Numerische Mathematik für die Fachrichtung Informatik und für Ingenieurwesen SS 2005

Größe: px
Ab Seite anzeigen:

Download "Numerische Mathematik für die Fachrichtung Informatik und für Ingenieurwesen SS 2005"

Transkript

1 UNIVERSITÄT KARLSRUHE TH Institut für Praktische Mathematik Prof. Dr. Rudolf Scherer Dil.-Math. Heike Stoll Numerische Mathematik für die Fachrichtung Informatik und für Ingenieurwesen SS 5 Lösung zum 4. Übungsblatt 3. Juni 5 Aufgabe : schriftlich zu bearbeiten a Bestimmen Sie a,..., a 7 R so, dass die Funktion s a : [, ] R definiert durch a + a + a + a 3 3 s a a 4 4 a 5 + a 6 + a 7 3 ein kubischer Sline bezüglich des Gitters : {,,, } mit den Randbedingungen s a und s a 6 ist. b Entwickeln Sie das Polynom nach Tschebyscheff-Polynomen. Lösung: a Für einen kubischen Sline muss gelten: s [j, j] P 3, j,..., n s C [, n ] Hier ist n 3 und,,, 3. Damit folgt s : a + a + a + a 3 3 s : a 4 4 P 3 s 3 : a 5 + a 6 + a 7 3 Untersuchung der Anschlussstellen j, j,, d.h. es muss gelten Die Ableitungen von s, s und s 3 ergeben sich zu Damit folgt für die Anschlussstellen j, j, : s j j s j+ j s j j s j+ j j j j+ j a 4 s a + a + 3a 3, a + 6a 3 s , + s 3 a 5 + a 6 + 3a 7, 3 a 6 + 6a 7 j : s a a + a a 3 s s a a + 3a 3 s

2 a 6a j : s s 3 4 s 4 s 3 a 5 a a 6 a Randbedingungen: s a s a a + 4a 8a 3 7 s a 6 s 3 a 5 + a 6 + a Die Gleichungen, 7, und 3 liefern ein LGS für a, a, a, a 3 : a a a a a a a a a a a a a a a a a a a a a a a a a a a a 3 4 a 8 a 6 a a 3 Aus Gleichung 8 erhalten wir nun den Wert für a 7 a 5 + a 6 + a a 7 6 a 7 6. Damit ist der kubische Sline s a gegeben durch: s a b Für die Tschebyscheff-Polynome gilt: T, T, T n+ T n T n für n Damit erhalten wir die Tschebyscheff-Polynome bis n 6 zu: T T T T T T T

3 Da nun gelten soll 6 j a jt j erhalten wir ein LGS T a b für die Koeffizienten a j mit a 3 5 a a T 4, a a 3, b a a a 6 6 a a a a a 3 a 4 a 5 a 6 6 a j T j j 8 5/ 7/ 4 3/ / T T 5 4T T 3 5 T + T 8T Aufgabe : schriftlich zu bearbeiten a Gegeben sei die Matri a b A c d Anstelle von A b löse man das Gleichungssystem D AD y D b mit D a, b, c, d >, ad + bc. abcd cd abcd, D ac Die Lösung ergibt sich dann aus D y. Berechnen Sie für a, b., c 99, d. die Konditionszahlen cond Z A und cond Z D AD. b Die Funktion f cot kann durch cot sin cos berechnet werden. Untersuchen Sie die Kondition von f bezüglich einer Störung in, kπ, k Z mit absolutem und relativem Fehler. c f wird mit dem Algorithmus Lösung: y sin, y cos, y y, y 3 y y ausgewertet. Untersuchen Sie die Kondition dieses Algorithmus bezüglich absolutem und relativem Fehler. a Für die gegebenen Werte erhalten wir die Matri A und ihre Inverse zu a b. A c d

4 A d b ad bc c a Die Kondition der Matri A ist mit der Matrinorm N Z A ma i j a ij gegeben durch: cond Z A N Z AN Z A N Z A ma{ a + b, c + d } ma{a + b, c + d} ma{., 99.}. N Z A ma{. +., + 99} 99 cond Z A Die Matri D AD und ihre Inverse ergeben sich aus: D AD abcd cd D AD D A D ad bc a b abcd c d ac abcd d b ad bc c a ac d bcd a bcd a d a abc d abc d a abcd cd Damit erhalten wir die Zeilensummennormen von D AD und ihrer Inversen und die Kondition von D AD : { abc N Z D AD ma + { N Z D A D ad bc ma d + } abc abc a +, a + a + d d d cond Z D AD bcd, d + a. + } bcd a Fazit: Die Kondition des modifizierten Systems ist deutlich besser, als die des ursrünglichen Systems, dessen Lösung man aus der Bedingung D y leicht aus der Lösung des modifizierten Systems berechnen kann. b Es gelten folgende Additionstheoreme: sin cos 9 sin sin cos Damit erhalten wir f sin 9 sin cos sin sin cos sin cos sin cos sin cot Damit können wir z durch z : f definieren. Die Funktion f ist stetig und differenzierbar für kπ, k Z. Die Ableitung der Funktion f ergibt sich mit der Quotientenregel zu f g g h gh h h f sin sin cos cos sin sin 4

5 f sin. Damit erhalten wir den absoluten Fehler ε f ε sin ε 9 cos ε und den relativen Fehler δ f f δ sin cos sin δ 9 Betrachte zuerst die kritischen Punkte kπ, k Z für den absoluten Fehler lim kπ schlecht konditioniert cos und dann die kritischen Punkte kπ, k Z für den relativen Fehler k : lim k kπ : lim kπ sin l Hosital lim cos sin c Fehler bei der Auswertung von y sin: ỹ y + ε y + δ Fehler bei der Auswertung von y cos: ỹ y + ε y + δ Fehler bei der Auswertung von y y : Fehler bei der Auswertung von y 3 y y : sin sin δ sin sin δ. schlecht konditioniert. ε y ε ε und y δ y y y δ y y y y y δ y ε ε y 3 ε + y 3 ε ε y y y y gut konditioniert δ y 3 y δ + y 3 y δ y y δ y y y y 3 y y 3 y y y y δ δ δ y Der Algorithmus ist für y und y klein schlecht konditioniert, was kπ entsricht. Aufgabe 3: mündlich Untersuchen Sie für welche, q die Berechnung der größten Nullstelle von + q mit Hilfe der Formel ϕ, q : + + q gut bzw. schlecht konditioniert ist. Lösung: Wir definieren z durch z : ϕ, q + + q und erhalten dann für den relativen Fehler δ z z ϕ z z δ + ϕ q q [ z δ q + ] [ ] + q z δ + + q q z δ q + q + + q z δ + q + q z δ q + q δ + [ + q] + q + q δ q + q z δ q + q + q δ q + q Gut konditioniert für q >, da gilt: + q und + [ ] + q + q + q + + q + z δ q δ q 5

6 und schlecht konditioniert für q, da dann + q und damit die Verstärkungsfaktoren + q und + + q + q groß werden. Aufgabe 4: mündlich Zeigen Sie, dass die Funktion s α,β : [ 3, ] R definiert durch α s α,β β 3 ein kubischer Sline bezüglich des Gitters : 3,,,, ist. Bestimmen Sie nun α und β so, dass die folgenden Randbedingungen erfüllt sind: a : s 3 und s, b : 3 und, c : s 3 s 8 Lösung: Für einen kubischen Sline muss gelten: s [j, j] P 3, j,..., n s C [, n ] Hier ist n 4 und 3,,, 3, 4. Damit folgt s : α s : s 3 : s 4 : β 3 Untersuchung der Anschlussstellen j, j,, 3, d.h. es muss gelten Die Ableitungen von s, s, s 3 und s 4 ergeben sich zu s j j s j+ j s j j s j+ j j j j+ j s α + + 3, α + 6 s + + 3, + 6 s 3 5 3, 3 6 s β, 4 6β Damit folgt für die Anschlussstellen j, j,, 3 mit, und 3 : j : s α s s α 4 + s 4 + α 6

7 j : j 3 : s s s + 3 s s s s s Nun zur Bestimmung von α und β mit Hilfe der Randbedingungen: a : s 3 s 3 α α + α s s β 9 + β β 7 b : 3 3 α 8 6α α 3 4 6β β c : s 3 8 s 3 α α 8 α 3 s 8 s β 8 β Aufgabe 5: a Zeigen Sie für die Tschebyscheff-Polynome T n, n die Orthogonalitätsbeziehungen d, m n T n T m π, m n. π, m n b Beweisen Sie die dreigliedrige Rekursionsformel für die Tschebyscheff-Polynome: T n+ T n T n, n, T, T c Entwickeln Sie das Polynom q nach Tschebyscheff-Polynomen. Lösung: Die Tschebyscheff-Polynome sind für k,,,... gegeben durch T k cosk arccos. Für die Beweise benötigen wir noch folgende Additionstheoreme: cos cos y cos y + cos + y cos ± y cos cos y sin sin y cos a Das Integral lässt sich mit Hilfe der Substitution t arccos, cos t, d dt Fallunterscheidung liefert nun: + cos 3 d T n T m d cosn arccos cosm arccos π sin t wie folgt umformen: sin t dt π cosnt cosmt cos t cosnt cosmtdt cosnt cosmtdt π 7

8 a m n: b m n : c m n : cosnt cosmtdt [ sinn mt n m cosnt cosmtdt mn b Mit T k cosk arccos folgt k : k : cos ntdt 3 [cosn mt + cosn + mt]dt cosnt cosmtdt mn + ] π sinn + mt sin kπ n + m + cos ntdt T cos arccos cos T cos arccos T k+ cosk + arccos cos dt π [ t + cosk arccos cosarccos sink arccos sinarccos T k sink arccos sinarccos T k cosk arccos cosk arccos cosarccos + sink arccos sinarccos T k + sink arccos sinarccos ] π sin nt n π T k+ + T k T k + T k T k T k+ T k T k c Für die Tschebyscheff-Polynome gilt nach Aufgabenteil b die Rekursionsformel T, T, T n+ T n T n für n. Damit erhalten wir die Tschebyscheff-Polynome bis n 4 zu: T T T T T Aus der Bedingung q 4 j a jt j erhalten wir durch Koeffizientenvergleich ein LGS T a b für die Koeffizienten a j mit T q j, a a a a a 3 a 4, b a a j T j T 4 + T 3 T + 5T 3T

Mathematik IT 3 (Analysis)

Mathematik IT 3 (Analysis) Mathematik IT Analsis Hausaufgaben Blatt abzugeben bis Beginn der Vorlesung am 7 Aufgabe HA: 6 Punkte Gegeben sei die Funktion f : R R mit f = sin a Bestimmen Sie die Talor-Reihe T zu f mit dem Entwicklungspunkt

Mehr

3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen

3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen KAPITEL 3 INTERPOLATION UND APPROXIMATION 4 33 Newtonsche Interpolationsformel / Dividierte Differenzen Das Verfahren von Neville ist unpraktisch, wenn man das Polynom selbst sucht oder das Polynom an

Mehr

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4)

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4) 33 Interpolation 147 33 Interpolation In vielen praktischen Anwendungen der Mathematik treten Funktionen f auf, deren Werte nur näherungsweise berechnet werden können oder sogar nur auf gewissen endlichen

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

1 Worum es geht Jacob Bernoulli stellte die Frage um den Grenzwert von [Downey / Ong / Sellers]: +! = 1

1 Worum es geht Jacob Bernoulli stellte die Frage um den Grenzwert von [Downey / Ong / Sellers]: +! = 1 Hans Walser, [0087a] Das Basler Problem Anregung: P. B., L. und M. G., S. G. Worum es geht Jacob Bernoulli stellte die Frage um den Grenzwert von [Downey / Ong / Sellers]: S = + + + +! = 4 k Bernoulli

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 203 Institut für Analysis 504203 Prof Dr Tobias Lamm Dr Patrick Breuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik Übungsblatt Bestimmen Sie die

Mehr

Lösungsvorschläge zur Klausur

Lösungsvorschläge zur Klausur Lösungsvorschläge zur Klausur für bau, ernen, fmt, IuI, mach, tema, umw, verf Aufgabe : (6 Punkte Rotiert man die Menge { (y,z R 2 y 2π,z cosy } um die z-achse, so ensteht die Fläche F R 3. Bestimmen Sie

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe 1 8 Punkte Es seien eine Kurve K R mit Parametrisierung C : [ π, π] R und ein Vektorfeld g : R R gegeben durch cos t 4y Ct :, gx, y : sin t 1 05 K 05 05 1 15 05 a 3 Punkte Berechnen Sie die Zirkulation

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 3 Institut für Analysis.6.3 Prof. Dr. Tobias Lamm Dr. Patrick reuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik 9. Übungsblatt Ein Heißluftballon

Mehr

Orthogonalpolynome Einführung, Eigenschaften und Anwendungen

Orthogonalpolynome Einführung, Eigenschaften und Anwendungen Anna Weller Orthogonalpolynome Einführung, Eigenschaften und Anwendungen 1 Orthogonalpolynome Einführung, Eigenschaften und Anwendungen Anna Weller Seminar zur Numerik im SS 2018, Universität zu Köln 10.

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 3

Technische Universität München Zentrum Mathematik. Übungsblatt 3 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 3 Hausaufgaben Aufgabe 3. Zeigen Sie mit Hilfe der ɛ-δ-formulierung vgl.

Mehr

Vortragsübung am 25. April 2014

Vortragsübung am 25. April 2014 Seite von 6 Termin: 5. April 04 Vortragsübung am 5. April 04.. Berechnen Sie den Grenzwert lim n ( n + + n + + + ), n indem Sie ihn als Riemann-Summe eines Integrals auffassen... Bestimmen Sie folgende

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

8. Übungsblatt zur Vorlesung Mathematik I für Informatik

8. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sven Herrmann Dipl.-Math. Susanne Pape 8. Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 2009/2010 01./02. Dezember 2009 Gruppenübung

Mehr

Lineare Algebra II 1. Übungsblatt Musterlösung

Lineare Algebra II 1. Übungsblatt Musterlösung Lineare Algebra II 1. Übungsblatt Musterlösung 1. (a) Wir zwigen, dass V mit dieser Skalarmultiplikation die Axiome eines C-Vektorraums erfüllt. Da V ein R-Vektorraum ist, ist (V, +) insbesondere eine

Mehr

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)

Mehr

A U F G A B E N A N A L Y S I S. 11. Vorlesung Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion x, x 0, stetig bei x 0 = 5 ist.

A U F G A B E N A N A L Y S I S. 11. Vorlesung Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion x, x 0, stetig bei x 0 = 5 ist. A U F G A B E N A N A L Y S I S. Vorlesung. Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion, 0, stetig bei 0 = 5 ist. Lösung: Es sei 5 < ɛ. () Daraus folgt 5 ɛ < < 5 + ɛ () oder Folglich gilt

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 11. Übungsblatt. { wachsend fallend

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 11. Übungsblatt. { wachsend fallend UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 8/9 Aufgabe Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Mathematik 2 (Master Sicherheitstechnik)

Mathematik 2 (Master Sicherheitstechnik) Prof. Dr. J. Ruppenthal Wuppertal, 8..9 Mathematik Master Sicherheitstechnik) Übungsblatt 3 Aufgabe 8. a) Es seien Berechnen Sie fg) und ft)gt)dt. b) Berechnen Sie folgende Integrale: ft) t 3 + t it, gt)

Mehr

8. Spezielle Funktionen

8. Spezielle Funktionen H.J. Oberle Differentialgleichungen II SoSe 2013 8. Spezielle Funktionen Spezielle Funktionen (der mathematischen Physik) entstehen zumeist aus Separationsansätzen für PDG bei Vorliegen von Symmetrie-Eigenschaften.

Mehr

g) 1 e x2 h) y = x 1 Aufgabe 4 Man drücke die Oberfläche A eines Zylinders gegebenen Volumens V als Funktion seiner Höhe h aus!

g) 1 e x2 h) y = x 1 Aufgabe 4 Man drücke die Oberfläche A eines Zylinders gegebenen Volumens V als Funktion seiner Höhe h aus! Thema: Thema: Funktionen,Grenzwert, Stetigkeit, Ableitung BT/MT WS 15 Mathematik I Serie 6 www.eah-jena.de/~puhl Aufgabe 1 Bestimmen Sie den jeweils größtmöglichen Definitionsbereich und skizzieren Sie

Mehr

Übungsblatt 1 Musterlösung

Übungsblatt 1 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA234 - SS6 Übungsblatt Musterlösung Aufgabe (Interpolationspolynom) a) Bestimmen Sie die Hilfspolynome L i, i =,,2, für x =, x = 2 und x 2 = 3 nach der Formel

Mehr

Serie 12 - Integrationstechniken

Serie 12 - Integrationstechniken Analysis D-BAUG Dr. Meike Akveld HS 5 Serie - Integrationstechniken. Berechnen Sie folgende Integrale: a e x cos(x dx Wir integrieren zwei Mal partiell, bis wir auf der rechten Seite wieder das Integral

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. SS 6 9.4.6 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum. Übungsblatt Aufgabe

Mehr

Höhere Mathematik III für die Fachrichtung Physik Wintersemester 2016/17. Lösungsvorschlag zu Übungsblatt 5

Höhere Mathematik III für die Fachrichtung Physik Wintersemester 2016/17. Lösungsvorschlag zu Übungsblatt 5 Institut für Analysis Dr. Christoph Schmoeger M.Sc. Jonathan Wunderlich Höhere Mathematik III für die Fachrichtung Physik Wintersemester 6/7..7 Lösungsvorschlag zu Übungsblatt 5 Aufgabe 6: Zeigen Sie mit

Mehr

Nachklausur Analysis I

Nachklausur Analysis I SS 008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Nachklausur Analysis I 07.0.008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

+ x 2 y 2 = f( x 1 ) + f( x 2 ), z 1 + z 2. z 1. a jj + n bjj = SpurA + SpurB ; j=1

+ x 2 y 2 = f( x 1 ) + f( x 2 ), z 1 + z 2. z 1. a jj + n bjj = SpurA + SpurB ; j=1 Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Lineare Abbildungen, Eigenwerte Lösungen Lösungshinweise: a nicht linear, denn zb fα α, αy +, α + αz T α, αy +, α + z

Mehr

Höhere Mathematik I für die Fachrichtung Physik. Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtung Physik. Lösungsvorschläge zum 12. Übungsblatt Institut für Analysis WS07/8 Prof. Dr. Dirk Hundertmark 6..08 Dr. Michal Je Höhere Mathematik I für die Fachrichtung Physik Lösungsvorschläge zum. Übungsblatt Aufgabe 68: a Es sei c irgendeine Zahl zwischen

Mehr

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl

Mehr

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z Aufgabe Zeigen Sie mit vollständiger Induktion: Für alle n N gilt (8 Punkte) n ( + z 2j ) = 2n+, wobei z C, z, eine komplexe Zahl ist Lösung [8 Punkte] Induktionsanfang: n = : ( + z 2j ) = ( + z 2 ) =

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Lösungsvorschläge zur Klausur

Lösungsvorschläge zur Klausur Prüfung in Höhere Mathematik 3 6 Februar 3 Lösungsvorschläge zur Klausur für bau, ernen, fmt, IuI, mach, tema, umw, verf, geod und so weiter ; Aufgabe : Punkte Die Fläche T im R 3 sei gegeben als T : {x,y,z

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Keyl M. Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis ) MA903 http://www-m5.ma.tum.de/allgemeines/ma903 06S Sommersem. 06 Lösungsblatt 8 (3.6.06)

Mehr

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D;

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D; Institut für Geometrie und Praktische Mathematik Höhere Mathematik IV (für Elektrotechniker und Technische Informatiker) - Numerik - SS 2007 Dr. S. Börm, Dr. M. Larin Banach scher Fixpunktsatz Gegeben

Mehr

(x + 2)( x 1) x + 3 Hinweis: Verwenden Sie die Methode der kritischen Punkte! (5) Welche der folgenden 6 Aussagen sind wahr, welche sind falsch?

(x + 2)( x 1) x + 3 Hinweis: Verwenden Sie die Methode der kritischen Punkte! (5) Welche der folgenden 6 Aussagen sind wahr, welche sind falsch? Übungen und Klausuren zu Mathematik A, WS 1999/; Erstellungsdatum: 11. Februar 1999-1 - 13 1. Übungsblatt zu Mathematik A, WS 1999/ (1) Bestimmen Sie L = {x R : x 7x + 1 }. () Für welche reelle x ist x

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Technische Numerik Numerische Integration

Technische Numerik Numerische Integration W I S S E N T E C H N I K L E I D E N S C H A F T Technische Numerik Numerische Integration Peter Gangl Institut für Numerische Mathematik, Technische Universität Graz c Alle Rechte vorbehalten. Nachdruck

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Numerische Mathematik

Numerische Mathematik Numerische Mathematik SS 999 Augabe 6 Punkte Das Integral I ln d soll numerisch bis au eine Genauigkeit von mindestens - approimiert werden. a Wie groß muss die Anzahl N der Teilintervalle sein damit mit

Mehr

Zweite Prüfung zur Vorlesung

Zweite Prüfung zur Vorlesung Prof O Scherzer P Elbau, L Mindrinos Numerische Mathematik Fakultät für Mathematik Universität Wien 4 Oktober 23 Zweite Prüfung zur Vorlesung Numerische Mathematik Erlaubte Hilfsmittel: Schriftliche Unterlagen

Mehr

osungen zu Blatt 12 Thema: Rationale und trigonometrische Funktionen

osungen zu Blatt 12 Thema: Rationale und trigonometrische Funktionen Musterl osungen zu Blatt Kleingruppen zur Service-Veranstaltung Mathematik I f ur Ingenieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 5.. Thema: Rationale und trigonometrische Funktionen

Mehr

K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung

K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung K A N T O N S S C H U L E I M L E E W I N T E R T H U R MATURITÄTSPRÜFUNGEN 06 Klasse: 4g Profil: MN Lehrperson: Rolf Kleiner MATHEMATIK Zeit: 3 Stunden Erlaubte Hilfsmittel: Grafiktaschenrechner ohne

Mehr

Analysis I. Arbeitsblatt 25. Übungsaufgaben. π x sin x 2 dx.

Analysis I. Arbeitsblatt 25. Übungsaufgaben. π x sin x 2 dx. Prof. Dr. H. Brenner Osnabrück WS 23/24 Analysis I Arbeitsblatt 25 Übungsaufgaben Aufgabe 25.. Berechne das bestimmte Integral π x sin x 2 dx. In den folgenden Aufgaben, bei denen es um die Bestimmung

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

A1: Diplomvorprüfung HM II/III WS 2007/

A1: Diplomvorprüfung HM II/III WS 2007/ A: Diplomvorprüfung HM II/III WS 7/8 6..8 Aufgabe. (+68 Punkte) a) Ist die Reihe k+ k k 5k konvergent oder divergent? Begründen Sie ihre Aussage! b) Führen Sie eine Partialbruchzerlegung für n+ durch und

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5. = 4 + i, z 2. = i

C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5. = 4 + i, z 2. = i ETH-Aufnahmeprüfung Herbst 18 Mathematik I (Analysis) D C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5 α. A 1 Aufgabe [1 Punkte] Geben Sie die Lösungsmenge folgender Gleichungen in!

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 06 Prof. Dr. Matthias Lesch, Regula Krapf Übungsblatt 8 Aufgabe 7 (8 Punkte). Ein Parallelogramm ist ein Rechteck ABCD mit Seiten a, b, c, d wie unten dargestellt, mit

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 28/29 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

3. Approximation von Funktionen und Extremwertprobleme im R n

3. Approximation von Funktionen und Extremwertprobleme im R n 3. Approximation von Funktionen und Extremwertprobleme im R n Wie in D ist es wichtig Funktionen mit mehreren Variablen durch Polynome lokal approximieren zu können. Polynome lassen sich im Gegensatz zu

Mehr

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018 Propädeutikum 2018 24. September 2018 Darstellung Rechengesetze Erweiterung der reellen Zahlen um eine imaginäre Einheit. Ursprung: Lösung der Gleichung x 2 + 1 = 0 Komplexe Zahlen C := {a + i b a, b R}

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Lösungsvorschläge zur Klausur für bau, ernen, fmt, geod, mach, medtech, tema, umw, verf, verk )

Lösungsvorschläge zur Klausur für bau, ernen, fmt, geod, mach, medtech, tema, umw, verf, verk ) Lösungsvorschläge zur Klausur für bau, ernen, fmt, geod, mach, medtech, tema, umw, verf, verk Aufgabe : ( Punkte Gegeben ist der Körper K {(x,y,z R 3 x 2 + y 2 + z 2 ; x,y,z } (a Geben Sie K in Kugelkoordinaten

Mehr

Aus dieser Darstellung lassen sich der Real- und Imaginärteil von z ablesen, man erhält. Re (z) = Im (z) = ,5 3 M 1. = y z x 2 + y 2.

Aus dieser Darstellung lassen sich der Real- und Imaginärteil von z ablesen, man erhält. Re (z) = Im (z) = ,5 3 M 1. = y z x 2 + y 2. Aufgabe (8 Punkte (a der Realteil von z +i 4 i zu bestimmen. z + i ( + i(4 + i + i 4 i + i.,5 Aus dieser Darstellung lassen sich der Real- und Imaginärteil von z ablesen, man erhält Re (z Im (z.,5 (b (b

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Th. Risse, HSB: MAI WS05 1

Th. Risse, HSB: MAI WS05 1 Th. Risse, HSB: MAI WS05 1 Einige Übungsaufgaben zur analytischen Geometrie & linearen Algebra viele weitere Übungsaufgaben mit Lösungen z.b. in Brauch/Dreyer/Haacke, Papula, Stingl, Stöcker, Minorski

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 10. Februar 2016 Institut für Numerische Mathematik Prof. Dr. G. Matthies, Dr. G. Scheithauer Klausur Mathematik I für Studierende der Fakultät Maschinenwesen Name: Matrikelnummer:

Mehr

Lösung zum 6. Übungsblatt Lineare Algebra für Ingenieure

Lösung zum 6. Übungsblatt Lineare Algebra für Ingenieure Technische Universität Berlin WS / Fakultät II Institut f. Mathematik Seiler Rambau Wiehe Gentz Scherfner Körner Schulz-Baldes Schwarz Lösung zum 6. Übungsblatt Lineare Algebra für Ingenieure http://www.math.tu-berlin.de/hm/linalg/aktuell/main.html

Mehr

Tutorium Mathematik I M WM Lösungen

Tutorium Mathematik I M WM Lösungen Tutorium Mathematik I M WM Lösungen 3... Durch mehrmaliges Anwenden der Regel von de l Hospital ergibt sich: e e sin() e cos()e sin() sin() cos() e + sin()e sin() cos ()e sin() sin() e + cos()e sin() +

Mehr

EINFÜHRUNG IN DIE MATHEMATIK 1 MA 9935, WINTERSEMESTER 2017/18. g = g 1 + g 2 = g 1 + g 2

EINFÜHRUNG IN DIE MATHEMATIK 1 MA 9935, WINTERSEMESTER 2017/18. g = g 1 + g 2 = g 1 + g 2 EINFÜHRUNG IN DIE MATHEMATIK MA 9935, WINTERSEMESTER 07/8 OLIVER DEISER UND CAROLINE LASSER. Übungsaufgabe 8 aus. Gegeben ist eine Gerade g : R R und x, x R mit x x. Zeigen Sie, dass sich g eindeutig als

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analysis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 7 4.5.7 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik I Wiederholung Mathematik für Bauingenieure Wiederholungsaufgaben: Mathematik I Aufgabe : Für die Aussagenverbindung T = (A B) ( A) gebe man

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

MATHEMATIK K1. Aufgabe F Punkte (max) Punkte. Gesamtpunktzahl /30 Notenpunkte

MATHEMATIK K1. Aufgabe F Punkte (max) Punkte. Gesamtpunktzahl /30 Notenpunkte MATHEMATIK K1.06.015 Aufgabe 1 5 6 7 8 9 10 F Punkte (max 11 1 1 Punkte Gesamtpunktzahl /0 Notenpunkte Für vorbildliche Darstellung wird ein Extrapunkt vergeben. (1 Bestimmen sie die ersten beiden Ableitungen

Mehr

2 Tschebyscheff-Approximation durch Polynome

2 Tschebyscheff-Approximation durch Polynome Approximationstheorie 71 2 Tschebyscheff-Approximation durch Polynome 2.1 Tschebyscheff-Polynome In diesem Abschnitt: explizit lösbare Tschebyscheff-Approximationsprobleme durch Polynome. Bezeichnungen:

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Übungs- und Scheinklausur

Höhere Mathematik II für die Fachrichtung Physik. Übungs- und Scheinklausur Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 15.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc., Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 9. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 9. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 203/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 9. Übungsblatt Aufgabe

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 4. Juni 203 *Aufgabe. Bestimmen Sie die allgemeinen Lösungen der Differentialgleichungen (a) y 2y + y2 = (b) y + ( 2 y)y = 0 Lösung: (a) Bei dieser Differentialgleichung

Mehr

= 3 e e x 1 + 2x 2. + x 2. = x. x 1 = 5 x 2 = 2

= 3 e e x 1 + 2x 2. + x 2. = x. x 1 = 5 x 2 = 2 Lösungsvorschläge zu Blatt 7: ) x ( ) 3 3 e + e ( ) ( ) ( )! x x + x + x x + x x x Wir haben hier also zwei verschiedene Darstellungen für einen Vektor, da zwei verschiedene Basen verwendet werden. b b

Mehr

Mathematik für Anwender I. Beispielklausur 3 mit Lösungen

Mathematik für Anwender I. Beispielklausur 3 mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur mit en Dauer: Zwei volle Stunden + 0 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1 Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 10. y(x) = Ae ( 3+2i)x + Be ( 3 2i)x. λ 2 2λ + 1 = (λ 1) 2. y(x) = Ae x + Bxe x.

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 10. y(x) = Ae ( 3+2i)x + Be ( 3 2i)x. λ 2 2λ + 1 = (λ 1) 2. y(x) = Ae x + Bxe x. D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi Musterlösung 10 1. a) Das charakteristische Polynom ist λ 2 + λ 2 = (λ + 2)(λ 1) mit den beiden verschiedenen Nullstellen λ = 2 λ = 1. Die allgemeine Lösung

Mehr

12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx

12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx 12.2 Gauß-Quadratur Erinnerung: Mit der Newton-Cotes Quadratur I n [f] = n g i f(x i ) I[f] = i=0 b a f(x) dx werden Polynome vom Grad n exakt integriert. Dabei sind die Knoten x i, 0 i n, äquidistant

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

Mathematik Tutorium. x 2

Mathematik Tutorium. x 2 Mathematik Tutorium Fakultät Grundlagen Termin Algebra Aufgabe : Vereinfachen Sie die folgenden Ausdrücke: a) 5 ) : ) 5 b) n+ n c) an+ a n a n+ + a n d) ) ) : ) ) e) 5 f) 5 z + z 5 Aufgabe : Berechnen

Mehr

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2 fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt Aufgabe Induktion). a) Beweisen Sie, dass + 3 + 5 +... + n )) ein perfektes Quadrat genauer n ) ist. b) Zeigen Sie: + + +...

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 212/13 Institut für Analysis 14.1.213 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Aufgabe 1 Höhere Mathematik I für die Fachrichtung Physik 12. Übungsblatt Sei

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 14

Technische Universität Berlin Fakultät II Institut für Mathematik SS 14 Technische Universität Berlin Fakultät II Institut für Mathematik SS 4 Doz.: Blath, Gündel vom Hofe Ass.: Altmann, Fackeldey, Hammer 8. Okt 4 Oktober Klausur Analysis I für Ingenieure Name:....................................

Mehr

H.J. Oberle Approximation WS 2013/14

H.J. Oberle Approximation WS 2013/14 HJ Oberle Approximation WS 3/4 Euklidische Räume 6 L - Approximation Im Folgenden sei (R,, ) ein Euklidischer Vektorraum, also ein reeller, linearer Raum mit einem Skalarprodukt Bekanntlich lauten die

Mehr