2 Tschebyscheff-Approximation durch Polynome

Größe: px
Ab Seite anzeigen:

Download "2 Tschebyscheff-Approximation durch Polynome"

Transkript

1 Approximationstheorie 71 2 Tschebyscheff-Approximation durch Polynome 2.1 Tschebyscheff-Polynome In diesem Abschnitt: explizit lösbare Tschebyscheff-Approximationsprobleme durch Polynome. Bezeichnungen: p, q : Polynome x : unabhängige Variable im Reellen, z : unabhängige Variable im Komplexen, P n : Menge der Polynome vom Grad n, E n [a, b](f) : Minimalabstand von P n zu f auf dem Intervall [a, b]. 2 Tschebyscheff-Approximation durch Polynome TU Bergakademie Freiberg, WS 2008/09

2 Approximationstheorie 72 Folgendes Invarianzprinzip gilt für das symmetrische Intervall [a, b]. Satz 2.1 Sei f in [ 1, 1] symmetrisch bzw. antisymmetrisch, d.h. es gelte f( x) = f(x) bzw. f( x) = f(x). Dann ist auch die Bestapproximation an f aus P n symmetrisch bzw. antisymmetrisch. Eine Verallgemeinerung hiervon ist Satz 2.2 (Meinardus, 1963) Sei E ein normierter Raum, V eine konvexe Existenzmenge in E und ι : E E eine lineare involutorische Abbildung, d.h. ι ι sei die identische Abbildung. Ferner sei ι(v ) = V und ιf = f für alle f E: (a) Ist u eine Bestapproximation an f aus V, so ist ιu dort eine Bestapproximation an ιf. (b) Ist f invariant unter ι, also ιf = f, dann gibt es eine invariante Bestapproximation u an f aus V, also u = ιu.

3 Approximationstheorie 73 Wir fassen hier die (eigentlich bekannten) wichtigsten Eigenschaften der Tschebyscheff-Polynome zusammen. Satz 2.3 (a) Durch T n (x) = cos(n arccos x), x [ 1, 1], ist für jedes n N 0 ein Polynom mit Grad n mit führendem Koeffizient 2 n 1 definiert. (b) Die Polynome genügen der Rekursionsbeziehung T n+1 (x) = 2xT n (x) T n 1 (x), n 1, T 0 (x) = 1, T 1 (x) = x. (c) Die Polynome erfüllen die Symmetrierelation T n ( 1) = ( 1) n T n (x).

4 Approximationstheorie 74 Satz 2.4 Sei n 1 und p die Bestapproximation an f(x) = x n aus P n 1 über I = [ 1, 1]. Dann ist die zugehörige Fehlerkurve gegeben durch x n p(x) = 2 n+1 T n (x) und es gilt E n 1 (x n ) = x n p(x) = 2 n+1. Mit derselben Methode läßt sich für jedes Polynom aus P n die Bestapproximation aus P n 1 auf [ 1, 1] bestimmen. Beispiel 19: Man bestimme die Bestapproximation aus P 4 über [ 1, 1] an das Polynom p(x) = 2x 5 x 3 + 3x 2 1.

5 Approximationstheorie 75 Auch die Bestapproximation analytischer Funktionen läßt sich mit Tschebyscheff-Polynomen bestimmen. Beispiel 20: Man zeige, dass die Bestapproximation aus P n an die Funktion f(x) = b k T 3 k(x) k=0 unter den Voraussetzungen b k > 0 und b k < in [ 1, 1] stets die Partialsumme bis k = m mit 3 m n < 3 m+1 ist. Außerdem zeige man E n (f) = k 3 k >n b k.

6 Approximationstheorie 76 Zusammenhang mit trigonometrischen Polynomen Die Transformation x = cos ϑ induziert mittels eine bijektive Abbildung f(x) g(ϑ) = f(cos ϑ) C[ 1, 1] { g C[0, 2π] : g(ϑ) = g( ϑ), g 2π-periodisch }. Insbesondere ergibt sich die Zuordnung T n (x) cos(nϑ). T n besitzt genau den Grad n, daher bilden {T 0, T 1,..., T n } eine Basis von P n. Dem algebraischen Polynom n n n p(x) = α k x k = a k T k (x) entspricht a k cos(kϑ). k=0 k=0 k=0

7 Approximationstheorie 77 Satz 2.5 Die Tschebyscheff-Polynome genügen den Orthogonalitätsrelationen 2 1 dx 2 für n = m = 0, T n (x)t m (x) π = 1 für n = m 0, 1 1 x 2 0 für n m. Beweis: Substituiere x = cos ϑ, 1 x 2 = dx/dϑ: 2 π Z 1 1 = 1 π T n (x)t m (x) Z π π dx 1 x 2 = 2 π cos(nϑ) cos(mϑ) dϑ = 1 π Z 0 π Z π cos(nϑ) cos(mϑ) dϑ π 1 2 [cos((n m)ϑ) + cos((n + m)ϑ)] dϑ. Da R π cos(kϑ) dϑ = 0 für k Z \ {0} liefert der erste Term im letzten Integral nur π für n = m, der zweite nur für n = m = 0 einen Beitrag..

8 Approximationstheorie 78 Bemerkung 2.6 Eine explizite Darstellung der Tschebyscheff-Polynome ergibt sich aus der Identität cos(nϑ) ± i sin(nϑ) = (cos ϑ ± i sin ϑ) n, aus welcher sich durch Addition der Beziehung mit verschiedenen Vorzeichen cos(nϑ) = 1 2 [(cos ϑ + i sin ϑ)n + (cos ϑ i sin ϑ) n ] ergibt. Mit x = cos ϑ und i sin ϑ = x 2 1 wird daraus T n (x) = 1 2 [( x + x 2 1) n + (x ) n ] x 2 1. Die Wurzeln fallen nach Ausmultiplizieren (binomische Formel) weg. Ferner erlaubt diese Darstellung die Auswertung im Reellen für x > 1.

9 Approximationstheorie 79 Ergänzung: Die Polynome {T n } bezeichnet man auch als Tschebyscheff- Polynome erster Art, um sie von den durch U n (x) := 1 n + 1 d dx T n+1(x) = sin((n + 1) arccos x) sin(arccos x) definierten Tschebyscheff-Polynomen zweiter Art zu unterscheiden. Letztere spielen bei der L 1 -Approximation eine ähnliche Rolle wie hier die von erster Art. Außerdem eignen sich die Polunome {U n } zur Abschätzung der Ableitungen von Polynomen.

10 Approximationstheorie Approximation von 1 x a Satz 2.7 Die Bestapproximation an durch p P n ist beschrieben durch Dabei ist v C, v = 1, f(x) = 1, a > 1, x [ 1, 1], x a 1 x a p(x) = M 2 x = 1 2 v + 1 v «α + 1 «α j ff v n α v 1 αv + 1 αv v n. (2.1) α v = Re v, a = 1 2 «1 M = E n = 4αn+2 x a mit α = a p a 2 1 < 1, (1 α 2 ) = (a a2 1) n. 2 a Approximation von 1 x a TU Bergakademie Freiberg, WS 2008/09

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen

3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen KAPITEL 3 INTERPOLATION UND APPROXIMATION 4 33 Newtonsche Interpolationsformel / Dividierte Differenzen Das Verfahren von Neville ist unpraktisch, wenn man das Polynom selbst sucht oder das Polynom an

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R.

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R. Übung 6 1) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 + bx 2 + c mit a, b, c R und nennen diesen V. Die Vektoren f 1 (x) = 2x 4 + 2x 2 + 2 und f 2 (x) = 3x 4 + x 2 + 4 sind in diesem Vektorraum

Mehr

Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome

Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome Proseminar Lineare Algebra SS10 Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome Natalja Shesterina Heinrich-Heine-Universität ASymmetrische Polynome Definition 1 Sei n

Mehr

cos(kx) sin(nx)dx =?

cos(kx) sin(nx)dx =? 3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]

Mehr

Allgemeine Form der Fourierreihe einer zwei- -periodischen, stetigen Funktion:

Allgemeine Form der Fourierreihe einer zwei- -periodischen, stetigen Funktion: Einführung Eine Funktion mittels trigonometrischer Funktionen darzustellen ist das Ziel bei Fourierreihenentwicklung. Als Fourierreihe einer periodischen Funktion f, die abschnittsweise stetig ist, bezeichnet

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

14 Lineare Differenzengleichungen

14 Lineare Differenzengleichungen 308 14 Lineare Differenzengleichungen 14.1 Definitionen In Abschnitt 6.3 haben wir bereits eine Differenzengleichung kennengelernt, nämlich die Gleichung K n+1 = K n q m + R, die die Kapitalveränderung

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 Natürliche Zahlen Der grundlegende Zahlenbereich ist die Menge der natürlichen Zahlen N = {1, 2, 3,...}. In vielen Fällen ist es sinnvoll die Zahl 0 mit einzubeziehen: N 0 = N [

Mehr

Zahlen und Funktionen

Zahlen und Funktionen Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

19.3 Oberflächenintegrale

19.3 Oberflächenintegrale 19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,

Mehr

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 1/37 0. Organisatorisches 2/37 Übung Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 Dr. Udo Lorz TU Bergakademie Freiberg Fakultät für Mathematik und Informatik Links zur Vorlesung Website

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann Reihen/Partialsummenfolgen und vollständige Induktion Robert Klinzmann 3. Mai 00 Reihen / Partialsummen 1 Inhaltsverzeichnis 1 Vorwort Das Prinzip der vollständigen Induktion 3 3 Herleitung der Gauß schen

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0 Taylor-Reihen Einführung Mathematik GLF / 6 Christian Neukirchen Oft können wir bestimmte mathematische Funktionen nicht genau ausrechnen, besonders die trigonometrischen Funktionen wie, cos x, oder die

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

Identitätssatz für Potenzreihen

Identitätssatz für Potenzreihen Identitätssatz für Potenzreihen Satz 3.56 Seien f (z) = a n z n und g(z) = b n z n zwei Potenzreihen mit positiven Konvergenzradien R f > 0 und R g > 0. Gilt f (z) = g(z) für alle z mit 0 z < min{r f,

Mehr

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion

Mehr

4.7 Der Taylorsche Satz

4.7 Der Taylorsche Satz 288 4 Differenziation 4.7 Der Taylorsche Satz Die Differenzierbarkeit, also die Existenz der ersten Ableitung einer Funktion, erlaubt bekanntlich, diese Funktion lokal durch eine affine Funktion näherungsweise

Mehr

Satz von Taylor Taylorreihen

Satz von Taylor Taylorreihen Satz von Taylor Taylorreihen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] Tangente als Näherung Weil sich anschaulich die Tangente anschmiegt, ist die Tangentenfunktion

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Faltung und Approximation von Funktionen

Faltung und Approximation von Funktionen Faltung und Approximation von Funktionen Lisa Bauer und Anja Moldenhauer 9. Juni 2008 1 Die Faltung von Funktionen 1.1 Die Faltung Eine kleine Widerholung mit einem Zusatz: Vergleiche den Vortrag von Benjamin

Mehr

Approximation. E(N) N. Beachte: Der Wert für N = 32 ist vernachlässigt, da er in der Grössenordnung der Rechengenauigkeit liegt.

Approximation. E(N) N. Beachte: Der Wert für N = 32 ist vernachlässigt, da er in der Grössenordnung der Rechengenauigkeit liegt. Approximation Ziel: Approximation der Funktion f(x) = x mit Polynomen (global und stückweise) Experiment: Abhängigkeit des Approximationsfehlers E(N) (in der Maximumnorm) von der Anzahl der Freiheitsgrade

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

Integralrechnung. Petra Grell, WS 2004/05

Integralrechnung. Petra Grell, WS 2004/05 Integralrechnung Petra Grell, WS 2004/05 1 Einführung Bei den Rechenoperationen, die wir im Laufe der Zeit kennengelernt haben, kann man feststellen, dass es immer eine Umkehrung gibt: + : log a aˆ So

Mehr

Mathematik für Bauingenieure

Mathematik für Bauingenieure Mathematik für Bauingenieure von Kerstin Rjasanowa 1. Auflage Mathematik für Bauingenieure Rjasanowa schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser München 2006 Verlag C.H.

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Folgen und Reihen von Funktionen

Folgen und Reihen von Funktionen Folgen und Reihen von Funktionen Sehr häufig treten in der Mathematik Folgen bzw. Reihen von Funktionen auf. Ist etwa (f n ) eine Folge von Funktionen, dann können wir uns für ein festes x fragen, ob die

Mehr

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Sei G eine Gruppe. Zeige, dass ( 1 ) 1 = Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Arbeitsblatt 3 Die Pausenaufgabe Aufgabe 3.1. Formuliere die binomischen

Mehr

Fourier-Reihen. Thomas Peters Thomas Mathe-Seiten 1. Dezember 2004

Fourier-Reihen. Thomas Peters Thomas Mathe-Seiten  1. Dezember 2004 Fourier-Reihen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de. Dezember 4 Dieser Artikel gibt eine elementare Einführung in die Theorie der Fourier-Reihen. Er beginnt mit einer kurzen Analyse des

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung. Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2

Mehr

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B. SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Fachbereich Mathematik Prof. Dr. J. Lang Dipl.-Math. C. Schönberger Dipl.-Math. L. Kamenski WS 007/08 6.Oktober 007. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Gruppenübung Aufgabe G4

Mehr

Fourier-Reihen: Definitionen und Beispiele

Fourier-Reihen: Definitionen und Beispiele Fourier-Reihen: Definitionen und Beispiele Die Fourieranalysis beschäftigt sich mit dem Problem Funktionen in Kosinus und Sinus zu entwickeln. Diese Darstellungen sind in der Mathematik sowie in der Physik

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x = 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass

Mehr

Kapitel 4. Interpolation. 4.1 Allgemeines Normen von Funktionen

Kapitel 4. Interpolation. 4.1 Allgemeines Normen von Funktionen Kapitel 4 Interpolation 4 Allgemeines Nähere Funktion/Daten durch einfache Funktionen (eg Polynome) an Brauchbar für: - Integration - Differentiation [zb f(x) sei durch Polynom p(x) approximiert, F(x)

Mehr

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael Gewöhnliche inhomogene Differentialgleichungen der 1. und. Ordnung 1.1.) Anleitung DGL der 1. Ordnung 1.) DGL der 1. Ordnung In diesem Abschnitt werde ich eine Anleitung zur Lösung von inhomogenen und

Mehr

Aufgaben zur Analysis I aus dem Wiederholungskurs

Aufgaben zur Analysis I aus dem Wiederholungskurs Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Diese Funktion ist mein Typ!

Diese Funktion ist mein Typ! Diese Funktion ist mein Typ! Überblick über die wichtigsten Funktionstypen der 10.Jgst.: Lineare Funktionen Quadratische Funktionen Ganzrationale Funktionen Gebrochen-rationale Funktionen Trigonometrische

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

KORREKTURANLEITUNGEN zum Testheft A1

KORREKTURANLEITUNGEN zum Testheft A1 Projekt Standardisierte schriftliche Reifeprüfung in Mathematik KORREKTURANLEITUNGEN zum Testheft A1 A1 Zahlen N Z Q R 0,03-6 π 3 10-3 1 Bemerkung: Die Aufgabe gilt nur dann als richtig gelöst, wenn alle

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

Übungsaufgaben zur Analysis

Übungsaufgaben zur Analysis Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)

Mehr

Lösungsvorschläge zum 14. Übungsblatt.

Lösungsvorschläge zum 14. Übungsblatt. Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Analysis für Wirtschaftswissenschaftler und Ingenieure

Analysis für Wirtschaftswissenschaftler und Ingenieure Dieter Hoffmann 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Analysis für Wirtschaftswissenschaftler und Ingenieure

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Seminar Einführung in die Kunst mathematischer Ungleichungen

Seminar Einführung in die Kunst mathematischer Ungleichungen Seminar Einführung in die Kunst mathematischer Ungleichungen Geometrie und die Summe von Quadraten Clara Brünn 25. April 2016 Inhaltsverzeichnis 1 Einleitung 2 1.1 Geometrie allgemein.................................

Mehr

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung LMU MÜNCHEN Mathematik für Studierende der Biologie Wintersemester 2016/17 GRUNDLAGENTUTORIUM 5 - Lösungen Anmerkung Es handelt sich hierbei um eine Musterlösung so wie es von Ihnen in einer Klausur erwartet

Mehr

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche Punkte mit inhomogenen K Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und

Mehr

Beispielaufgaben rund um Taylor

Beispielaufgaben rund um Taylor Beispielaufgaben rund um Taylor Mirko Getzin Universität Bielefeld Fakultät für Mathematik 19. Februar 014 Keine Gewähr auf vollständige Richtigkeit und perfekter Präzision aller (mathematischen) Aussagen.

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar

Mehr

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema In diesem Kapitel befassen wir uns mit der Ableitung von Funktionen f : R m R n. Allein die Schreibweise

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

KAPITEL 9. Funktionenreihen

KAPITEL 9. Funktionenreihen KAPITEL 9 Funktionenreihen 9. TaylorReihen............................ 28 9.2 Potenzreihen............................ 223 9.3 Grenzfunktionen von Funktionenfolgen bzw. reihen........ 230 9.4 Anwendungen............................

Mehr

Die Taylorreihe einer Funktion

Die Taylorreihe einer Funktion Kapitel 6 Die Taylorreihe einer Funktion Dieser Abschnitt beschäftigt sich mit Taylorreihen, Taylorpolynomen und der Restgliedabschätzung für Taylorpolynome. Die Taylorreihe einer reellen Funktion ist

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

Lösungen zu Übung(11) Erster Teil A E=

Lösungen zu Übung(11) Erster Teil A E= Lösungen zu Übung Erster Teil a Betrachten Sie die Matrix A = Die Eigenwerte sind λ = mit algebraischer Vielfachheitundλ =mitalgebraischervielfachheit,unddiematrix A E= hatrang, alsokerndimensionnur, somitistdereigenraumzuλ

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius)

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) 1 Grundregeln des Rechnens 1.1 Zahlbereiche......... Zahlen N {1, 2, 3,...}......... Zahlen Z {..., 2, 1, 0, 1, 2,...}......... Zahlen Q { a b a Z, b N}.........

Mehr

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche 1 1 Angeordnete Körper 1.1 Anordnungen und Positivbereiche Definition 1.1. Eine zweistellige Relation auf einer Menge heißt partielle Ordnung, falls für alle Elemente a, b, c der Menge gilt: (i) a a (ii)

Mehr

Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier-

Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier- Kapitel 26 Fourier-Reihen 26.1 Einführung (Spektrum; harmonische Analyse; Periode einer Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang;

Mehr

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts 1. Stetigkeit und Grenzwerte: (a) Aus der folgenden grafischen Darstellung von y 1 (x) = x 2/3 /(1 + x 2 ) ist

Mehr

Numerische Integration und Differentiation

Numerische Integration und Differentiation Einführung Grundlagen Bemerkung (Numerische Mathematik) a) Im engeren Sinn: zahlenmäßige Auswertung mathematischer Zusammenhänge z B Lösung von linearen und nichtlinearen Gleichungssystemen Numerische

Mehr

Zahlen und Gleichungen

Zahlen und Gleichungen Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen

Mehr

Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften. 1 Übungsblatt Mengen. Dr. Jörg Horst WS 2014/2015

Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften. 1 Übungsblatt Mengen. Dr. Jörg Horst WS 2014/2015 Dr. Jörg Horst WS 04/05 Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften Übungsblatt Mengen Aufgabe : Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 0 < x

Mehr

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme

Mehr

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 1 Lösungen ausgewählter Übungsaufgaben zum Buch Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 Aufgaben zu Kapitel 5 Zu Abschnitt 5.1 Ü5.1.1 Finden Sie eine maximum-likelihood-schätzung

Mehr