2 Tschebyscheff-Approximation durch Polynome
|
|
|
- Bärbel Meissner
- vor 7 Jahren
- Abrufe
Transkript
1 Approximationstheorie 71 2 Tschebyscheff-Approximation durch Polynome 2.1 Tschebyscheff-Polynome In diesem Abschnitt: explizit lösbare Tschebyscheff-Approximationsprobleme durch Polynome. Bezeichnungen: p, q : Polynome x : unabhängige Variable im Reellen, z : unabhängige Variable im Komplexen, P n : Menge der Polynome vom Grad n, E n [a, b](f) : Minimalabstand von P n zu f auf dem Intervall [a, b]. 2 Tschebyscheff-Approximation durch Polynome TU Bergakademie Freiberg, WS 2008/09
2 Approximationstheorie 72 Folgendes Invarianzprinzip gilt für das symmetrische Intervall [a, b]. Satz 2.1 Sei f in [ 1, 1] symmetrisch bzw. antisymmetrisch, d.h. es gelte f( x) = f(x) bzw. f( x) = f(x). Dann ist auch die Bestapproximation an f aus P n symmetrisch bzw. antisymmetrisch. Eine Verallgemeinerung hiervon ist Satz 2.2 (Meinardus, 1963) Sei E ein normierter Raum, V eine konvexe Existenzmenge in E und ι : E E eine lineare involutorische Abbildung, d.h. ι ι sei die identische Abbildung. Ferner sei ι(v ) = V und ιf = f für alle f E: (a) Ist u eine Bestapproximation an f aus V, so ist ιu dort eine Bestapproximation an ιf. (b) Ist f invariant unter ι, also ιf = f, dann gibt es eine invariante Bestapproximation u an f aus V, also u = ιu.
3 Approximationstheorie 73 Wir fassen hier die (eigentlich bekannten) wichtigsten Eigenschaften der Tschebyscheff-Polynome zusammen. Satz 2.3 (a) Durch T n (x) = cos(n arccos x), x [ 1, 1], ist für jedes n N 0 ein Polynom mit Grad n mit führendem Koeffizient 2 n 1 definiert. (b) Die Polynome genügen der Rekursionsbeziehung T n+1 (x) = 2xT n (x) T n 1 (x), n 1, T 0 (x) = 1, T 1 (x) = x. (c) Die Polynome erfüllen die Symmetrierelation T n ( 1) = ( 1) n T n (x).
4 Approximationstheorie 74 Satz 2.4 Sei n 1 und p die Bestapproximation an f(x) = x n aus P n 1 über I = [ 1, 1]. Dann ist die zugehörige Fehlerkurve gegeben durch x n p(x) = 2 n+1 T n (x) und es gilt E n 1 (x n ) = x n p(x) = 2 n+1. Mit derselben Methode läßt sich für jedes Polynom aus P n die Bestapproximation aus P n 1 auf [ 1, 1] bestimmen. Beispiel 19: Man bestimme die Bestapproximation aus P 4 über [ 1, 1] an das Polynom p(x) = 2x 5 x 3 + 3x 2 1.
5 Approximationstheorie 75 Auch die Bestapproximation analytischer Funktionen läßt sich mit Tschebyscheff-Polynomen bestimmen. Beispiel 20: Man zeige, dass die Bestapproximation aus P n an die Funktion f(x) = b k T 3 k(x) k=0 unter den Voraussetzungen b k > 0 und b k < in [ 1, 1] stets die Partialsumme bis k = m mit 3 m n < 3 m+1 ist. Außerdem zeige man E n (f) = k 3 k >n b k.
6 Approximationstheorie 76 Zusammenhang mit trigonometrischen Polynomen Die Transformation x = cos ϑ induziert mittels eine bijektive Abbildung f(x) g(ϑ) = f(cos ϑ) C[ 1, 1] { g C[0, 2π] : g(ϑ) = g( ϑ), g 2π-periodisch }. Insbesondere ergibt sich die Zuordnung T n (x) cos(nϑ). T n besitzt genau den Grad n, daher bilden {T 0, T 1,..., T n } eine Basis von P n. Dem algebraischen Polynom n n n p(x) = α k x k = a k T k (x) entspricht a k cos(kϑ). k=0 k=0 k=0
7 Approximationstheorie 77 Satz 2.5 Die Tschebyscheff-Polynome genügen den Orthogonalitätsrelationen 2 1 dx 2 für n = m = 0, T n (x)t m (x) π = 1 für n = m 0, 1 1 x 2 0 für n m. Beweis: Substituiere x = cos ϑ, 1 x 2 = dx/dϑ: 2 π Z 1 1 = 1 π T n (x)t m (x) Z π π dx 1 x 2 = 2 π cos(nϑ) cos(mϑ) dϑ = 1 π Z 0 π Z π cos(nϑ) cos(mϑ) dϑ π 1 2 [cos((n m)ϑ) + cos((n + m)ϑ)] dϑ. Da R π cos(kϑ) dϑ = 0 für k Z \ {0} liefert der erste Term im letzten Integral nur π für n = m, der zweite nur für n = m = 0 einen Beitrag..
8 Approximationstheorie 78 Bemerkung 2.6 Eine explizite Darstellung der Tschebyscheff-Polynome ergibt sich aus der Identität cos(nϑ) ± i sin(nϑ) = (cos ϑ ± i sin ϑ) n, aus welcher sich durch Addition der Beziehung mit verschiedenen Vorzeichen cos(nϑ) = 1 2 [(cos ϑ + i sin ϑ)n + (cos ϑ i sin ϑ) n ] ergibt. Mit x = cos ϑ und i sin ϑ = x 2 1 wird daraus T n (x) = 1 2 [( x + x 2 1) n + (x ) n ] x 2 1. Die Wurzeln fallen nach Ausmultiplizieren (binomische Formel) weg. Ferner erlaubt diese Darstellung die Auswertung im Reellen für x > 1.
9 Approximationstheorie 79 Ergänzung: Die Polynome {T n } bezeichnet man auch als Tschebyscheff- Polynome erster Art, um sie von den durch U n (x) := 1 n + 1 d dx T n+1(x) = sin((n + 1) arccos x) sin(arccos x) definierten Tschebyscheff-Polynomen zweiter Art zu unterscheiden. Letztere spielen bei der L 1 -Approximation eine ähnliche Rolle wie hier die von erster Art. Außerdem eignen sich die Polunome {U n } zur Abschätzung der Ableitungen von Polynomen.
10 Approximationstheorie Approximation von 1 x a Satz 2.7 Die Bestapproximation an durch p P n ist beschrieben durch Dabei ist v C, v = 1, f(x) = 1, a > 1, x [ 1, 1], x a 1 x a p(x) = M 2 x = 1 2 v + 1 v «α + 1 «α j ff v n α v 1 αv + 1 αv v n. (2.1) α v = Re v, a = 1 2 «1 M = E n = 4αn+2 x a mit α = a p a 2 1 < 1, (1 α 2 ) = (a a2 1) n. 2 a Approximation von 1 x a TU Bergakademie Freiberg, WS 2008/09
Analysis I. 4. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein
3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen
KAPITEL 3 INTERPOLATION UND APPROXIMATION 4 33 Newtonsche Interpolationsformel / Dividierte Differenzen Das Verfahren von Neville ist unpraktisch, wenn man das Polynom selbst sucht oder das Polynom an
Konvergenz im quadratischen Mittel - Hilberträume
CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften
Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.
Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung
2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R.
Übung 6 1) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 + bx 2 + c mit a, b, c R und nennen diesen V. Die Vektoren f 1 (x) = 2x 4 + 2x 2 + 2 und f 2 (x) = 3x 4 + x 2 + 4 sind in diesem Vektorraum
Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome
Proseminar Lineare Algebra SS10 Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome Natalja Shesterina Heinrich-Heine-Universität ASymmetrische Polynome Definition 1 Sei n
cos(kx) sin(nx)dx =?
3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]
Allgemeine Form der Fourierreihe einer zwei- -periodischen, stetigen Funktion:
Einführung Eine Funktion mittels trigonometrischer Funktionen darzustellen ist das Ziel bei Fourierreihenentwicklung. Als Fourierreihe einer periodischen Funktion f, die abschnittsweise stetig ist, bezeichnet
Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.
Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ
Übungen zur Vorlesung MATHEMATIK II
Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom
14 Lineare Differenzengleichungen
308 14 Lineare Differenzengleichungen 14.1 Definitionen In Abschnitt 6.3 haben wir bereits eine Differenzengleichung kennengelernt, nämlich die Gleichung K n+1 = K n q m + R, die die Kapitalveränderung
ε δ Definition der Stetigkeit.
ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x
f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}
9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen
Vorkurs Mathematik 2016
Vorkurs Mathematik 2016 Natürliche Zahlen Der grundlegende Zahlenbereich ist die Menge der natürlichen Zahlen N = {1, 2, 3,...}. In vielen Fällen ist es sinnvoll die Zahl 0 mit einzubeziehen: N 0 = N [
Zahlen und Funktionen
Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen
Gewöhnliche Dierentialgleichungen
Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat
Thema 10 Gewöhnliche Differentialgleichungen
Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;
Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen
Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in
5 Potenzreihenansatz und spezielle Funktionen
5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten
19.3 Oberflächenintegrale
19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,
Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17
1/37 0. Organisatorisches 2/37 Übung Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 Dr. Udo Lorz TU Bergakademie Freiberg Fakultät für Mathematik und Informatik Links zur Vorlesung Website
Taylor-Entwicklung der Exponentialfunktion.
Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die
Technische Universität München Zentrum Mathematik. Übungsblatt 4
Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=
1 Euklidische und unitäre Vektorräume
1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen
Surjektive, injektive und bijektive Funktionen.
Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens
Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann
Reihen/Partialsummenfolgen und vollständige Induktion Robert Klinzmann 3. Mai 00 Reihen / Partialsummen 1 Inhaltsverzeichnis 1 Vorwort Das Prinzip der vollständigen Induktion 3 3 Herleitung der Gauß schen
Proseminar Lineare Algebra II, SS 11. Blatt
Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2
(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0
Taylor-Reihen Einführung Mathematik GLF / 6 Christian Neukirchen Oft können wir bestimmte mathematische Funktionen nicht genau ausrechnen, besonders die trigonometrischen Funktionen wie, cos x, oder die
Funktionen. Mathematik-Repetitorium
Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2
Identitätssatz für Potenzreihen
Identitätssatz für Potenzreihen Satz 3.56 Seien f (z) = a n z n und g(z) = b n z n zwei Potenzreihen mit positiven Konvergenzradien R f > 0 und R g > 0. Gilt f (z) = g(z) für alle z mit 0 z < min{r f,
In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y
Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion
4.7 Der Taylorsche Satz
288 4 Differenziation 4.7 Der Taylorsche Satz Die Differenzierbarkeit, also die Existenz der ersten Ableitung einer Funktion, erlaubt bekanntlich, diese Funktion lokal durch eine affine Funktion näherungsweise
Satz von Taylor Taylorreihen
Satz von Taylor Taylorreihen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] Tangente als Näherung Weil sich anschaulich die Tangente anschmiegt, ist die Tangentenfunktion
Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung
Faltung und Approximation von Funktionen
Faltung und Approximation von Funktionen Lisa Bauer und Anja Moldenhauer 9. Juni 2008 1 Die Faltung von Funktionen 1.1 Die Faltung Eine kleine Widerholung mit einem Zusatz: Vergleiche den Vortrag von Benjamin
Approximation. E(N) N. Beachte: Der Wert für N = 32 ist vernachlässigt, da er in der Grössenordnung der Rechengenauigkeit liegt.
Approximation Ziel: Approximation der Funktion f(x) = x mit Polynomen (global und stückweise) Experiment: Abhängigkeit des Approximationsfehlers E(N) (in der Maximumnorm) von der Anzahl der Freiheitsgrade
Zusammenfassung Mathematik 2012 Claudia Fabricius
Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-
27 Taylor-Formel und Taylor-Entwicklungen
136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen
Integralrechnung. Petra Grell, WS 2004/05
Integralrechnung Petra Grell, WS 2004/05 1 Einführung Bei den Rechenoperationen, die wir im Laufe der Zeit kennengelernt haben, kann man feststellen, dass es immer eine Umkehrung gibt: + : log a aˆ So
Mathematik für Bauingenieure
Mathematik für Bauingenieure von Kerstin Rjasanowa 1. Auflage Mathematik für Bauingenieure Rjasanowa schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser München 2006 Verlag C.H.
13. Funktionen in einer Variablen
13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier
Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.
Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines
Funktionsgrenzwerte, Stetigkeit
Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn
Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen
Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.
Folgen und Reihen von Funktionen
Folgen und Reihen von Funktionen Sehr häufig treten in der Mathematik Folgen bzw. Reihen von Funktionen auf. Ist etwa (f n ) eine Folge von Funktionen, dann können wir uns für ein festes x fragen, ob die
Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a
Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +
Vorkurs Mathematik B
Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein
Lineare Algebra und analytische Geometrie I
Sei G eine Gruppe. Zeige, dass ( 1 ) 1 = Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Arbeitsblatt 3 Die Pausenaufgabe Aufgabe 3.1. Formuliere die binomischen
Fourier-Reihen. Thomas Peters Thomas Mathe-Seiten 1. Dezember 2004
Fourier-Reihen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de. Dezember 4 Dieser Artikel gibt eine elementare Einführung in die Theorie der Fourier-Reihen. Er beginnt mit einer kurzen Analyse des
Dierentialgleichungen 2. Ordnung
Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:
Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.
Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2
x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.
SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten
18 Höhere Ableitungen und Taylorformel
8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a
2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB
Fachbereich Mathematik Prof. Dr. J. Lang Dipl.-Math. C. Schönberger Dipl.-Math. L. Kamenski WS 007/08 6.Oktober 007. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Gruppenübung Aufgabe G4
Fourier-Reihen: Definitionen und Beispiele
Fourier-Reihen: Definitionen und Beispiele Die Fourieranalysis beschäftigt sich mit dem Problem Funktionen in Kosinus und Sinus zu entwickeln. Diese Darstellungen sind in der Mathematik sowie in der Physik
Vorkurs Mathematik Übungen zu Differentialgleichungen
Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)
Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =
1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass
Kapitel 4. Interpolation. 4.1 Allgemeines Normen von Funktionen
Kapitel 4 Interpolation 4 Allgemeines Nähere Funktion/Daten durch einfache Funktionen (eg Polynome) an Brauchbar für: - Integration - Differentiation [zb f(x) sei durch Polynom p(x) approximiert, F(x)
Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael
Gewöhnliche inhomogene Differentialgleichungen der 1. und. Ordnung 1.1.) Anleitung DGL der 1. Ordnung 1.) DGL der 1. Ordnung In diesem Abschnitt werde ich eine Anleitung zur Lösung von inhomogenen und
Aufgaben zur Analysis I aus dem Wiederholungskurs
Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Diese Funktion ist mein Typ!
Diese Funktion ist mein Typ! Überblick über die wichtigsten Funktionstypen der 10.Jgst.: Lineare Funktionen Quadratische Funktionen Ganzrationale Funktionen Gebrochen-rationale Funktionen Trigonometrische
Inhaltsverzeichnis INHALTSVERZEICHNIS 1
INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4
KORREKTURANLEITUNGEN zum Testheft A1
Projekt Standardisierte schriftliche Reifeprüfung in Mathematik KORREKTURANLEITUNGEN zum Testheft A1 A1 Zahlen N Z Q R 0,03-6 π 3 10-3 1 Bemerkung: Die Aufgabe gilt nur dann als richtig gelöst, wenn alle
Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):
Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe
Übungsaufgaben zur Analysis
Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)
Lösungsvorschläge zum 14. Übungsblatt.
Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine
Kapitel 16 : Differentialrechnung
Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen
Analysis für Wirtschaftswissenschaftler und Ingenieure
Dieter Hoffmann 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Analysis für Wirtschaftswissenschaftler und Ingenieure
Mathematik 3 für Informatik
Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4
Seminar Einführung in die Kunst mathematischer Ungleichungen
Seminar Einführung in die Kunst mathematischer Ungleichungen Geometrie und die Summe von Quadraten Clara Brünn 25. April 2016 Inhaltsverzeichnis 1 Einleitung 2 1.1 Geometrie allgemein.................................
LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung
LMU MÜNCHEN Mathematik für Studierende der Biologie Wintersemester 2016/17 GRUNDLAGENTUTORIUM 5 - Lösungen Anmerkung Es handelt sich hierbei um eine Musterlösung so wie es von Ihnen in einer Klausur erwartet
Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K
Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und
Beispielaufgaben rund um Taylor
Beispielaufgaben rund um Taylor Mirko Getzin Universität Bielefeld Fakultät für Mathematik 19. Februar 014 Keine Gewähr auf vollständige Richtigkeit und perfekter Präzision aller (mathematischen) Aussagen.
Eigenwerte und Diagonalisierung
Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende
u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.
Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume
1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:
Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar
Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema
Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema In diesem Kapitel befassen wir uns mit der Ableitung von Funktionen f : R m R n. Allein die Schreibweise
Vorkurs Mathematik Übungen zu Komplexen Zahlen
Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten
KAPITEL 9. Funktionenreihen
KAPITEL 9 Funktionenreihen 9. TaylorReihen............................ 28 9.2 Potenzreihen............................ 223 9.3 Grenzfunktionen von Funktionenfolgen bzw. reihen........ 230 9.4 Anwendungen............................
Die Taylorreihe einer Funktion
Kapitel 6 Die Taylorreihe einer Funktion Dieser Abschnitt beschäftigt sich mit Taylorreihen, Taylorpolynomen und der Restgliedabschätzung für Taylorpolynome. Die Taylorreihe einer reellen Funktion ist
Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/
6 Komplexe Integration
6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise
Lösungen zu Übung(11) Erster Teil A E=
Lösungen zu Übung Erster Teil a Betrachten Sie die Matrix A = Die Eigenwerte sind λ = mit algebraischer Vielfachheitundλ =mitalgebraischervielfachheit,unddiematrix A E= hatrang, alsokerndimensionnur, somitistdereigenraumzuλ
5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21
5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11
Konvergenz im quadratischen Mittel und Parsevalsche Gleichung
Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen
Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius)
Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) 1 Grundregeln des Rechnens 1.1 Zahlbereiche......... Zahlen N {1, 2, 3,...}......... Zahlen Z {..., 2, 1, 0, 1, 2,...}......... Zahlen Q { a b a Z, b N}.........
1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche
1 1 Angeordnete Körper 1.1 Anordnungen und Positivbereiche Definition 1.1. Eine zweistellige Relation auf einer Menge heißt partielle Ordnung, falls für alle Elemente a, b, c der Menge gilt: (i) a a (ii)
Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier-
Kapitel 26 Fourier-Reihen 26.1 Einführung (Spektrum; harmonische Analyse; Periode einer Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang;
Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts
Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts 1. Stetigkeit und Grenzwerte: (a) Aus der folgenden grafischen Darstellung von y 1 (x) = x 2/3 /(1 + x 2 ) ist
Numerische Integration und Differentiation
Einführung Grundlagen Bemerkung (Numerische Mathematik) a) Im engeren Sinn: zahlenmäßige Auswertung mathematischer Zusammenhänge z B Lösung von linearen und nichtlinearen Gleichungssystemen Numerische
Zahlen und Gleichungen
Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen
Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften. 1 Übungsblatt Mengen. Dr. Jörg Horst WS 2014/2015
Dr. Jörg Horst WS 04/05 Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften Übungsblatt Mengen Aufgabe : Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 0 < x
Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker
Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme
Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6
1 Lösungen ausgewählter Übungsaufgaben zum Buch Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 Aufgaben zu Kapitel 5 Zu Abschnitt 5.1 Ü5.1.1 Finden Sie eine maximum-likelihood-schätzung
