: Einfache Funktion g : R R mit g(x i ) = f i i {0,1,,n}

Mehr

Inhalt Kapitel IV: Interpolation

Inhalt Kapitel IV: Interpolation Inhalt Kapitel IV: Interpolation IV Interpolation IV. Polynom-Interpolation IV. Spline-Interpolation Kapitel IV (InhaltIV) Die Interpolationsformel von Lagrange Zentrale Aussage: Zu beliebigen n + Stützpunkten

Mehr

Die Interpolationsformel von Lagrange

Die Interpolationsformel von Lagrange Die Interpolationsformel von Lagrange Zentrale Aussage: Zu beliebigen n + Stützpunkten (x i,f i ), i =,...,n mit paarweise verschiedenen Stützstellen x i x j, für i j, gibt es genau ein Polynom π n P n

Mehr

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n.

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n. 8 Interpolation 81 Problemstellung Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen x 0 < x 1 < < x n Eingabedaten: (x 0, f 0 ),(x 1, f 1 ),,(x n, f n ) Gegebene Daten (x j, f j ) Analysis

Mehr

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4)

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4) 33 Interpolation 147 33 Interpolation In vielen praktischen Anwendungen der Mathematik treten Funktionen f auf, deren Werte nur näherungsweise berechnet werden können oder sogar nur auf gewissen endlichen

Mehr

Übungsblatt 1 Musterlösung

Übungsblatt 1 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA234 - SS6 Übungsblatt Musterlösung Aufgabe (Interpolationspolynom) a) Bestimmen Sie die Hilfspolynome L i, i =,,2, für x =, x = 2 und x 2 = 3 nach der Formel

Mehr

Klassische Polynom Interpolation.

Klassische Polynom Interpolation. Klassische Polynom Interpolation. Bestimme ein Polynom (höchstens) n ten Grades p n (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n, das die gegebenen Daten interpoliert, d.h. p n (x i ) = f i, 0 i n. Erster

Mehr

1 2 x x x x x x2 + 83

1 2 x x x x x x2 + 83 Polynominterpolation Aufgabe 1 Gegeben sei die Wertetabelle i 0 1 2 3 x i 0 1 2 4 f i 3 1 2 7 a) Bestimmen Sie das Interpolationspolynom von Lagrange durch die obigen Wertepaare. b) Interpolieren Sie die

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

8 Polynominterpolation

8 Polynominterpolation 8 Polynominterpolation Interpolations-Aufgabe: Von einer glatten Kurve seien nur lich viele Punktewerte gegeben. Wähle einen lichdimensionalen Funktionenraum. Konstruiere nun eine Kurve in diesem Funktionenraum

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 214 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

Numerische Mathematik für die Fachrichtung Informatik und für Ingenieurwesen SS 2005

Numerische Mathematik für die Fachrichtung Informatik und für Ingenieurwesen SS 2005 UNIVERSITÄT KARLSRUHE TH Institut für Praktische Mathematik Prof. Dr. Rudolf Scherer Dil.-Math. Heike Stoll Numerische Mathematik für die Fachrichtung Informatik und für Ingenieurwesen SS 5 Lösung zum

Mehr

Polynominterpolation. Allgemeines Problem: Beispiel 1 (Teil 1):

Polynominterpolation. Allgemeines Problem: Beispiel 1 (Teil 1): . Großübung Polynominterpolation Allgemeines Problem: Aufgrund gegebener Messwerte (Paare aus Werten i und Funktionswerten f( i )) soll ein Funktionsverlauf rekonstruiert bzw. zumeist angenähert werden.

Mehr

Polynominterpolation

Polynominterpolation Polynominterpolation In der numerischen Mathematik versteht man unter Polynominterpolation die Suche nach einem Polynom, welches exakt durch vorgegebene Punkte (z. B. aus einer Messreihe) verläuft. Dieses

Mehr

KAPITEL 9 Splinefunktionen

KAPITEL 9 Splinefunktionen KAPITEL 9 Splinefunktionen 9.1 Splineräume und Approximationsgüte Bei der Behandlung von Splines ist es bequemer, statt mit dem Grad von Polynomen, mit der Ordnung k := Grad + 1 zu arbeiten. Für eine Knotenmenge

Mehr

H.J. Oberle Analysis II SoSe Interpolation

H.J. Oberle Analysis II SoSe Interpolation HJ Oberle Analysis II SoSe 2012 7 Interpolation 71 Allgemeine Problemstellung Interpolation ist die Kunst, zwischen den Zeilen einer Tabelle zu lesen (Rutishauser) Von f : R R seien Funktionswerte (x j,

Mehr

KAPITEL 8. Interpolation

KAPITEL 8. Interpolation KAPITEL 8. Interpolation 8.2 Lagrange-Interpolationsaufgabe für Polynome Wir beschränken uns auf die Lagrange-Interpolation mit Polynomen. Der Raum der Polynome vom Grad n: Stützstellen: Π n = { n j=0

Mehr

6. Polynom-Interpolation

6. Polynom-Interpolation 6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für

Mehr

Tschebyschow-Polynome

Tschebyschow-Polynome Tschebyschow-Polynome Harald Leisenberger, Robert Trummer 24. April 203 Vorwort: In dieser Arbeit geht es um eine spezielle Art von Polynomen, die nach dem bekannten russischen Mathematiker P. L. Tschebyschow

Mehr

Nachklausur am Donnerstag, den 7. August 2008

Nachklausur am Donnerstag, den 7. August 2008 Nachklausur zur Vorlesung Numerische Mathematik (V2E2) Sommersemester 2008 Prof. Dr. Martin Rumpf Dr. Martin Lenz Dipl.-Math. Nadine Olischläger Nachklausur am Donnerstag, den 7. August 2008 Bearbeitungszeit:

Mehr

Numerische Integration und Differentiation

Numerische Integration und Differentiation Einführung Grundlagen Bemerkung (Numerische Mathematik) a) Im engeren Sinn: zahlenmäßige Auswertung mathematischer Zusammenhänge z B Lösung von linearen und nichtlinearen Gleichungssystemen Numerische

Mehr

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel;

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; Kapitel Der Satz von Taylor. Taylor-Formel und Taylor-Reihe (Taylor-Polynom; Restglied; Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; die Klasse C ; reell analytische Funktionen) In

Mehr

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?

Mehr

Kardinalfunktionen. Florian Badt. 2. Juni Universität des Saarlandes, Saarbrücken

Kardinalfunktionen. Florian Badt. 2. Juni Universität des Saarlandes, Saarbrücken Florian Badt 2. Juni 2015 Gliederung Grundlegende Problemstellung Ausgangspunkt: Lu = f Approximation der unbekannten Funktion: u(x) u N (x) = N n=0 a nφ n Minimierung des Residuums R(x; a 0, a 1,...,

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

3 Interpolation und Approximation

3 Interpolation und Approximation In dem ersten großen Kapitel beschäftigen wir uns mit der Frage, wie eine Reihe von Daten (z.b. aus physikalischen Messungen, experimentelle Beobachtungen, Börse, etc.) durch eine möglichst einfache Funktion

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 20 Wiederholung: Fehlerbetrachtung.

Mehr

NUMERISCHE MATHEMATIK II 1. (Studiengang Mathematik) Prof. Dr. Hans Babovsky. Institut für Mathematik. Technische Universität Ilmenau WS 2001/2002

NUMERISCHE MATHEMATIK II 1. (Studiengang Mathematik) Prof. Dr. Hans Babovsky. Institut für Mathematik. Technische Universität Ilmenau WS 2001/2002 NUMERISCHE MATHEMATIK II 1 (Studiengang Mathematik) Prof Dr Hans Babovsky Institut für Mathematik Technische Universität Ilmenau WS 2001/2002 1 Korrekturen, Kommentare und Verbesserungsvorschläge bitte

Mehr

10 Der Satz über implizite Funktionen und Umkehrfunktionen

10 Der Satz über implizite Funktionen und Umkehrfunktionen Vorlesung SS 9 Analsis Prof. Dr. Siegfried Echterhoff SATZ ÜBER IMPLIZITE FKT UND UMKEHRFKT Der Satz über implizite Funktionen und Umkehrfunktionen Motivation: Sei F : U R R eine differenzierbare Funktion

Mehr

Klausur,,Algorithmische Mathematik II

Klausur,,Algorithmische Mathematik II Institut für angewandte Mathematik Sommersemester 017 Andreas Eberle, Matthias Erbar / Behrend Heeren Klausur,,Algorithmische Mathematik II Musterlösung 1 (Unabhängige Zufallsvariablen) a) Wir bezeichnen

Mehr

Spline-Räume - B-Spline-Basen

Spline-Räume - B-Spline-Basen Spline-Räume - B-Spline-Basen René Janssens 4. November 2009 René Janssens () Spline-Räume - B-Spline-Basen 4. November 2009 1 / 56 Übersicht 1 Erster Abschnitt: Räume von Splinefunktionen Grundlegende

Mehr

Kapitel 4. Interpolation. 4.1 Allgemeines Normen von Funktionen

Kapitel 4. Interpolation. 4.1 Allgemeines Normen von Funktionen Kapitel 4 Interpolation 4 Allgemeines Nähere Funktion/Daten durch einfache Funktionen (eg Polynome) an Brauchbar für: - Integration - Differentiation [zb f(x) sei durch Polynom p(x) approximiert, F(x)

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

Höhere Mathematik I für die Fachrichtung Physik. Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtung Physik. Lösungsvorschläge zum 12. Übungsblatt Institut für Analysis WS07/8 Prof. Dr. Dirk Hundertmark 6..08 Dr. Michal Je Höhere Mathematik I für die Fachrichtung Physik Lösungsvorschläge zum. Übungsblatt Aufgabe 68: a Es sei c irgendeine Zahl zwischen

Mehr

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018 Propädeutikum 2018 24. September 2018 Darstellung Rechengesetze Erweiterung der reellen Zahlen um eine imaginäre Einheit. Ursprung: Lösung der Gleichung x 2 + 1 = 0 Komplexe Zahlen C := {a + i b a, b R}

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

A U F G A B E N A N A L Y S I S. 11. Vorlesung Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion x, x 0, stetig bei x 0 = 5 ist.

A U F G A B E N A N A L Y S I S. 11. Vorlesung Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion x, x 0, stetig bei x 0 = 5 ist. A U F G A B E N A N A L Y S I S. Vorlesung. Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion, 0, stetig bei 0 = 5 ist. Lösung: Es sei 5 < ɛ. () Daraus folgt 5 ɛ < < 5 + ɛ () oder Folglich gilt

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange.

Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange. Angewandte Mathematik Ing.-Wiss., HTWdS Dipl.-Math. Dm. Ovrutskiy Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange. Aufgabe 1 Approximieren Sie cos(x) auf [ /, /] an drei Stützstellen

Mehr

Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) = sin(πx) und geben die folgenden Stützstellen und Stützwerte vor:

Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) = sin(πx) und geben die folgenden Stützstellen und Stützwerte vor: 5 Splineinterpolation Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) sin(πx) und geben die folgenden Stützstellen und Stützwerte vor: x i 3 f i Damit ist n 5, h Forderung

Mehr

1/26. Integration. Numerische Mathematik 1 WS 2011/12

1/26. Integration. Numerische Mathematik 1 WS 2011/12 1/26 Integration Numerische Mathematik 1 WS 2011/12 Notation 2/26 Die Abbildung I b a : C([a, b]) R gegeben durch Ia b (f ) := beschreibt die Integration. b a f (x)dx, Um das Integral I(f ) zu approximieren

Mehr

Musterlösungen zu Blatt 15, Analysis I

Musterlösungen zu Blatt 15, Analysis I Musterlösungen zu Blatt 5, Analysis I WS 3/4 Inhaltsverzeichnis Aufgabe 85: Konvergenzradien Aufgabe 86: Approimation von ep() durch Polynome Aufgabe 87: Taylorreihen von cos 3 und sin Aufgabe 88: Differenzenquotienten

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3.

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3. Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 7.7.6 Aufgabe N (LR-Zerlegung mit Pivotisierung) Gegeben seien 6 8 A = 8 6 R und b = 6 R. a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung.

Mehr

Name: Matrikel-Nr.: 1

Name: Matrikel-Nr.: 1 Name: Matrikel-Nr.: 1 2 Name: Matrikel-Nr.: 3 Aufgabe 1. Zeigen Sie per vollständiger Induktion, dass für alle n N gilt: n k=1 k(k + 1) 2 = n(n + 1)(n + 2). 6 3 Punkte 4 Name: Matrikel-Nr.: 5 Aufgabe 2.

Mehr

19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. .

19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. . Universität Erlangen-Nürnberg Department Mathematik PD Dr Markus Bause Numerik I 9 Januar A Gegeben sei die Matrix A = a Führen Sie eine Zeilenskalierung der Matrix durch Klausur b Bestimmen Sie mit Hilfe

Mehr

Themen Lagrange-Interpolation Hermite-Interpolation. Splines. Bézier-Kurven. 5 Interpolation. Interpolation Die Lagrangesche Interpolationsaufgabe

Themen Lagrange-Interpolation Hermite-Interpolation. Splines. Bézier-Kurven. 5 Interpolation. Interpolation Die Lagrangesche Interpolationsaufgabe 5 Themen Lagrange- Bézier-Kurven saufgabe sformel Der sfehler 5.1 saufgabe È n = Raum der reellen Polynome vom Grad n. saufgabe sformel Der sfehler 5.1 saufgabe È n = Raum der reellen Polynome vom Grad

Mehr

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2.

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2. 1. Aufgabe 8 Punkte Geben Sie die Bereiche, auf denen die Funktion f : R R mit f (x) = (x + 1) e x monoton wachsend oder fallend ist, an, und untersuchen Sie die Funktion auf lokale und globale Extrema.

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

Spline-Interpolation

Spline-Interpolation Spline-Interpolation Tim Schmölzer 20 November 2009 Tim Schmölzer Spline-Interpolation 20 November 2009 1 / 38 Übersicht 1 Vorbemerkungen 2 Lösbarkeit des Interpolationsproblems 3 Stabilität der Interpolation

Mehr

Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form

Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form 3. Polynome 3.1 Definition und Grundlagen Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0,

Mehr

2 Tschebyscheff-Approximation durch Polynome

2 Tschebyscheff-Approximation durch Polynome Approximationstheorie 71 2 Tschebyscheff-Approximation durch Polynome 2.1 Tschebyscheff-Polynome In diesem Abschnitt: explizit lösbare Tschebyscheff-Approximationsprobleme durch Polynome. Bezeichnungen:

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016 Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.

Mehr

ist (oder besser Abspalten von Linearfaktoren beschäftigen. Zu einem beliebigen Körper K betrachten wir die Menge (j,k) N N j+k=n

ist (oder besser Abspalten von Linearfaktoren beschäftigen. Zu einem beliebigen Körper K betrachten wir die Menge (j,k) N N j+k=n 8. Polynomringe Das Umgehen mit Polynomen, d.h. mit Ausdrücken der Form a 0 + a 1 x + a 2 x 2 +... + a n x n ist aus der Schule vertraut, falls die Koeffizienten a 0,..., a n ganze oder rationale oder

Mehr

Der Satz von Taylor. Kapitel 7

Der Satz von Taylor. Kapitel 7 Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem

Mehr

Lösung zur Serie 8. x + 2x 2 sin(1/x), falls x 0, f(x) := 0, falls x = 0. = lim

Lösung zur Serie 8. x + 2x 2 sin(1/x), falls x 0, f(x) := 0, falls x = 0. = lim Lösung zur Serie 8 Aufgabe 40 Wir zeigen in dieser Aufgabe, dass die Voraussetzung dass die Funktion in einer kleinen Umgebung injektiv sein muss, beim Satz über die Umkehrfunktion notwendig ist. Hierzu

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München WiSe 07 / 08 Institut für Informatik Univ-Prof Dr Hans-Joachim Bungartz Michael Obersteiner Philipp Samfass Numerisches Programmieren, Übungen Musterlösung 3 Übungsblatt:

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 22 3. Funktionen. Grenzwerte.

Mehr

Komplexe Zahlen. Bemerkungen. (i) Man zeigt leicht, dass C mit diesen beiden Operationen

Komplexe Zahlen. Bemerkungen. (i) Man zeigt leicht, dass C mit diesen beiden Operationen Komplexe Zahlen Da für jede reelle Zahl x R gilt dass x 0, besitzt die Gleichung x + 1 = 0 keine Lösung in R bzw. das Polynom P (x) = x + 1 besitzt in R (!) keine Nullstelle. Dies führt zur Frage, ob es

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Die Interpolationsaufgabe besteht darin, eine (einfache) Funktion u n U n zu finden,

Die Interpolationsaufgabe besteht darin, eine (einfache) Funktion u n U n zu finden, Kapitel 3 Interpolation 31 Einführung Bemerkung 31 Motivation, Aufgabenstellung Gegeben seien eine Funktion f C([a,b]) und x i [a,b], i = 0,n, mit a x 0 < x 1 < < x n b (31) Die Interpolationsaufgabe besteht

Mehr

11. Darstellung von Kurven und Flächen

11. Darstellung von Kurven und Flächen H.J. Oberle Approximation WS 23/4. Darstellung von Kurven und Flächen Bézier Kurven. Unser Ziel ist es, polynomiale Kurven auf dem Rechner möglichst effizient darzustellen. Hierzu nutzen wir die Basisdarstellung

Mehr

Thema 5 Differentiation

Thema 5 Differentiation Thema 5 Differentiation Definition 1 Sei f : D R. Dann ist f im Punkt x 0 differenzierbar, falls f(x) f(x 0 ) x x 0 x x 0 auf der Menge D \ {x 0 } existiert. Der Limes ist dann die Ableitung von f im Punkt

Mehr

Analysis I Lösung von Serie 9

Analysis I Lösung von Serie 9 FS 07 9.. MC Fragen: Ableitungen (a) Die Figur zeigt den Graphen einer zweimal differenzierbaren Funktion f. Was lässt sich über f, f und f sagen? Nichts Die Funktion f ist positiv. Die Funktion f ist

Mehr

Mathematik IT 3 (Analysis)

Mathematik IT 3 (Analysis) Mathematik IT Analsis Hausaufgaben Blatt abzugeben bis Beginn der Vorlesung am 7 Aufgabe HA: 6 Punkte Gegeben sei die Funktion f : R R mit f = sin a Bestimmen Sie die Talor-Reihe T zu f mit dem Entwicklungspunkt

Mehr

a 0 +a 1 x+a 2 x n=0 a n x n := lim

a 0 +a 1 x+a 2 x n=0 a n x n := lim 1 Taylor-Entwicklung 1.1 Potenzreihen Def.: Ein Ausdruck der Form a 0 +a 1 +a +... a n n := lim k k a n n, (1) mit einer (unendlichen) Folge reeller Konstanten a 0,a 1,a,... ( Koeffizienten ) und einer

Mehr

7. Einige Typen von speziellen Funktionen [Kö 8]

7. Einige Typen von speziellen Funktionen [Kö 8] 39 7. Einige Typen von speziellen Funktionen [Kö 8] 7. Analytische Funktionen [Kö 7.3, 4.] Definition. Es sei D C, f : D C und z 0 D ein Häufungspunkt von D. Die Funktion f heißt im Punkt z 0 analytisch,

Mehr

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c) Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser

Mehr

Klausur zur Analysis I WS 01/02

Klausur zur Analysis I WS 01/02 Klausur zur Analysis I WS 0/0 Prof. Dr. E. Kuwert. Februar 00 Aufgabe (4 Punkte) Berechnen Sie unter a) und b) jeweils die Ableitung von f für x (0, ): a) f(x) = e sin x b) f(x) = x α log x a) f (x) =

Mehr

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1 Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x

Mehr

Orthogonalpolynome Einführung, Eigenschaften und Anwendungen

Orthogonalpolynome Einführung, Eigenschaften und Anwendungen Anna Weller Orthogonalpolynome Einführung, Eigenschaften und Anwendungen 1 Orthogonalpolynome Einführung, Eigenschaften und Anwendungen Anna Weller Seminar zur Numerik im SS 2018, Universität zu Köln 10.

Mehr

KAPITEL 10. Numerische Integration

KAPITEL 10. Numerische Integration KAPITEL 10. Numerische Integration 10.1 Einleitung Sei Es gilt I Ĩ = b I = b a a f(x) f(x) dx f(x) dx, Ĩ = b b a f(x) dx. a f(x) f(x) dx (b a) f f. I Ĩ I (b a) f f b a f(x) dx = ba f dx b a f(x) dx f f

Mehr

Mathematik I HM I A. SoSe Variante A

Mathematik I HM I A. SoSe Variante A Prof. Dr. E. Triesch Mathematik I SoSe 08 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die Antworten

Mehr

Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen

Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen Kapitel XII Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen 53 Implizite Funktionen und allgemeine partielle Differenzierbarkeit 54 Der Umkehrsatz 55 Lokale Extrema unter Nebenbedingungen,

Mehr

Modulprüfung Analysis I für Ingenieurwissenschaften

Modulprüfung Analysis I für Ingenieurwissenschaften Technische Universität Berlin WiSe 4/5 Fakultät II Institut für Mathematik 20. Februar 205 Doz.: Fackeldey, Guillemard, Penn-Karras Ass.: Beßlich, Winkert Modulprüfung Analysis I für Ingenieurwissenschaften

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Übungen zur Vorlesung Lineare Algebra II, SoSe 2016, Blatt 1

Übungen zur Vorlesung Lineare Algebra II, SoSe 2016, Blatt 1 Übungen zur Vorlesung Lineare Algebra II, SoSe 216, Blatt 1 Mündliche Aufgaben Die Aufgaben aus diesem Blatt bestehen zu einem großen Teil aus den Aufgaben von Blatt 13 der LA1. Sie dienen vor allem der

Mehr

Übungen zur Diskreten Mathematik I Blatt 1

Übungen zur Diskreten Mathematik I Blatt 1 1 Blatt 1 Aufgabe 1 Überprüfen Sie, ob die folgenden Aussagen Tautologien sind (i) (A B) (( A) ( B)), (ii) (A B) (( A) ( B)), (iii) ((A B) C) ((A C) (B C)), (iv) ((A B) C) ((A C) (B C)), (v) (A = B) ((

Mehr

Interpolation. Heinrich Voss. TUHH Heinrich Voss Kapitel / 49.

Interpolation. Heinrich Voss. TUHH Heinrich Voss Kapitel / 49. Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute for Numerical Simulation TUHH Heinrich Voss Kapitel 2 2010 1 / 49 Interpolationsproblem Gegeben seien eine Funktion Φ (x; a 1,...,

Mehr

Komplexe Zahlen. Darstellung

Komplexe Zahlen. Darstellung Komplexe Zahlen Die Zahlenmengen, mit denen wir bis jetzt gearbeitet haben lassen sich zusammenfassen als N Z Q R Die natürlichen Zahlen sind abgeschlossen bezüglich der Operation des Addierens. Das heisst

Mehr

Kapitel 4: Interpolation Sei U eine Klasse von einfach strukturierten Funktionen, z.b.

Kapitel 4: Interpolation Sei U eine Klasse von einfach strukturierten Funktionen, z.b. Kapitel 4: Interpolation Sei U eine Klasse von einfach strukturierten Funktionen, z.b. - Polynome, - rationale Funktionen, - trigonometrische Polynome, - Splines. Interpolationsproblem 4: Sei f : [a,b]

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 014 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 2008/09) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 9. November 2008) Die

Mehr

Numerik für Ingenieure I Wintersemester 2008

Numerik für Ingenieure I Wintersemester 2008 1 / 33 Numerik für Ingenieure I Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 16.1.2009 2 / 33 Wiederholung Polynom Interpolation Vandermonde Ansatz Newton Interpolation: Beispiel

Mehr

Legendre Polynome. 1 2 n n! d n (( P n (x) P m (x)dx = 0 für m n.

Legendre Polynome. 1 2 n n! d n (( P n (x) P m (x)dx = 0 für m n. Legendre Polynome Sei R[X] der Raum der Polynomfunktionen. Die Legendre Polynome P n R[X] sind definiert durch P n (x) = 1 d n (( x 2 1 ) n). dx n (a) P n hat genau n paarweise verschiedene Nullstellen

Mehr

Konvergenz interpolierender Polynome

Konvergenz interpolierender Polynome Technische Universität Berlin Institut für Mathematik Konvergenz interpolierender Polynome Seminar Differentialgleichungen im Sommersemester 2012 bei Prof. Dr. Etienne Emmrich vorgelegt von David Breiter

Mehr

Kapitel 3 Der Fundamentalsatz der Algebra

Kapitel 3 Der Fundamentalsatz der Algebra Kapitel 3 Der Fundamentalsatz der Algebra Dieser berühmte Satz wurde erstmals von C.F. Gauß 1801 in seiner Disseration bewiesen. Satz 3.1. Jedes nichtkonstante, komplexe Polynom n-ten Grades p(z) = n a

Mehr

13 Polynome und Nullstellen

13 Polynome und Nullstellen 60 II. Differentialrechnung 13 Polynome und Nullstellen Lernziele: Resultat: Zwischenwertsatz Methoden: Raten von Nullstellen, Euklidischer Algorithmus, Horner-Schema Kompetenzen: Bestimmung von Nullstellen

Mehr

Lösung - Serie 10. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Berechnen Sie die Partialbruchzerlegung von

Lösung - Serie 10. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Berechnen Sie die Partialbruchzerlegung von D-MAVT/D-MATL Analysis I HS 8 Dr. Andreas Steiger Lösung - Serie MC-Aufgaben (Online-Abgabe). Berechnen Sie die Partialbruchzerlegung von + +. (a) + + + ( ). (b) + + + + ( ). (c) + + + + ( ). (d) + + +

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

3.5 Schnelle Fouriertransformation (FFT, DFT)

3.5 Schnelle Fouriertransformation (FFT, DFT) 3.5 Schnelle Fouriertransformation (FFT, DFT) 3.5.1 Grundlagen Ein Polynom P = i a ix i C[x] vom Grad n ist eindeutig durch seine Koeffizienten a i bestimmt, d.h. man hat eine Bijektion {Polynome C[x]

Mehr

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mathematik 2 für Ingenieure (Sommersemester 216) Kapitel 11: Potenzreihen und Fourier-Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0.

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. Kapitel 5: Die Einheitengruppe von Z/Z und Primitivwurzeln modulo In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. 16

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. Dezember 2011)

Mehr

Approximationstheorie und Approximationspraxis

Approximationstheorie und Approximationspraxis Approximationstheorie und Approximationspraxis Martin Wagner Bergische Universität Wuppertal Fachbereich C - Mathematik und Naturwissenschaften AG Optmierung und Approximation 3. Februar 2010 1 / 20 Motivation

Mehr