Die komplexen Zahlen
|
|
|
- Charlotte Heintze
- vor 9 Jahren
- Abrufe
Transkript
1 Die komplexen Zahlen Wir haben gesehen, dass die Menge R der reellen Zahlen einen angeordneten Körper bildet und dass für die Menge Q der rationalen Zahlen entsprechendes gilt. In beiden Körpern sind Gleichungen der Form x n = a nicht durchweg lösbar. In Q scheitern wir schon an der Lösung von x 2 = 2. In R (und in Q) gibt es keine Lösung von x 2 = 1. Diese Defekte beseitigt die Zahlbereichserweiterung zu den komplexen Zahlen. 1
2 Die Konstruktion von C Satz Die Menge R R = {(a, b) a R und b R} wird durch die Verknüpfungen (a, b) + (a, b ) = (a + a, b + b ) (a, b) (a, b ) = (aa bb, ab + a b) zu einem Körper, dem Körper der komplexen Zahlen. Bezeichnung: C. Erinnerung: Eigenschaft Körper beinhaltet die Anforderungen (A1) (A4) an die Addition, (M1) (M4) an die Multiplikation und das Distributivgesetz (D). 2
3 Überprüfung der Anforderungen (A1) (A4) Kommutativität und Assoziativität der Addition offensichtlich erfüllt. (0, 0) wirkt als Nullelement und ( a, b) als additiv Inverses zu (a, b). (M1) Kommutativität der Multiplikation ist klar. (M2) Assoziativität: = ( (a, b) (a, b ) ) (a, b ) = (aa bb ) (a, b ) = (aa a bb a ab b ba b, aa b bb b + ab a + ba a ) Ausmultiplizieren von (a, b) ((a, b ) (a, b ) ) liefert dasselbe Resultat. 3
4 (M3) (1, 0) ist neutral hinsichtlich Multiplikation: (1, 0) (a, b) = (a, b). (M4) Ist (a, b) 0, so ist (wegen a, b R) die Quadratsumme Aus erhalten wir folglich a 2 + b 2 0. (a, b) (a, b) = (a 2 + b 2, 0) ( a (a, b) a 2 + b 2, b a 2 + b 2 = (1, 0) damit die Existenz von Inversen bezüglich der Multiplikation. (D) Das distributive Gesetz rechnet man nach dem Muster von (M2) nach. ) 4
5 Verabredungen Vermöge der Zuordnung R C, identifizieren wir. a (a, 0) zugeordnete Elemente R wird dadurch eine Teilmenge von C, die sogenannte reelle Achse. Die Identifizierung führt zur Schreibweise wobei (a, b) = (a, 0) + (b, 0) (0, 1) = a + b i, i = (0, 1) als imaginäre Einheit von C bezeichnet wird. Offensichtlich gilt: i 2 = (0, 1) (0, 1) = ( 1, 0) = 1. 5
6 Entsprechend ist die quadratische Gleichung x 2 = 1 in C lösbar mit den beiden Lösungen i und i.
7 Wichtiger Kommentar zum Rechnen in C Für das Rechnen in C brauchen wir uns nicht die ursprünglichen Definitionen zu merken. Alles Weitere ergibt sich aus den folgenden Fakten: (1) Jede komplexe Zahl z besitzt eine eindeutige Darstellung z = a + b i, mit a, b R. (2) C ist ein Körper, d.h. es gelten (A1) (A4), (M1) (M4), (D). (3) Es gilt i 2 = 1. 6
8 Beispiel Sei z = a + bi 0 eine von Null verschiedene komplexe Zahl. Dann ist und folglich (a + bi)(a bi) = a 2 abi + bai b 2 i 2 1 z = = a 2 + b 2 0 ( ) a ib a 2 + b 2 Für z = a + bi 0 ist z 1 = 1 a 2 + b 2(a bi). 7
9 Die Gaußsche Zahlenebene Durch die Interpretation C = R R der komplexen Zahlen als reelle Zahlenpaare wird die Veranschaulichung der komplexen Zahlen als Punkte der Ebene nahegelegt. bi z = a + bi i Gaußsche Zahlenebene 1 a Mit z = a 2 + b 2 bezeichnen wir (Pythagoras) den Abstand vom Nullpunkt, und nennen ihn den Betrag von z. 8
10 Carl Friedrich Gauß ( ) Gauß war der mit Abstand berühmteste Mathematiker seiner Zeit. Die komplexe Zahlenebene ist nach ihm benannt. Gearbeitet hat er auf allen Gebieten der Mathematik und ihrer Anwendungen. 9
11 Die Gaußsche Zahlenebene: Addition Die Addition von zwei komplexen Zahlen erfolgt geometrisch gesehen unter Anwendung des Parallelogrammgesetzes. z 1 + z 2 z 1. z 2 Die geometrische Interpretation der Multiplikation in kartesischen Koordinaten ist unanschaulich. 10
12 Sinus und Cosinus Für einen im Bogenmaß gegebenen Winkel α sind sin α und cos α durch folgende Figur erklärt: 1 sin α cos α Wir lesen beispielhaft ab: sin 2 α + cos 2 α = 1 cos(α + π) = cos α sin(α + π) = sin α. 11
13 Additionstheoreme Ohne Beweis werden wir die folgenden Darstellungen der Winkelfunktionen für die Winkelsumme α + β verwenden: cos(α + β) = cos α cos β sin α sin β sin(α + β) = cos α sin β + sin α cos β. Diese Formeln benötigen wir temporär, um die Multiplikation komplexer Zahlen geometrisch zu interpretieren. Später werden wir diese Formeln zweckmäßig aus leicht zu merkenden Eigenschaften der komplexen Zahlen zurückgewinnen. 12
14 Darstellung in Polarkoordinaten Zur geometrischen Darstellung der Multiplikation erweist sich die Polarkoordinatendarstellung einer komplexen Zahl als wichtig: z = r (cos α + i sin α) α r r sin α r cos α Die Zahl r = z misst in der Gaußschen Zahlenebene daher den Abstand zum Nullpunkt; um z festzulegen benötigen wir neben r noch den Winkel α. 13
15 Mit Hilfe der Polarkoordinaten (r, α) ergibt sich dann z als z = r (cos α + i sin α). Wir nennen α = arg(z), 0 α < 2π, das Argument von z.
16 Multiplikation in Polarkoordinaten Seien z 1 = r 1 (cos α 1 + i sin α 1 ) z 2 = r 2 (cos α 2 + i sin α 2 ) komplexe Zahlen in Polarkoordinatendarstellung so ist z 1 z 2 = r 1 r 2 [(cos α 1 cos α 2 sin α 1 sin α 2 ) + i (cos α 1 sin α 2 + sin α 1 cos α 2 )] = r 1 r 2 (cos (α 1 + α 2 ) + i sin (α 1 + α 2 )) Komplexe Zahlen multipliziert man durch Multiplikation der Beträge und Addition der Argumente=Winkel. 14
17 Konjugieren Sei z = a + ib, a, b R, eine komplexe Zahl. (1) a = Re(z) heißt Realteil, b = Im(z) heißt Imaginärteil von z. (2) z = a i b heißt die zu z konjugiert komplexezahl. (3) Es gilt z z = a 2 + b 2 = z 2. (4) Für z 0 ist z 1 = z z 2. Diese Regel kennen wir schon! 15
18 Betrag und Konjugieren: Rechenregeln (1) z 1 + z 2 = z 1 + z 2, (2) z 1 z 2 = z 1 z 2, (3) z z = z 2, z = z, (4) z 1 z 2 = z 1 z 2, (5) z 1 + z 2 z 1 + z 2 (Dreiecksungleichung). Beweis: Von (1) (4) ist nur (2) nachzurechnen. (5) folgt. 16
19 Beweis der Dreiecksungleichung Schritt 1: Für z = a + bi gilt Re(z) z. Es ist nämlich Re(z) 2 = a 2 a 2 + b 2 = z 2. Schritt 2: Können z 1 0 annehmen, dann durch Multiplikation mit 1/z 1, dass z 1 = 1 gilt. Müssen daher 1 + z 2 (1 + z ) 2 zeigen. Bilden dazu die Differenz: (1 + z ) 2 (1 + z)(1 + z) = z + z 2 (1 + (z + z) + z z) = 2 ( z Re(z)) 0 17
20 Komplexe Zahlen vom Betrag 1 Die Menge U der komplexen Zahlen vom Betrag 1 sind gegenüber Multiplikation, Konjugation und Übergang zum multiplikativ Inversen abgeschlossen. Geometrisch bildet U die Peripherie des Einheitskreises. Für z 1, z 2 U folgt z 1 z 2 U. (Bilde den Betrag!) Insbesondere ist U gegen Potenzen abgeschlossen! Für z U gilt wegen z z = 1 die Formel z 1 = z. Multiplikativ Inverse werden für Elemente aus U somit durch Konjugieren gebildet. 18
21 Die Moivresche Formel Diese ist ein Spezialfall der Multiplikationsdarstellung in Polarkoordinaten: Für z = r (cos α + i sin α) folgt für alle n Z z n = r n (cos nα + i sin nα). Durch Umkehrung erhalten wir für 0 z = r (cos α + i sin α) n verschiedene n-te Wurzeln, nämlich w k = n ( ( ) ( )) α + 2kπ α + 2kπ r cos + i sin, k = 0,..., n 1. n n 19
22 Explizite Wurzelbestimmung Zu bestimmen seien die drei 3-ten Wurzel aus z = i. Im ersten Schritt ist dazu z in Polarkoordinaten z = z (cos α + i sin α) darzustellen. Wir wissen, dass dann die 3-ten Wurzeln aus z als w k = 3 ( ( ) ( )) α α z cos 3 + k2π + i sin k2π k = 0, 1, 2 3 gegeben sind. Es ist z = , also z = 5 und α = arg(z) dann aus den beiden folgenden Gleichungen zu gewinnen: cos α = 3 5 sin α =
23 Im Bogenmaß ergibt sich α , somit α/ ; ferner Hiermit w k ( cos( k 2π 3 ) + i sin( k2π 3 )) Es folgt w i w i w i (Vergleiche anschließende Rechnung in MuPAD.) 21
24 Der Fundamentalsatz der Algebra Wir haben gesehen, dass in C Wurzelziehen unbeschränkt möglich ist. Es gilt mehr, der Körper C ist algebraisch abgeschlossen: Fundamentalsatz der Algebra: Sind a 0, a 1,..., a n komplexe Zahlen, a n 0, so ist die Polynomgleichung in C stets lösbar. a 0 + a 1 x + a 2 x a n x n = 0 Ein Beweis für den Fundamentalsatz war schon Gauß bekannt. Er erfordert Hilfsmittel, die hier nicht zur Verfügung stehen. 22
25 Quadratische Gleichungen Es ist zwar Schulstoff; aber trotzdem: Wie löst man eine quadratische Gleichung (mit p, q C)? x 2 + p x + q = 0? Das Lösungsverfahren verwendet quadratische Ergänzung: Als Lösung erhalten wir x 2 + p x + q = (x + p 2 )2 x = p 2 ± ( p 2 4 q ( p 2 4 q Im Allgemeinen haben wir dabei zwei Lösungen (wann genau?) ). ) 23
26 Keine Ordnung auf C Die unbeschränkte Möglichkeit, Wurzeln zu ziehen und Polynomgleichungen zu lösen hat ihren Preis: Es gibt keine vollständige Ordnung auf C, welche mit Addition und Multiplikation verträglich ist, d.h. den Anforderungen (P1) (P3) genügt. Beweis. Wie im Fall der reellen Zahlen müßte z 2 0 für alle z C gelten. Wegen 1 2 = 1 und i 2 = 1, wäre dann 1 > 0 und 1 > 0, Widerspruch. 24
Mathematischer Vorkurs NAT-ING1
Mathematischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 40 Kapitel 12 Komplexe Zahlen Kapitel 12 Komplexe Zahlen Mathematischer Vorkurs
2.9 Die komplexen Zahlen
LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in
Körper sind nullteilerfrei
Mathematik I für Informatiker Komplexe Zahlen p. 1 Körper sind nullteilerfrei Für Elemente a, b eines Körpers gilt stets: Aus a b = 0 folgt a = 0 oder b = 0. Beweis: Aus a b = 0 und a 0 folgt also b =
Komplexe Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden
Komplexe Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] Körper sind nullteilerfrei Für Elemente a, b eines Körpers gilt stets: Aus a b = 0 folgt a
Körper der komplexen Zahlen (1)
Die komplexen Zahlen Körper der komplexen Zahlen (1) Da in angeordneten Körpern stets x 2 0 gilt, kann die Gleichung x 2 = 1 in R keine Lösung haben. Wir werden nun einen Körper konstruieren, der die reellen
Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)
Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser
3 Der Körper der komplexen Zahlen
3 Der Körper der kompleen Zahlen Nicht jede quadratische Gleichung hat eine reelle Lösung + p + q = (p, q R) Beispiel: Für alle R ist und daher + 1 Abhilfe: Man erweitert R zu einem größerem Körper C,
Vorlesung. Komplexe Zahlen
Vorlesung Komplexe Zahlen Motivation In den reellen Zahlen haben nicht alle Polynome Nullstellen. Der einfachste Fall einer solchen Nullstellen-Gleichung ist x 2 + 1 = 0. Die komplexen Zahlen ("C") sind
10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 =
2. Februar 2009 66 0 Komplexe Zahlen 0. Komplexe Multiplikation: Für zwei Vektoren [ [ a a2 z =, z 2 = in R 2 wird neben der üblichen Addition die komplexe Multiplikation [ a a z z 2 := 2 b b 2 a b 2 +
Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003
Komplexe Zahlen Axel Schüler, Leipzig schueler@mathematikuni-leipzigde Juli 2003 Da die komplexen Zahlen nicht mehr im Lehrplan stehen, sollen hier die Grundlagen gelegt werden Eine sehr schöne Einführung
Mathematischer Vorkurs NAT-ING II
Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 15 Komplexe Zahlen Mathematischer Vorkurs TU Dortmund Seite
Stefan Ruzika. 24. April 2016
Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers
Einiges über komplexe Zahlen
Lineare Algebra und Analytische Geometrie I für LB WS 2001/2002 Dr. Bruno Riedmüller Einiges über komplexe Zahlen Es muss davon ausgegangen werden, dass der Leser mit komplexen Zahlen wenig oder nicht
02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z.
0. Komplexe Zahlen Da für alle x R gilt dass x 0, hat die Gleichung x +1 = 0 offenbar keine reellen Lösungen. Rein formal würden wir x = ± 1 erhalten, aber dies sind keine reellen Zahlen. Um das Problem
Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):
Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe
Binomialkoeffizienten
Binomialkoeffizienten ) = n! Die Anzahl ( n k der k-elementigen Teilmengen einer k!(n k)! n-elementigen Menge heißt Binomialkoeffizient n über k. Wichtig sind folgende Eigenschaften, welche die Berechnung
Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen
Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Komplexe Zahlen Lösungshinweise. Sei z = + i und z = i. Berechnen Sie z + z, z z, z z, z z, z /z, z + z, z z, z z, z
Komplexe Zahlen und Allgemeines zu Gruppen
Komplexe Zahlen und Allgemeines zu Gruppen Die komplexen Zahlen sind von der Form z = x + iy mit x, y R, wobei i = 1 als imaginäre Einheit bezeichnet wird. Wir nennen hierbei Re(z = x den Realteil von
1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen
Komplexe Zahlen Mathe I / 12.11.08 1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen gezogen werden können (in nicht möglich!).
INHALTSVERZEICHNIS: DEFINITION UND EIGENSCHAFTEN VON KOMPLEXEN ZAHLEN 2 GESCHICHTE DER KOMPLEXEN ZAHLEN 4 DARSTELLUNG DER KOMPLEXEN ZAHLEN 5
INHALTSVERZEICHNIS: ZAHLENBEREICHSERWEITERUNG 1 DEFINITION UND EIGENSCHAFTEN VON KOMPLEXEN ZAHLEN 2 GESCHICHTE DER KOMPLEXEN ZAHLEN 4 DARSTELLUNG DER KOMPLEXEN ZAHLEN 5 RECHNEN MIT KOMPLEXEN ZAHLEN 7 DIE
Komplexe Funktionen für Studierende der Ingenieurwissenschaften
Komplexe Funktionen für Studierende der Ingenieurwissenschaften Prof. Dr. Armin Iske Department Mathematik, Universität Hamburg Technische Universität Hamburg-Harburg Sommersemester 2008 Komplexe Funktionen
erfanden zu den reellen Zahlen eine neue Zahl
Vorlesung 9 Komplexe Zahlen Die Gleichung x 2 = 1 ist in R nicht lösbar, weil es keine Zahl gibt, deren Quadrat eine negative Zahl ist. Die Mathematiker erfanden zu den reellen Zahlen eine neue Zahl i,
Vorlesung Mathematik 1 für Ingenieure (A)
1 Vorlesung Mathematik 1 für Ingenieure (A) Wintersemester 2016/17 Kapitel 1: Zahlen Prof. Dr. Gerald Warnecke Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg http://fma2.math.uni-magdeburg.de:8001
LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN
Fakultät Mathematik Institut für Numerische Mathematik LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2017/18 G. Matthies Lineare
4.3 Der Körper der komplexen Zahlen
$Id: korper.tex,v.20 202/05/22 :02:43 hk Exp $ 4 Körper 4.3 Der Körper der komplexen Zahlen In der letzten Sitzung hatten wir begonnen die komplexen Zahlen C zu besprechen. Wie schon angekündigt beruht
Analysis 1, Woche 3. Komplexe Zahlen I. 3.1 Etwas Imaginäres
Analysis, Woche 3 Komplexe Zahlen I A 3. Etwas Imaginäres Zusätzlich zu den reellen Zahlen führen wir das Symbol i ein und wir vereinbaren: i. Wir möchten die reellen Zahlen erweitern mit i. Das heißt,
Serie 6: Komplexe Zahlen
D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 6: Komplexe Zahlen Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 26. und 28. Oktober. Es gibt zwei Darstellungsformen
KAPITEL 1. Komplexe Zahlen
KAPITEL Komplexe Zahlen. Lernziele im Abschnitt: Komplexe Zahlen............... Was sind komplexe Zahlen?......................3 Komplexe Zahlenebene....................... 3.4 Grundrechenarten in C.......................
Ê 2 = {(x, y) : x, y Ê}.
Komplee Zahlen.1 Der Körper der kompleen Zahlen Sei Ê = {(, y :, y Ê}. Ê können wir als Punkte in der Ebene oder als Vektoren mit Komponenten und y auffassen. Für (, y, (, y Ê definieren wir die Summe
Demo: Mathe-CD KOMPLEXE ZAHLEN
KMPLEXE ZAHLEN Diese Datei gibt einige Seiten Einblick in die Serie Komplexe Zahlen, und, die gegen Zusatbestellung auf der CD u haben ist. Abonnenten erhalten sie automatisch. Datei Nr. 50000 Januar 00
A Die Menge C der komplexen Zahlen
A Die Menge C der komplexen Zahlen (Vgl. auch Abschnitt C) A.1 Definition Wir erweitern R um eine Zahl i / R (genannt imaginäre Einheit) mit der Eigenschaft i 2 i i = 1. (653) Unter einer komplexen Zahl
Mathematik I. Vorlesung 9. Die eulersche Zahl e
Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 9 Die eulersche Zahl e Wir besprechen eine Beschreibung der sogenannten eulerschen Zahl e. Lemma 9.1. Die Intervalle I n = [a n,b n ],
Inhaltsübersicht. Definition und erste Eigenschaften komplexer Zahlen
Inhaltsübersicht Kapitel 4: Die Macht des Imaginären: Komplexe Zahlen Definition und erste Eigenschaften komplexer Zahlen Die Polardarstellung komplexer Zahlen Polynome im Komplexen Exponentialfunktion
11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra
11 Komplexe Zahlen Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra Addition ebener Vektoren Sei Ê 2 = {(x, y) : x, y Ê}. Ê 2 können wir als Punkte in der Ebene
Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen
Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.
Komplexe Zahlen. Rainer Hauser. Januar 2015
Komplexe Zahlen Rainer Hauser Januar 015 1 Einleitung 1.1 Zahlen und Operationen auf Zahlen Addiert man mit Eins als erster gegebener Zahl beginnend sukzessive Eins zu einer bereits gefundenen Zahl, so
Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen
Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1/60
Vorkurs Mathematik Übungen zu Komplexen Zahlen
Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten
Crash-Kurs Komplexe Zahlen
1 Definitionen: j, C, z Im Körper R der reellen Zahlen besitzt die lineare Gleichung ax + b = 0 (a, bεr; a 0) stets eine Lösung. Die quadratische Gleichung ax 2 + bx + c = 0 führt zu der Lösungsformel
KOMPETENZHEFT ZU KOMPLEXEN ZAHLEN N Z Q R C
KOMPETENZHEFT ZU KOMPLEXEN ZAHLEN 1. Aufgabenstellungen Aufgabe 1.1. Kreuze alle Zahlenbereiche an, in denen die gegebene Zahl bestimmt enthalten ist. 42 5 8,2 2, 5 4 i 5 + 2 i 21/4 9/3 2 16 5,014 = 5,014
(a) Motivation zur Definition komplexer Zahlen
1 Anhang B (a) Motivation zur Definition komplexer Zahlen Neue Zahlen wurden stets dann definiert, wenn die Anwendung von Rechenoperationen auf bekannte Zahlen innerhalb der Menge letzterer keine Lösung
Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29
Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die
GRUNDLAGEN MATHEMATIK
Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen
Komplexe Zahlen. 1) Motivierende Aufgabe. 2) Historisches
Annelie Heuser, Jean-Luc Landvogt und Ditlef Meins im 1. Semester Komplexe Zahlen Will man nur addieren und subtrahieren, multiplizieren und dividieren, kommt man uneingeschränkt mit reellen Zahlen aus.
7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion
7. KOMPLEXE ZAHLEN und die KOMPLEXE e-funktion 1 Wir gehen aus von der Ebene, versehen mit einem Koordinatensystem und x, y-koordinaten. Dann entsprechen Punkte z in der Ebene Zahlenpaaren: z = (x, y)
Komplexe Zahlen. Bekannte Zahlenmengen. Natürliche Zahlen. Die Zahlenmenge ist IN = {0, 1, 2, 3,...}. Es gelten die folgenden Gesetze:
Mathematik/Informatik Gierhardt Komplexe Zahlen Komplexe Zahlen Bekannte Zahlenmengen Natürliche Zahlen Die Zahlenmenge ist IN = {0,,,,} Es gelten die folgenden Gesetze: Addition: a + b IN, wenn a,b IN
Mathematik für Wirtschaftsingenieure
Mathematik für Wirtschaftsingenieure Lehr- und Übungsbuch Bearbeitet von Christopher Dietmaier 1. Auflage 005. Buch. 600 S. Hardcover ISBN 978 3 446 337 0 Format (B L): 17,6 4,6 cm Gewicht: 1196 g Weitere
2. Reelle und komplexe Zahlen [Sch-St ]
7 2. Reelle und komplexe Zahlen [Sch-St 6.4-6.5] 2.1 Körperstruktur und Anordnung von R [Kö 2.1-2.2] Für (beliebige) reelle Zahlen a, b, c R gelten die folgenden (algebraischen) Körperaxiome: (K1) a +
Kapitel 10 Komplexe Zahlen
Komplexe Zahlen Kapitel 10 Komplexe Zahlen Mathematischer Vorkurs TU Dortmund Seite 94 / 112 Komplexe Zahlen Die komplexen Zahlen entstehen aus den reellen Zahlen, indem eine neues Element i (in der Elektrotechnik
Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski
Die reellen Zahlen als Dedekindsche Schnitte Iwan Otschkowski 14.12.2016 1 1 Einleitung In dieser Ausarbeitung konstruieren wir einen vollständig geordneten Körper aus gewissen Teilmengen von Q, den Dedekindschen
Vorlesung. Komplexe Zahlen
Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems
Komplexe Zahlen (Seite 1)
(Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine
10. Die komplexen Zahlen.
10-1 Funktionen 10 Die kompleen Zahlen Dies ist ein Thema, das unberechtigter Weise als schwer gilt! Die Konstruktion der kompleen Zahlen ist viel einfacher zu verstehen ist, als einige der bisherigen
Mathematik 2 für Wirtschaftsinformatik
für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Konvergenzkriterien für Reihen Gegeben: a i Folge, s n = Divergenzkriterium n a i i=1 Ist s n konvergent a i ist Nullfolge Also äquivalent
KOMPLEXE ZAHLEN UND FUNKTIONEN
Übungen zu Theoretische Physik L2 KOMPLEXE ZAHLEN UND FUNKTIONEN E I N R E F E R A T M I T A N N E T T E Z L A T A R I T S U N D F L O R I A N G R A B N E R. 2 1. 1 0. 2 0 1 3 INHALT Geschichte Definition
5.A Die Konstruktion der komplexen Zahlen
5. Komplexe Zahlen 49 5. Komplexe Zahlen Nachdem wir die reellen Zahlen genau charakterisiert haben, wollen wir nun noch einen weiteren Körper einführen, der in der gesamten Mathematik sehr wichtig ist:
Zahlen und Gleichungen
Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen
4 Komplexe Zahlen. 4.1 Notwendigkeit und Darstellung Einführung
Komplexe Zahlen 4 4 Komplexe Zahlen Die komplexen Zahlen sind eine Erweiterung der reellen Zahlen. Die Konstruktion erfolgt durchc=r R. 4.1 Notwendigkeit und Darstellung 4.1.1 Einführung Hat die Gleichung
3.2. Polarkoordinaten
3.2. Polarkoordinaten Die geometrische Bedeutung der komplexen Multiplikation versteht man besser durch die Einführung von Polarkoordinaten. Der Betrag einer komplexen Zahl z x + i y ist r: z x 2 + y 2.
Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg
Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen
Einführung in die Komplexen Zahlen (I): Grundlagen
Einführung in die Komplexen Zahlen (I): Grundlagen von U. Kirchgraber und D. Stoffer, Departement Mathematik, ETH-Zürich Version 1/2006 Zusammenfassung Im Laufe der Entwicklung musste der Vorrat an Zahlen
12 Übungen zu Gauß-Algorithmus
Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4
Brückenkurs Mathematik für Studierende der Chemie
Brückenkurs Mathematik für Studierende der Chemie PD Dr Dirk Andrae (nach Vorlagen von Dr Werner Gans vom WS 2015/2016) Institut für Chemie und Biochemie Freie Universität Berlin 20 September 2016 1 Teil:
Mathematik I für das MW und VIW. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik
Mathematik I für das MW und VIW Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik [email protected] http://www.math.tu-dresden.de/ eppler Vorlesungsassistent:
Fortgeschrittene Mathematik Raum und Funktionen
Fortgeschrittene Mathematik Raum und Funktionen Thomas Zehrt Universität Basel WWZ Thomas Zehrt (Universität Basel WWZ) R n und Funktionen 1 / 33 Outline 1 Der n-dimensionale Raum 2 R 2 und die komplexen
Funktionen einer Variablen
Funktionen einer Variablen 1 Zahlen 1.1 Zahlmengen Im täglichen Gebrauch trifft man vor allem auf die natürlichen Zahlen N = {1,2,3,...}. Gelegentlich wird auch die Bezeichnung N 0 = {0,1,2,...} benutzt.
12 3 Komplexe Zahlen. P(x y) z = x + jy
2 3 Komplexe Zahlen 3 Komplexe Zahlen 3. Grundrechenoperationen Definition Die Menge C = {z = a + jb a, b IR; j 2 = } heißt Menge der komplexen Zahlen; j heißt imaginäre Einheit. (andere Bezeichnung: i)
Ergänzungen in Mathematik Studierende Nanowissenschaften
Hans Walser Ergänzungen in Mathematik Studierende Nanowissenschaften Komplexe Zahlen Hans Walser: Komplexe Zahlen ii Inhalt 1 Die imaginäre Einheit... 1 2 Rechenregeln... 1 3 Quadratische Gleichungen...
Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a
Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +
3. Erweiterung der trigonometrischen Funktionen
3. Erweiterung der trigonometrischen Funktionen 3.1. Polarkoordinaten 1) Rechtwinklige und Polarkoordinaten Üblicherweise gibt man die Koordinaten eines Punktes in der Ebene durch ein Zahlenpaar vor: P(x
Höhere Mathematik 3 Vorlesung im Wintersemester 2006/2007 im Wissenschaftszentrum Weihenstephan. Prof. Dr. Johann Hartl
Höhere Mathematik 3 Vorlesung im Wintersemester 2006/2007 im Wissenschaftszentrum Weihenstephan Prof. Dr. Johann Hartl Kapitel 1 Komplexe Zahlen Wozu brauchen wir komplexe Zahlen? 1 Für das Rechnen in
ax 2 + bx + c = 0, (4.1)
Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die
Menge der irrationalen Zahlen C = {z z = a + bi; a, b R, i 2 = 1} Menge der komplexen Zahlen R C Somit ergibt sich: N N Z Q R C
1 Komplexe Zahlen 1.1 Übersicht N = {1, 2, 3,... } Menge der natürlichen Zahlen ohne 0 N = {0, 1, 2, 3,... } Menge der natürlichen Zahlen mit 0 N N Z = {..., 2, 1, 0, 1, 2,... } Menge der ganzen Zahlen
Zusatzmaterial zur Mathematik I für E-Techniker Übung 2
Mathematik I für E-Techniker C. Erdmann WS 011/1, Universität Rostock,. Vorlesungswoche Zusatzmaterial zur Mathematik I für E-Techniker Übung Wiederholung - Theorie: Komplexe Zahlen (a Wir definieren mit
Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik
ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen
ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität Graz 2.1 Körperstruktur
Komplexe Zahlenmengen und ihre Abbildungen
VERSTÄNDLICHE MATHEMATIK Ilse Rapsch Komplexe Zahlenmengen und ihre Abbildungen Der Versuch, ein Kapitel der höherervmathematik anschaulich zu machen franzbecker Inhaltsübersicht VORWORT 9 EINFÜHRUNG 11
29 Komplexe Zahlen und Polynome
29 Komplexe Zahlen und Polynome 30 Komplexe Zahlen und Polynome 147 Lernziele: Konzepte: Komplexe Zahlen Resultate: Fundamentalsatz der Algebra Methoden: Polarkoordinaten Kompetenzen: Lösung kubischer
Zusammenfassung Zahlbereiche
Zusammenfassung Zahlbereiche Ekkehard Batzies 7. Mai 2008 1 Die rationalen Zahlen 1.1 Zahlbereiche in der Schule Als Zahlbereiche kennt man aus der Schule die natürlichen Zahlen, N = {0, 1, 2, 3,...},
Kapitel 1. Erste algebraische Strukturen. 1.2 Ringe und Körper
Kapitel 1 Lineare Algebra individuell M. Roczen und H. Wolter, W. Pohl, D.Popescu, R. Laza Erste algebraische Strukturen Hier werden die grundlegenden Begriffe eingeführt; sie abstrahieren vom historisch
Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen
Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die
Mathematik 1 für Wirtschaftsinformatik
für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Argumentationstechniken Direkter Beweis einer Implikation A B (analog Äquivalenz A B): A C 1 C 2... B Beweis von A B durch Gegenbeispiel
Logische Grundlagen der Mathematik, WS 2014/15
Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten
Ferienkurs Analysis 1
Skript Ferienkurs Analysis 1 Fabian Hafner und Thomas Baldauf TUM Wintersemester 2014/15 16.03.2015 Das Skript wurde teilweise übernommen vom Skript des Ferienkurses WS 2014, verfasst von Andreas Wörfel.
2D-Visualisierung komplexer Funktionen
2D-Visualisierung komplexer Funktionen 1 Komplexe Zahlen Die komplexen Zahlen C stellen eine Erweiterung der reellen Zahlen dar, in der das Polynom z 2 + 1 eine Nullstelle besitzt. Man kann sie als Paare
Grundlagen komplexe Zahlen. natürliche Zahlen
Grundlagen komplexe Zahlen Die Zahlenbereichserweiterungen von den natürlichen Zahlen hin zu den reellen Zahlen waren dadurch motiviert, bestimmte Rechenoperationen uneingeschränkt ausführen zu können.
Mathematische Strukturen
Mathematische Strukturen Lineare Algebra I Kapitel 3 18. April 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: [email protected]
FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.
FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f
Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =
1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass
