Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a

Größe: px
Ab Seite anzeigen:

Download "Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a"

Transkript

1 Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a + x = b ist lösbar in, nämlich x = b + (-a) = b a Aber: a x = b nur lösbar, falls a ein Teiler von b ist. p. Erweiterung: Menge der rationalen Zahlen = {x І x =, p, q } q b a x = b lösbar in, nämlich x = b = a a p Aber: x = c nur lösbar, falls c = q 3. Erweiterung: : Menge der reellen Zahlen (mit Hilfe von Intervallschachtelungen) Aber: x = c nur lösbar, falls c 0 4. Erweiterung: : Menge der komplexen Zahlen x = c lösbar in, nämlich?? Es gilt:. Also soll auch gelten:. Die Menge Definition: = { І = (x,y), x, y }, d.h. ist die Menge aller geordneten Paare von reellen Zahlen. x: Realteil von : x = Re() y: Imaginärteil von : y = Im() (Beachte also: Im() ) (,0) := reelle Einheit (0,) := i imaginäre Einheit Man kann (mit Hilfe der Definition von + und in, s. später) eigen: kann in der Form = x + i y geschrieben werden (sog. Normalform oder kartesische Form) = (0,) = 0 + i = i Re(-4 + 5i) = -4, Im(-4 + 5i) = 5, Re(i) = 0, Im(i) = (B.Berchtold)

2 3. Das Rechnen mit den komplexen Zahlen Seien nun = x + i y und = x + i y wei komplexe Zahlen Definition der Addition: + = x + i y + x + i y := x + x + i (y + y ) Man addiert also Realteil und Imaginärteil Definition der Multiplikation: = (x + i y ) (x + i y ) := x x - y y + i (x y + x y ) Definition der Gleichheit: =, falls x = x und y = y (Realteile und Imaginärteile müssen gleich gross sein) (s. auch Applet auf ) (3 + 4i) + (- + i) = + 5i ) (3 + 4i) (- + i) = -7 - i 3) (0 + i) (0 + i ) := i = - 4) (a + 0i) (b + 0i) = ab 5) (y + 0i) (0 + i) = yi 6) (x + 0i) + (0 + yi) = x + yi Berücksichtigt man das Resultat i = - in der Definition der Multiplikation so erkennt man: Komplexe Zahlen können multipliiert werden, indem man das Distributivgeset anwendet und i = - sett. Beispiel: (5 7i) (8 + 3i) = i + 5 3i - 7 8i = i Subtraktion: = - := + (- ) Ist also = x + i y und = x + i y, so gilt - = x + i y - x - i y = x - x + i (y - y ) Beispiel: (5 7i) - (8 + 3i) = -3 0i Division: Was ist = :? ( 0) Ist = a + bi, so sucht man also eine Zahl = x + iy so, dass (x + iy) (a + bi) = ist. (x + iy) (a + bi) = ax by + (ay + bx)i = + 0i. Wegen der Gleichheit von wei komplexen Zahlen hat man daher das Gleichungssystem ax by = bx + ay = 0 u lösen. (B.Berchtold)

3 Die Lösung dieses Systems ist: x = a a + b, y = a b + b (a, b 0) Rechnet man a + bi a bi = a + bi a bi a bi = a + b, so erhält man dasselbe Resultat! Definition: Die ur Zahl = a + bi gehörende Zahl = a bi heisst konjugiert komplex. Man dividiert also komplexe Zahlen, indem man den Quotienten mit der konjugiert komplexen Zahl des Nenners erweitert! 8 + i 8 + i 4 + i 3 + 6i i 30 6 ) = = = = + i 4 i 4 i 4 + i (5 + 5i) (5-5i) 0i ) = = i (+ i)(- i) 5 Eigenschaften von konjugiert komplexen Zahlen: ( = a + bi). = a + b, 0. + = +, = 3. =, = + i 4. Re() = ( ), Im() = ( ) (Beweise als Aufgabe) Lösen von Gleichungen Da die algebraische Struktur ; +, ein Körper ( ; + kommutative Gruppe, \ {0}; kommutative Gruppe, Distributivgeset gilt) ist, so kann man Gleichungen analog wie in der Menge auflösen: ) ( + i) (5 + i) = 8 3i 3 i 3 i i = = = 5 3i + i + i i ) = - 50 = 50 i = 5 i, = 5 i (B.Berchtold) 3

4 3) = 0 4 ± ± d, = =, wobei d = -4. Also d :=d = i, d = -i Die Lösung d = -i ist wegen ± bereits enthalten. = - + i, = - - i 4) = i Der Ansat = x + iy führt wegen = x y + xyi auf das Gleichungssystem x y = -3 xy = 4 Dieses führt auf die biquadratische Gleichung x 4 + 3x 44 = 0 in. Da x = 4 und x = -36, so sind in (!) nur die Lösungen x = und x = - ulässig. Die daugehörigen y-werte heissen y = 6 und y = -6. Die Lösungen der ursprünglichen Gleichung sind daher: = + 6i, = - - 6i = - (eine einfachere Lösungsmöglichkeit: s. später mit Polarformdarstellung von ) 4. Die geometrische Darstellung der komplexen Zahlen in der Gauss-Ebene Jede komplexe Zahl = x + iy kann durch einen Punkt Z(x/y) in der Ebene dargestellt werden. In diesem Fall nennt man die Ebene die Gauss'sche Zahlenebene. Imaginäre Achse y r ϕ Z()=Z(x/y) x Reelle Achse Jede komplexe Zahl ist auch bestimmt durch die Polarkoordinaten (r, ϕ) des Punktes Z(x/y). Gemäss den Umrechnungsformeln gilt: 0 ϕ < π ( bw. 0 ϕ < 360 ) Betrag von := := r = y x + y, tan ϕ = (x 0) x (für Bestimmung des Argumentes ϕ: Quadrantenlage beachten!) x = r cos ϕ, y = r sin ϕ (nach Definitionen der trigonometrischen Funktionen für beliebige Winkel) Es gilt also: = x + iy = r cos ϕ + i r sin ϕ := r cis ϕ := r e iϕ (B.Berchtold) 4

5 Gleichheit von komplexen Zahlen in Polarform: r cis ϕ = r cis ϕ r = r und ϕ = ϕ + k π 0 cis ϕ = 0 cis ϕ = 0 für beliebige ϕ, ϕ (k ) 4. Die Rechenoperationen in der Gauss-Ebene Sei = r cis ϕ, = r cis ϕ und = r cis ϕ a) Addition = + = r cis ϕ + r cis ϕ = (r cos ϕ + r cos ϕ ) + i(r sin ϕ + r sin ϕ ) Die Addition erfolgt also 'komponentenweise' (vergleiche "Vektoraddition" von Vektoren in der Grundebene) Das Resultat in Polarform r = und ϕ = ist kompliiert! b) Multiplikation = = r cis ϕ r cis ϕ = (r cos ϕ + i r sin ϕ ) (r cos ϕ + i r sin ϕ ) = = r r (cos ϕ cos ϕ - sin ϕ sin ϕ ) + i r r (sin ϕ cos ϕ + cos ϕ sin ϕ ) = = r r (cos (ϕ + ϕ ) + i sin (ϕ + ϕ ) ) = r r (cis(ϕ + ϕ )) = r cis ϕ Bei Multiplikationen komplexer Zahlen in Polarform werden also die Beträge multipliiert und die Argumente addiert: r = r r, ϕ = ϕ + ϕ Dies rechtfertigt auch die Schreibweise für = r e iϕ : = r e iϕ r e iϕ = r r e i(ϕ+ϕ) c) Subtraktion = = + (- ) "Vektorsubtraktion" d) Division = = = Da also =, so muss gelten: r = cis (ϕ - ϕ ) r = 5 cis 30, = cis 0 (s. auch Applet auf ) = + = 5 cos 30 + cos 0 + i (5 sin 30 + sin 0 ) i 6.93 cis (4.3 ) (B.Berchtold) 5

6 (Die Addition erfolgt also in Normalform mit anschliessender Umrechnung in Polarform!) ) = = 0 cis 40 3) = =.5 cis 0 4) = = 0.4 cis (-0 ) = 0.4 cis 340 (Argument wischen 0 und 360 ) e) Potenieren = r cis ϕ (wegen Multiplikation) n = r n cis (nϕ) für n. cis 0 (wegen Division) = = cis (-nϕ) für n. n n n r cis(nϕ) r Zusammengefasst: = r cis ϕ k = r k cis(kϕ) für k. (Formel von Moivre) Speialfall: r = = : (cis ϕ) k = (cos ϕ + i sin ϕ) k = cos(kϕ) + i sin(kϕ) ) ( cis 30 ) 5 = 3 cis 50 ) ( 3 + i) 6 = mit binomischem Lehrsat selber! ( 3 + i) 6 = ( cis 30 ) 6 = 64 cis 80 = ) ( + i) 0 = ( cis 45 ) 0 = 5 cis 450 = 3 cis 90 = 3 i 4) sin 3ϕ =? cos 3ϕ =? Formel von Moivre für r = = und k = 3: (cos ϕ + i sin ϕ) 3 = cos 3ϕ + i sin 3ϕ Nach binomischem Lehrsat: (cos ϕ + i sin ϕ) 3 = cos 3 ϕ + 3 i cos ϕ sin ϕ + 3 i cos ϕ sin ϕ + i 3 sin 3 ϕ = = (cos 3 ϕ - 3 cos ϕ sin ϕ) + i (3 cos ϕ sin ϕ - sin ϕ) Also gilt wegen Gleichheit komplexer Zahlen in Normalform: cos 3ϕ = cos 3 ϕ - 3 cos ϕ sin ϕ ; sin 3ϕ = 3 cos ϕ sin ϕ - sin ϕ (B.Berchtold) 6

7 f) Radiieren Lösungen der Gleichung n = a = r cis ϕ für n, a? Sei = s cis ψ s =?, ψ =? Potenieren: n = s n cis(nψ) = a = r cis ϕ Gleichheit in Polarform: s n = r und nψ = ϕ + k π (k ) Daher gilt: s = n ϕ π r und ψ = + k n n Es gibt aber nicht beliebig viele ψ, sondern genau n: ψ 0, ψ,, ψ n- für k = 0,,, n- Die Gleichung n = a = r cis ϕ (n ) hat genau n Lösungen := n a, nämlich k = n ϕ π r cis( + k ), wobei k = 0,,, n- n n Bemerkungen:. Diese Lösungen haben alle denselben Betrag k = n r, unterscheiden sich also nur durch das Argument (den Winkel).. In den reellen Zahlen gilt für a (a 0): n a ist eindeutig! In ist die Schreibweise n a nicht mehr eindeutig! Speialfall: Die n Lösungen der Gleichungen n = (n ) heissen n-te Einheitswureln. ) Wie heissen die vierten Einheitswureln? 0 =, = cis 90 = i, = cis 80 = -, 3 = cis 70 = -i ) Berechne sämtliche Lösungen von 6 = -. a = - = cis 80, d.h. a = r =, ϕ = 80 k = cis( + k ) = cis(30 + k 60 ), wobei k = 0,,, = cis 30, = cis 90 = i, = cis 50, 3 = cis 0, 4 = cis 70 = -i, 5 = cis 330 Je wei Lösungen sind konjugiert komplex: 0 = 5, = 4, = 3 Aufgabe: Stelle die sechs Lösungen in der Gauss-Ebene dar! (B.Berchtold) 7

8 3) Bestimme die Lösungsmenge L der Gleichung = 3 4i a = 3 4i = 5 cis k = 5 cis( + k ) = 5 cis( k 80 ), wobei k = 0, 0 = 5 cis = - + i, = 5 cis = - i L = {- + i, i} Die reinquadratische Gleichung = a hat folglich (wegen Addition von 80 ) immer wei Lösungen 0 und, wobei = Gleichungen weiten und höheren Grades a) Die quadratische Gleichung mit komplexen Koeffiienten Gegeben sei die quadratische Gleichung ax + bx + c = 0 mit komplexen Koeffiienten a, b und c (a 0). Division mit a und quadratische Ergänung liefert: b b 4ac b b 4ac x + + = 0, also x + = : = a 4a 4a a 4a 4a Ist also d eine der beiden Lösungen der Gleichung = b 4ac (vgl. auch oben, Beispiel 3)), so gilt: b d b d + = bw. x + =, also a a a a x b d x = + bw. x a a b = a Zusammengefasst: d a Die Lösungen der quadratischen Gleichung ax + bx + c = 0 mit a, b, c b ± d heissen x, =, wobei d eine Lösung der Gleichung = b 4ac ist. a Man beachte die Ähnlichkeit ur Lösungsformel von quadratischen Gleichungen in. Hier wird allerdings die Wurelschreibweise vermieden. ) x + ( + 4i)x 3 = 0 (a =, b = + 4i, c = -3) := ( + 4i) + = 4 + 6i 6 + = 6i = 6 cis 90 d = 4 cis 45 = + i 4i + + i x = = + + i( + (B.Berchtold) 8 )

9 x 4i = i = + i( ) ) x + (-3 + 0i)x + 9 7i = 0 := 69 60i i = i = 5 cis 06.6 d = 5cis 53.3 = 3 + 4i 3 0i i 3 0i 3 4i x = = 8-3i, x = = 5-7i Bem.: TI89 liefert diese Lösungen mit csolve(x + (-3 + 0i)x + 9 7i = 0,x) b) Gleichungen mit reellen Koeffiienten Sat: Ist Lösung einer Gleichung weiten oder höheren Grades mit reellen Koeffiienten, so ist auch die konjugiert komplexe Zahl Lösung dieser Gleichung. Beweis: Eine Gleichung n-ten Grades habe die Form a n n + a n- n- + + a + a 0 = 0 mit a i ( i = 0,,,..n) Da Lösung dieser Gleichung, so gilt: a n n + a n- n- + + a + a 0 = 0. Bildet man links und rechts des Gleichheitseichens die konjugiert komplexe Zahl, so gilt (Eigenschaften der konjugiert komplexen Zahl: s. p. 3) n n n = a + an a 0. Da a a, so folgt: n n an + an a = 0. Wendet man wieder die Eigenschaften der konjugiert komplexen Zahl an, so gilt: n n- n = a + an a 0. Also folgt die Behauptung. Aufgabe: Die Gleichung a + b +7 = 0 hat wei rein imaginäre Lösungen sowie eine reelle Doppellösung. Bestimme a, b. (a, b ) Lösung: =, 3 = α i (α > 0). Nach dem Sat gilt dann 4 = α i = - α i. Es ist also ( ) ( - α i) ( + α i) a + b +7 ( für alle ) ( - + ) ( + α ) = (- ) + (α + ) + (- α ) + α Der Koeffiientenvergleich (reelle Koeffiienten) liefert: =, also = 6; α = 7, also α = ; a = α + = 36; b = - α = -4 (B.Berchtold) 9

10 c) Fundamentalsat der Algebra Fundamentalsat der Algebra In lässt sich jedes Polynom n-ten Grades (mit komplexen Koeffiienten a i ) in Linearfaktoren erlegen: P n () = a n n + a n- n- + + a + a 0 = a n ( ) ( ) ( n ), d.h. jede Gleichung n-ten Grades hat in genau n Lösungen (mehrfache Lösungen werden dabei mehrfach geählt). Diesen Fundamentalsat hat C.F.Gauss 797 in seiner Dissertation bewiesen. Hier wird auf den Beweis verichtet. Man beachte den Gegensat u, wo sich nicht jedes Polynom weiten Grades in Linearfaktoren erlegen lässt. Aufgaben: a) Wie gross ist das Produkt aller fünften Einheitswureln? Die Lösungen der Gleichung 5 = seien,,, 5. Da 5 - = ( ) ( ). ( 5 ), so muss = -, also das Produkt dieser Einheitswureln = sein. b) Die Verallgemeinerung auf die Lösungen der Gleichung n = a (a ) erfolgt sinngemäss und lautet: Ist n ungerade, so ist das Produkt aller Lösungen = a Ist n gerade, so ist das Produkt aller Lösungen = -a. a) Wie gross ist die Summe aller fünften Einheitswureln? Da = ( ) ( ). ( 5 ) = 5 ( ) + -, so muss 0 5 i= i = sein. b) Die Verallgemeinerung auf die Lösungen der Gleichung n = a (a ) erfolgt sinngemäss und lautet: Falls,,, n die n Lösungen der Gleichung n = a sind, so gilt: 0. n i= i = (B.Berchtold) 0

Demo: Mathe-CD KOMPLEXE ZAHLEN

Demo: Mathe-CD KOMPLEXE ZAHLEN KMPLEXE ZAHLEN Diese Datei gibt einige Seiten Einblick in die Serie Komplexe Zahlen, und, die gegen Zusatbestellung auf der CD u haben ist. Abonnenten erhalten sie automatisch. Datei Nr. 50000 Januar 00

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z.

02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z. 0. Komplexe Zahlen Da für alle x R gilt dass x 0, hat die Gleichung x +1 = 0 offenbar keine reellen Lösungen. Rein formal würden wir x = ± 1 erhalten, aber dies sind keine reellen Zahlen. Um das Problem

Mehr

Körper sind nullteilerfrei

Körper sind nullteilerfrei Mathematik I für Informatiker Komplexe Zahlen p. 1 Körper sind nullteilerfrei Für Elemente a, b eines Körpers gilt stets: Aus a b = 0 folgt a = 0 oder b = 0. Beweis: Aus a b = 0 und a 0 folgt also b =

Mehr

Komplexe Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Komplexe Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Komplexe Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Körper sind nullteilerfrei Für Elemente a, b eines Körpers gilt stets: Aus a b = 0 folgt a

Mehr

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN Fakultät Mathematik Institut für Numerische Mathematik LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2017/18 G. Matthies Lineare

Mehr

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018 Propädeutikum 2018 24. September 2018 Darstellung Rechengesetze Erweiterung der reellen Zahlen um eine imaginäre Einheit. Ursprung: Lösung der Gleichung x 2 + 1 = 0 Komplexe Zahlen C := {a + i b a, b R}

Mehr

Crash-Kurs Komplexe Zahlen

Crash-Kurs Komplexe Zahlen 1 Definitionen: j, C, z Im Körper R der reellen Zahlen besitzt die lineare Gleichung ax + b = 0 (a, bεr; a 0) stets eine Lösung. Die quadratische Gleichung ax 2 + bx + c = 0 führt zu der Lösungsformel

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 8

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 8 D-MAVT/D-MATL Analysis I HS 017 Dr. Andreas Steiger Lösung - Serie 8 1. MC-Aufgaben Online-Abgabe) 1. Sei z := exp π 6 i) 5 + b i). Für welches b R ist z eine reelle Zahl? a) 1 b) c) 1 5 d) 5 e) Keines

Mehr

A Die Menge C der komplexen Zahlen

A Die Menge C der komplexen Zahlen A Die Menge C der komplexen Zahlen (Vgl. auch Abschnitt C) A.1 Definition Wir erweitern R um eine Zahl i / R (genannt imaginäre Einheit) mit der Eigenschaft i 2 i i = 1. (653) Unter einer komplexen Zahl

Mehr

Menge der irrationalen Zahlen C = {z z = a + bi; a, b R, i 2 = 1} Menge der komplexen Zahlen R C Somit ergibt sich: N N Z Q R C

Menge der irrationalen Zahlen C = {z z = a + bi; a, b R, i 2 = 1} Menge der komplexen Zahlen R C Somit ergibt sich: N N Z Q R C 1 Komplexe Zahlen 1.1 Übersicht N = {1, 2, 3,... } Menge der natürlichen Zahlen ohne 0 N = {0, 1, 2, 3,... } Menge der natürlichen Zahlen mit 0 N N Z = {..., 2, 1, 0, 1, 2,... } Menge der ganzen Zahlen

Mehr

Die komplexen Zahlen. 1. Einführung. A) Erweiterung des Zahlenkörpers. Def. 1 (imaginäre Einheit)

Die komplexen Zahlen. 1. Einführung. A) Erweiterung des Zahlenkörpers. Def. 1 (imaginäre Einheit) Die komplexen Zahlen 1. Einführung A) Erweiterung des Zahlenkörpers Def. 1 (imaginäre Einheit) Die Gl. x 2 + 1 = 0 hat zwei Lösungen, nämlich i und - i. Es soll also gelten: i 2 = -1 und ( - i ) 2 = -1.

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

Dieses Kapitel widmet sich den komplexen Zahlen. Die in den folgenden Kapiteln dargestellten Themen können damit

Dieses Kapitel widmet sich den komplexen Zahlen. Die in den folgenden Kapiteln dargestellten Themen können damit Komplexe Zahlen Dieses Kapitel widmet sich den komplexen Zahlen. Die in den folgenden Kapiteln dargestellten Themen können damit komplex gelesen werden. Allerdings ist diese Sichtweise nicht unbedingt

Mehr

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 =

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 = 2. Februar 2009 66 0 Komplexe Zahlen 0. Komplexe Multiplikation: Für zwei Vektoren [ [ a a2 z =, z 2 = in R 2 wird neben der üblichen Addition die komplexe Multiplikation [ a a z z 2 := 2 b b 2 a b 2 +

Mehr

Komplexe Zahlen. Inhaltsverzeichnis Version: 1.1. Tobias Brinkert Homepage: <

Komplexe Zahlen. Inhaltsverzeichnis Version: 1.1. Tobias Brinkert   Homepage: < Tobias Brinkert email: Homepage: 2.05.2005 Version:. Inhaltsverzeichnis . Die imaginäre Einheit i Da eine Zahl, mit sich selbst multipliziert, niemals ( ) ergeben

Mehr

Komplexe Zahlen. Darstellung

Komplexe Zahlen. Darstellung Komplexe Zahlen Die Zahlenmengen, mit denen wir bis jetzt gearbeitet haben lassen sich zusammenfassen als N Z Q R Die natürlichen Zahlen sind abgeschlossen bezüglich der Operation des Addierens. Das heisst

Mehr

KOMPLEXE ZAHLEN UND FUNKTIONEN

KOMPLEXE ZAHLEN UND FUNKTIONEN Übungen zu Theoretische Physik L2 KOMPLEXE ZAHLEN UND FUNKTIONEN E I N R E F E R A T M I T A N N E T T E Z L A T A R I T S U N D F L O R I A N G R A B N E R. 2 1. 1 0. 2 0 1 3 INHALT Geschichte Definition

Mehr

Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003

Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003 Komplexe Zahlen Axel Schüler, Leipzig schueler@mathematikuni-leipzigde Juli 2003 Da die komplexen Zahlen nicht mehr im Lehrplan stehen, sollen hier die Grundlagen gelegt werden Eine sehr schöne Einführung

Mehr

Komplexe Zahlen. Gymnasium Immensee PAM: Basiskurs Mathematik. Bettina Bieri

Komplexe Zahlen. Gymnasium Immensee PAM: Basiskurs Mathematik. Bettina Bieri Komplexe Zahlen Gymnasium Immensee PAM: Basiskurs Mathematik Bettina Bieri 13. Juli 2011 Inhaltsverzeichnis 1 Mathematische Abkürzungen 1 1.1 Mengen.............................. 2 1.1.1 Symbole zu Mengen...................

Mehr

Inhaltsübersicht. Definition und erste Eigenschaften komplexer Zahlen

Inhaltsübersicht. Definition und erste Eigenschaften komplexer Zahlen Inhaltsübersicht Kapitel 4: Die Macht des Imaginären: Komplexe Zahlen Definition und erste Eigenschaften komplexer Zahlen Die Polardarstellung komplexer Zahlen Polynome im Komplexen Exponentialfunktion

Mehr

Komplexe Funktionen. Freitag Vorlesung 1. Kai Rothe. Sommersemester Technische Universität Hamburg-Harburg

Komplexe Funktionen. Freitag Vorlesung 1. Kai Rothe. Sommersemester Technische Universität Hamburg-Harburg Komplexe Funktionen Freitag 13.04.018 Vorlesung 1 Kai Rothe Sommersemester 018 Technische Universität Hamburg-Harburg K.Rothe, komplexe Funktionen, Vorlesung 1 Nullstellen quadratischer Gleichungen Beispiel

Mehr

Komplexe Zahlen (Seite 1)

Komplexe Zahlen (Seite 1) (Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine

Mehr

Mathematik I Herbstsemester 2018 Kapitel 7: Komplexe Zahlen

Mathematik I Herbstsemester 2018 Kapitel 7: Komplexe Zahlen Mathematik I Herbstsemester 2018 Kapitel 7: Komplexe Zahlen Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1/62 Prof. Dr. Erich Walter Farkas Mathematik I 7. Komplexe Zahlen Definition einer

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Mathematischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 40 Kapitel 12 Komplexe Zahlen Kapitel 12 Komplexe Zahlen Mathematischer Vorkurs

Mehr

Kapitel 10 Komplexe Zahlen

Kapitel 10 Komplexe Zahlen Komplexe Zahlen Kapitel 10 Komplexe Zahlen Mathematischer Vorkurs TU Dortmund Seite 94 / 112 Komplexe Zahlen Die komplexen Zahlen entstehen aus den reellen Zahlen, indem eine neues Element i (in der Elektrotechnik

Mehr

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

Ergänzungen in Mathematik Studierende Nanowissenschaften

Ergänzungen in Mathematik Studierende Nanowissenschaften Hans Walser Ergänzungen in Mathematik Studierende Nanowissenschaften Komplexe Zahlen Hans Walser: Komplexe Zahlen ii Inhalt 1 Die imaginäre Einheit... 1 2 Rechenregeln... 1 3 Quadratische Gleichungen...

Mehr

Einiges über komplexe Zahlen

Einiges über komplexe Zahlen Lineare Algebra und Analytische Geometrie I für LB WS 2001/2002 Dr. Bruno Riedmüller Einiges über komplexe Zahlen Es muss davon ausgegangen werden, dass der Leser mit komplexen Zahlen wenig oder nicht

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation In den reellen Zahlen haben nicht alle Polynome Nullstellen. Der einfachste Fall einer solchen Nullstellen-Gleichung ist x 2 + 1 = 0. Die komplexen Zahlen ("C") sind

Mehr

Brückenkurs Mathematik. Freitag Freitag

Brückenkurs Mathematik. Freitag Freitag Brückenkurs Mathematik Freitag 9.09. - Freitag 13.10.017 Vorlesung 10 Komplexe Zahlen Kai Rothe Technische Universität Hamburg-Harburg Freitag 13.10.017 0 Brückenkurs Mathematik, K.Rothe, Vorlesung 10

Mehr

2. alle Grundrechenarten +,, und / uneingeschränkt durchführbar sind und die Rechenregeln für R erhalten bleiben.

2. alle Grundrechenarten +,, und / uneingeschränkt durchführbar sind und die Rechenregeln für R erhalten bleiben. 41 3 Komplexe Zahlen Für alle reellen Zahlen x gilt x 2 0. Es gibt also keine reelle Zahl, welche Lösung der Gleichung x 2 +1 = 0 ist. Allgemein hat die quadratische Gleichung ax 2 +bx+c = 0, a,b,c R nur

Mehr

Spezialthema Komplexe Zahlen Fragen

Spezialthema Komplexe Zahlen Fragen Spezialthema Komplexe Zahlen Fragen Lukas Prokop 31. Mai 2009 Dank an Prof. Egger Die ganzen Zahlen hat der liebe Gott gemacht, alles weitere ist Menschenwerk (Leopold Kronecker 1 ) 1 frei zitiert nach

Mehr

Einführung Im Bereich der komplexen Zahlen ist es möglich die Wurzel aus negativen Zahlen zu ziehen.

Einführung Im Bereich der komplexen Zahlen ist es möglich die Wurzel aus negativen Zahlen zu ziehen. Komplexe Zahlen Einführung Im Bereich der komplexen Zahlen ist es möglich die Wurzel aus negativen Zahlen zu ziehen. Komplexe Zahl Unter dem Zahlenkörper der komplexe Zahlen C versteht man die Elemente

Mehr

3 Der Körper der komplexen Zahlen

3 Der Körper der komplexen Zahlen 3 Der Körper der kompleen Zahlen Nicht jede quadratische Gleichung hat eine reelle Lösung + p + q = (p, q R) Beispiel: Für alle R ist und daher + 1 Abhilfe: Man erweitert R zu einem größerem Körper C,

Mehr

Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen

Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1/60

Mehr

Serie 6: Komplexe Zahlen

Serie 6: Komplexe Zahlen D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 6: Komplexe Zahlen Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 26. und 28. Oktober. Es gibt zwei Darstellungsformen

Mehr

Rechnen. mit. Komplexen Zahlen

Rechnen. mit. Komplexen Zahlen Rechnen mit Komplexen Zahlen Fachschule für Technik Mühlhausen R.Schollmeyer - 30..007 Inhaltsvereichnis Einführung... Die imaginäre Einheit... Die komplexe Zahl... Darstellung der komplexen Zahl... Geometrische

Mehr

INHALTSVERZEICHNIS: DEFINITION UND EIGENSCHAFTEN VON KOMPLEXEN ZAHLEN 2 GESCHICHTE DER KOMPLEXEN ZAHLEN 4 DARSTELLUNG DER KOMPLEXEN ZAHLEN 5

INHALTSVERZEICHNIS: DEFINITION UND EIGENSCHAFTEN VON KOMPLEXEN ZAHLEN 2 GESCHICHTE DER KOMPLEXEN ZAHLEN 4 DARSTELLUNG DER KOMPLEXEN ZAHLEN 5 INHALTSVERZEICHNIS: ZAHLENBEREICHSERWEITERUNG 1 DEFINITION UND EIGENSCHAFTEN VON KOMPLEXEN ZAHLEN 2 GESCHICHTE DER KOMPLEXEN ZAHLEN 4 DARSTELLUNG DER KOMPLEXEN ZAHLEN 5 RECHNEN MIT KOMPLEXEN ZAHLEN 7 DIE

Mehr

Die komplexen Zahlen

Die komplexen Zahlen Die komplexen Zahlen Wir haben gesehen, dass die Menge R der reellen Zahlen einen angeordneten Körper bildet und dass für die Menge Q der rationalen Zahlen entsprechendes gilt. In beiden Körpern sind Gleichungen

Mehr

KAPITEL 1. Komplexe Zahlen

KAPITEL 1. Komplexe Zahlen KAPITEL Komplexe Zahlen. Lernziele im Abschnitt: Komplexe Zahlen............... Was sind komplexe Zahlen?......................3 Komplexe Zahlenebene....................... 3.4 Grundrechenarten in C.......................

Mehr

Serie 3 - Komplexe Zahlen II

Serie 3 - Komplexe Zahlen II Analysis D-BAUG Dr. Meike Akveld HS 2015 Serie - Komplexe Zahlen II 1. Wir betrachten die komplexe Gleichung z 6 = 4 4i. a) Bestimmen Sie alle en z C dieser Gleichung. b) Zeichnen Sie die en in die komplexe

Mehr

Grundlagen. Mathematik I für Chemiker. Daniel Gerth

Grundlagen. Mathematik I für Chemiker. Daniel Gerth Grundlagen Mathematik I für Chemiker Daniel Gerth Überblick Komplexe Zahlen Dieses Kapitel erklärt: Was komplexe Zahlen sind Wie man mit ihnen rechnet Daniel Gerth (JKU) Grundlagen 2 / 30 Inhaltsverzeichnis

Mehr

Komplexe Zahlen. Bemerkungen. (i) Man zeigt leicht, dass C mit diesen beiden Operationen

Komplexe Zahlen. Bemerkungen. (i) Man zeigt leicht, dass C mit diesen beiden Operationen Komplexe Zahlen Da für jede reelle Zahl x R gilt dass x 0, besitzt die Gleichung x + 1 = 0 keine Lösung in R bzw. das Polynom P (x) = x + 1 besitzt in R (!) keine Nullstelle. Dies führt zur Frage, ob es

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 2

Zusatzmaterial zur Mathematik I für E-Techniker Übung 2 Mathematik I für E-Techniker C. Erdmann WS 011/1, Universität Rostock,. Vorlesungswoche Zusatzmaterial zur Mathematik I für E-Techniker Übung Wiederholung - Theorie: Komplexe Zahlen (a Wir definieren mit

Mehr

1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen

1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen Komplexe Zahlen Mathe I / 12.11.08 1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen gezogen werden können (in nicht möglich!).

Mehr

Die Menge der reellen Zahlen vereinigt die Menge der rationalen Zahlen mit der Menge der irrationalen

Die Menge der reellen Zahlen vereinigt die Menge der rationalen Zahlen mit der Menge der irrationalen 9 Menge der natürlichen Zahlen Axiome von Peano: 1. 1 ist eine natürliche Zahl. 2. Jede Zahl a hat einen bestimmten Nachfolger a + in der Menge der natürlichen Zahlen.. Stets ist a + 1, d.h. es gibt keine

Mehr

4 Komplexe Zahlen. 4.1 Notwendigkeit und Darstellung Einführung

4 Komplexe Zahlen. 4.1 Notwendigkeit und Darstellung Einführung Komplexe Zahlen 4 4 Komplexe Zahlen Die komplexen Zahlen sind eine Erweiterung der reellen Zahlen. Die Konstruktion erfolgt durchc=r R. 4.1 Notwendigkeit und Darstellung 4.1.1 Einführung Hat die Gleichung

Mehr

Funktionen einer Variablen

Funktionen einer Variablen Funktionen einer Variablen 1 Zahlen 1.1 Zahlmengen Im täglichen Gebrauch trifft man vor allem auf die natürlichen Zahlen N = {1,2,3,...}. Gelegentlich wird auch die Bezeichnung N 0 = {0,1,2,...} benutzt.

Mehr

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Komplexe Zahlen Lösungshinweise. Sei z = + i und z = i. Berechnen Sie z + z, z z, z z, z z, z /z, z + z, z z, z z, z

Mehr

Komplexe Zahlen. Rainer Hauser. Januar 2015

Komplexe Zahlen. Rainer Hauser. Januar 2015 Komplexe Zahlen Rainer Hauser Januar 015 1 Einleitung 1.1 Zahlen und Operationen auf Zahlen Addiert man mit Eins als erster gegebener Zahl beginnend sukzessive Eins zu einer bereits gefundenen Zahl, so

Mehr

Komplexe Zahlen und Allgemeines zu Gruppen

Komplexe Zahlen und Allgemeines zu Gruppen Komplexe Zahlen und Allgemeines zu Gruppen Die komplexen Zahlen sind von der Form z = x + iy mit x, y R, wobei i = 1 als imaginäre Einheit bezeichnet wird. Wir nennen hierbei Re(z = x den Realteil von

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 15 Komplexe Zahlen Mathematischer Vorkurs TU Dortmund Seite

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

Grundlagen komplexe Zahlen. natürliche Zahlen

Grundlagen komplexe Zahlen. natürliche Zahlen Grundlagen komplexe Zahlen Die Zahlenbereichserweiterungen von den natürlichen Zahlen hin zu den reellen Zahlen waren dadurch motiviert, bestimmte Rechenoperationen uneingeschränkt ausführen zu können.

Mehr

Lineare Algebra. 1. Übungsstunde. Steven Battilana

Lineare Algebra. 1. Übungsstunde. Steven Battilana Lineare Algebra 1. Übungsstunde Steven Battilana September 3, 016 1 Komplexe Zahlen In R können wir zusätzlich zur Addition eine weitere Verknüpfung einführen, die komplexe Multiplikation : R R (a, b),

Mehr

Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen

Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen A Komplexe Zahlen A.1 Definition Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen z 1 +z 2 (x 1,y 1 )+(x 2,y 2 ) := (x

Mehr

12 3 Komplexe Zahlen. P(x y) z = x + jy

12 3 Komplexe Zahlen. P(x y) z = x + jy 2 3 Komplexe Zahlen 3 Komplexe Zahlen 3. Grundrechenoperationen Definition Die Menge C = {z = a + jb a, b IR; j 2 = } heißt Menge der komplexen Zahlen; j heißt imaginäre Einheit. (andere Bezeichnung: i)

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

$Id: reell.tex,v /11/18 10:54:24 hk Exp $ $Id: komplex.tex,v /11/19 15:35:32 hk Exp hk $

$Id: reell.tex,v /11/18 10:54:24 hk Exp $ $Id: komplex.tex,v /11/19 15:35:32 hk Exp hk $ $Id: reell.tex,v.0 200//8 0:54:24 hk Exp $ $Id: komplex.tex,v.4 200//9 5:35:32 hk Exp hk $ 4 Die reellen Zahlen 4.4 Potenzen mit rationalen Exponenten In der letzten Sitzung hatten wir reelle Potenzen

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

erfanden zu den reellen Zahlen eine neue Zahl

erfanden zu den reellen Zahlen eine neue Zahl Vorlesung 9 Komplexe Zahlen Die Gleichung x 2 = 1 ist in R nicht lösbar, weil es keine Zahl gibt, deren Quadrat eine negative Zahl ist. Die Mathematiker erfanden zu den reellen Zahlen eine neue Zahl i,

Mehr

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013 Einführung Seite 8 Vorlesung 1 3. bzw. 4. Oktober 013 Komplexe Zahlen Seite 9 Lösung von x + 1 = 0, pq-formel liefert x 1/ = ± 1 ; }{{} verboten Definition Imaginäre Einheit i := 1 Dann x 1/ = ±i; i =

Mehr

Ähnlich zur Einführung der irrationalen Zahlen, als man Gleichungen der Form. x 2 = 2. lösen wollte, stieß man erneut auf Probleme mit der Gleichung:

Ähnlich zur Einführung der irrationalen Zahlen, als man Gleichungen der Form. x 2 = 2. lösen wollte, stieß man erneut auf Probleme mit der Gleichung: 7 Komplexe Zahlen 7.1 Motivation Ähnlich ur Einführung der irrationalen Zahlen, als man Gleichungen der Form x 2 = 2 lösen wollte, stieß man erneut auf Probleme mit der Gleichung: x 2 = 1. Sie hat in den

Mehr

Fortgeschrittene Mathematik Raum und Funktionen

Fortgeschrittene Mathematik Raum und Funktionen Fortgeschrittene Mathematik Raum und Funktionen Thomas Zehrt Universität Basel WWZ Thomas Zehrt (Universität Basel WWZ) R n und Funktionen 1 / 33 Outline 1 Der n-dimensionale Raum 2 R 2 und die komplexen

Mehr

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29 Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 4

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 4 D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Lösung - Serie 4 MC-Aufgaben (Online-Abgabe) 1. Sei z := exp ( π 6 i) (5 + b i). Für welches b R ist z eine reelle Zahl? (a) 1 (b) (c) 1 5 (d) 5 (e)

Mehr

Körper der komplexen Zahlen (1)

Körper der komplexen Zahlen (1) Die komplexen Zahlen Körper der komplexen Zahlen (1) Da in angeordneten Körpern stets x 2 0 gilt, kann die Gleichung x 2 = 1 in R keine Lösung haben. Wir werden nun einen Körper konstruieren, der die reellen

Mehr

Analysis 1, Woche 3. Komplexe Zahlen I. 3.1 Etwas Imaginäres

Analysis 1, Woche 3. Komplexe Zahlen I. 3.1 Etwas Imaginäres Analysis, Woche 3 Komplexe Zahlen I A 3. Etwas Imaginäres Zusätzlich zu den reellen Zahlen führen wir das Symbol i ein und wir vereinbaren: i. Wir möchten die reellen Zahlen erweitern mit i. Das heißt,

Mehr

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch Vorkurs Mathematik-Physik, Teil 5 c 206 A. Kersch Vektoren. Vektorrechnung Definition Ein Vektor ist eine gerichtete Größe welche einen Betrag ( Zahl und eine Richtung ( in 2D, 2 in 3D hat. Alternativ

Mehr

= 2 i 2= 2 2 i, z 4. = 1.5, z 8

= 2 i 2= 2 2 i, z 4. = 1.5, z 8 Mathematik 1 - Übungsblatt 11 Aufgabe 1 (komplexe Zahlen) Gegeben sind folgende komplexe Zahlen in der Darstellung als Normalform mit Real- und Imaginärteil z=x i y - oder wegen der Vertauschbarkeit von

Mehr

Grundrechenarten für komplexe Zahlen

Grundrechenarten für komplexe Zahlen Grundrechenarten für komplexe Zahlen Jörn Loviscach Versionsstand: 29. März 200, 8:35 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Gaußsche Zahlenebene Um die Gleichung

Mehr

Zahlen und Gleichungen

Zahlen und Gleichungen Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen

Mehr

Vorlesung Mathematik 1 für Ingenieure (A)

Vorlesung Mathematik 1 für Ingenieure (A) 1 Vorlesung Mathematik 1 für Ingenieure (A) Wintersemester 2016/17 Kapitel 1: Zahlen Prof. Dr. Gerald Warnecke Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg http://fma2.math.uni-magdeburg.de:8001

Mehr

Komplexe Zahlen. elektret.github.io 16. Mai 2014

Komplexe Zahlen. elektret.github.io 16. Mai 2014 Komplexe Zahlen elektret.github.io 16. Mai 2014 1 Definition i Der Körper R,, ist ein Unterkörper von C. ii Es gibt ein Element, sodass i 2 1 ist. iii C ist der kleinste Körper der den Eigenschaften i

Mehr

20 1 Zahlen und Vektoren. d = d( 0, E) = u n. E = { x R 3 : x n = d }

20 1 Zahlen und Vektoren. d = d( 0, E) = u n. E = { x R 3 : x n = d } 0 1 Zhlen und Vektoren St 1.4.6 (i) Seien L = u + R v, u, v R 3 und v 0. Dnn gilt d( x 0, L) = ( u x 0) v, x 0 R 3. v (ii) Seien E = u + R v + R w, u, v, w R 3 und v w 0, und n ein Einheitsnormlenvektor

Mehr

Komplexe Zahlen. Wir beginnen mit Beispielen.

Komplexe Zahlen.   Wir beginnen mit Beispielen. Komplexe Zahlen Wir beginnen mit Beispielen. Wenn man nur ganze Zahlen kennen würde, dann hätte die Gleichung 2x = 5 keine Lösung. Wenn die Grundmenge G = R (= reelle Zahlen) ist, dann hat auch die Gleichung

Mehr

Lineare Algebra 1. 4 Ringe und Körper (Fortsetzung) Der erweiterte Euklidische Algorithmus. Heinrich Heine-Universität Düsseldorf Sommersemester 2014

Lineare Algebra 1. 4 Ringe und Körper (Fortsetzung) Der erweiterte Euklidische Algorithmus. Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Fakultät für Mathematik PD Dr. Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Lineare Algebra 1 Siebte Woche, 21.5.2014 4 Ringe und Körper (Fortsetzung) Satz: Es sei R ein Ring

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

5. Sätze über komplexe Zahlen 5.0 Was lernen wir?

5. Sätze über komplexe Zahlen 5.0 Was lernen wir? 5. Säte über komplexe Zahlen 5.0 Was lernen wir? 5. Säte über komplexe Zahlen 5.0 Was lernen wir? Didaktischer Hinweis Für Schüler reicht es meist aus, die Unterkapitel 5.1 bis 5.4 u bearbeiten. Die anderen

Mehr

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra 11 Komplexe Zahlen Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra Addition ebener Vektoren Sei Ê 2 = {(x, y) : x, y Ê}. Ê 2 können wir als Punkte in der Ebene

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 1. Übung: Woche vom (komplexe Zahlen):

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 1. Übung: Woche vom (komplexe Zahlen): Übungsaufgaben 1. Übung: Woche vom 17.-21.10.16 (komplexe Zahlen): Heft Ü1: 3.9 (a,b); 3.10, 3.12 (a-c); 3.13 (a-c); 3.2 (a,b,d); 3.3 (c,d,f) Wiederholung Komplexe Zahlen Definition (Imaginäre Einheit,

Mehr

2D-Visualisierung komplexer Funktionen

2D-Visualisierung komplexer Funktionen 2D-Visualisierung komplexer Funktionen 1 Komplexe Zahlen Die komplexen Zahlen C stellen eine Erweiterung der reellen Zahlen dar, in der das Polynom z 2 + 1 eine Nullstelle besitzt. Man kann sie als Paare

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) 1 Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Kapitel 1: Zahlen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 12. Oktober 2008) Beispiele für Mengen A = {1, 2, 3}

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahlen Lernziele dieses Abschnitts sind: (1) Analytische und geometrische Darstellung komplexer Zahlen, () Grundrechenarten fur komplexe Zahlen, (3) Konjugation und Betrag komplexer

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Konvergenzkriterien für Reihen Gegeben: a i Folge, s n = Divergenzkriterium n a i i=1 Ist s n konvergent a i ist Nullfolge Also äquivalent

Mehr

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c) Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser

Mehr

Mathematik I für das MW und VIW. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik

Mathematik I für das MW und VIW. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik Mathematik I für das MW und VIW Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik karsten.eppler@tu-dresden.de http://www.math.tu-dresden.de/ eppler Vorlesungsassistent:

Mehr

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil 14 DIE EXPONENTIALFUNKTION IM KOMPLEXEN 73 Wegen (a, 0) + (c, 0) = (a + c, 0) (a, 0) (c, 0) = (ac, 0) kann man die Teilmenge {(a, 0) a R} mit den darauf eingeschränkten Verknüpfungen identifizieren mit

Mehr

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: Lösung 1. Übung Elemente der Algebra WS018/19 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 7x+3y 6}.

Mehr

Brückenkurs Mathematik für Studierende der Chemie

Brückenkurs Mathematik für Studierende der Chemie Brückenkurs Mathematik für Studierende der Chemie PD Dr Dirk Andrae (nach Vorlagen von Dr Werner Gans vom WS 2015/2016) Institut für Chemie und Biochemie Freie Universität Berlin 20 September 2016 1 Teil:

Mehr

12 Übungen zu Gauß-Algorithmus

12 Übungen zu Gauß-Algorithmus Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4

Mehr