13. Funktionen in einer Variablen
|
|
|
- Martina Kranz
- vor 9 Jahren
- Abrufe
Transkript
1 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier Funktionen, die auf R bzw. einer Teilmenge von R definiert sind mit Werten in R. Schreibweise. f : D W D R ist die Definitionsmenge (Definitionsbereich), und W R ist der Wertebereich (Bildbereich). Bemerkung. Man schreibt oft f : R R und überlegt sich später, welche x R den Definitionsbereich bilden. Bemerkung. Funktionen können angegeben werden durch 1. eine Tabelle 2. einen Funktionsgraphen 3. durch eine mathematische Vorschrift x y = f(x) Wir betrachten nun wichtige Funktionen und ihre Bildungsgesetze. 1. Konstante Funktionen f : R R, x y = f(x) = c c... konstant Beispiel: f(x) = 2 x R 2. Lineare Funktionen f : R R, x y = f(x) = kx + d k, d R Der Funktionsgraph ist eine Gerade im R 2, k ist die Steigung der 1
2 Geraden und d der Ordinatenabschnitt. Ist k > 0 dann ist die Funktion monoton steigend, für k < 0 monoton fallend. 3. Parabel 2. Ordnung f : R R, x y = f(x) = ax 2 a R f(x) ist eine gerade Funktion, d.h. f(x) = f( x) x R. Für a > 0 ist f monoton steigend im Bereich x > 0, und monoton fallend im Bereich x < 0. Für a < 0 ist f monoton steigend im Bereich x < 0, und monoton fallend im Bereich x > Parabel 3. Ordnung f : R R, x y = f(x) = x 3 f(x) ist eine ungerade Funktion, d.h. f(x) = f( x) x R und monoton steigend. 5. Parabel n ter Ordnung 2
3 f : R R, x y = f(x) = x n, n N, n 2 Falls n gerade, gilt f(x) 0 x R. Des weiteren ist f(x) eine gerade Funktion, monoton steigend für x > 0 und monoton fallend für x < 0. Wenn n ungerade ist, dann ist f(x) eine ungerade monoton steigende Funktion. 6. Hyperbel 1. Ordnung f : R \ {0} R \ {0}, x y = f(x) = 1 x Die Hyperbel 1. Ordnung ist eine ungerade, monoton fallende Funktion. 7. Hyperbel 2. Ordnung f : R \ {0} R +, x y = f(x) = 1 x 2 Sie ist eine gerade Funktion, monoton fallend für x > 0 und monoton steigend für x < Hyperbel n ter Ordnung 3
4 f : R \ {0} R \ {0}, x y = f(x) = 1 x n, n N Falls n gerade ist, liegt eine gerade Funktion vor, die monoton fallend ist für x > 0, und monoton steigend für x < 0. Falls n ungerade ist, liegt eine ungerade, monoton fallende Funktion vor. Definition. 1. Eine Funktion f heißt gerade (oder symmetrisch) wenn f( x) = f(x) x D 2. Eine Funktion f heißt ungerade (oder schiefsymmetrisch) wenn f( x) = f(x) x D Bemerkung. Eine gerade Funktion ist symmetrisch bzgl. der y Achse, eine ungerade Funktion ist punktsymmetrisch bzgl. des Ursprungs. Definition. 1. Eine Funktion f heißt in einem Intervall [a, b] D monoton steigend (wachsend) wenn x 1 < x 2 f(x 1 ) f(x 2 ) x 1, x 2 [a, b] 2. Eine Funktion f heißt in einem Intervall [a, b] D monoton fallend wenn x 1 < x 2 f(x 1 ) f(x 2 ) x 1, x 2 [a, b] 4
5 3. Gilt in den obigen Relationen an Stelle von bzw. sogar < bzw. >, dann spricht man von einer streng monoton steigenden bzw. streng monoton fallenden Funktion. Beispiel. Eine konstante Funktion ist sowohl monoton steigend als auch monoton fallend. f(x) = x 2 ist streng monoton fallend im Intervall (, 0) und streng monoton steigend im Intervall (0, ). Für Funktionen können auch diverse punktweise Rechenoperationen definiert werden. Seien f 1 : D 1 W 1, f 2 : D 2 W 2. a) Gleichheit f 1 = f 2 auf D 1 D 2 f 1 (x) = f 2 (x) x D 1 D 2 b) Addition bzw. Subtraktion f(x) = (f 1 ± f 2 )(x) = f 1 (x) ± f 2 (x) x D 1 D 2 c) Multiplikation f(x) = (f 1 f 2 )(x) = f 1 (x) f 2 (x) x D 1 D 2 d) Division f(x) = ( f 1 f 2 )(x) = f 1(x) f 2 (x) x (D 1 D 2 ) \ {x : f 2 (x) = 0} Des weiteren kann unter gewissen Voraussetzungen das Zusammensetzen von Funktionen (Komposition, Hintereinanderausführung) erklärt werden. Seien g : D g W g und f : D f W f gegeben. 5
6 Gilt nun W g D f, dann gilt für jedes t D g dass x = g(t) D f und folglich kann auf dieses Element die Funktion f angewandt werden. Die Komposition f g : D g W f y = (f g)(t) = f(g(t)) ist dann erklärt durch Beispiel. Seien x = g(t) = 4t 3 und y = f(x) = 2x 2 gegeben. Dann ist y = f(g(t)) = 2(4t 3) 2. Polynomfunktionen und rationale Funktionen Die Funktion P (x) = P n (x) = a n x n + a n 1 x n 1 + a n 2 x n a 1 x + a 0 mit a i R, a n 0 heißt Polynomfunktion vom Grad n. Es gilt D P = R. Speziell ist P (x) = ax 2 + bx + c, a 0 ein quadratisches Polynom. Rationale Funktionen sind als Quotienten zweier Polynomfunktionen definiert. R(x) = P (x) Q(x), D R = R \ {x : Q(x) 0} Man kann zeigen, dass es zu einer reellen Zahl x 0 genau eine Zahl y 0 gibt mit y 2 = x. Dies führt zum Begriff der Wurzelfunktion x y = f(x) = x. Offenbar gilt ( x) 2 = x. f : R + 0 R+, wobei Bemerkung. Aus der Gleichung y 2 = x folgt natürlich y = ± x. Beispiel. Gegeben sei f(x) = y = x 2 3x + 2. Man bestimme die Definitionsmenge. 6
7 Es muss x 2 3x sein. Zerlegung in Linearfaktoren liefert x 2 3x + 2 = (x 1)(x 2) 0. x 1 0 und x 2 0 liefert x 2. x 1 0 und x 2 0 liefert x 1. Damit ist D f = {x : (x 1) (x 2)} = R \ (1, 2). 7
Mathematik für Informatik 3
Mathematik für Informatik 3 - ANALYSIS - Folgen, Reihen und Funktionen - Funktionen mehrerer Veränderlicher - Extremwertaufgaben - Normen und Approximationen - STATISTIK - WAHRSCHEINLICHKEITSRECHNUNG Literaturempfehlungen:
Kapitel 3 Relationen, Ordnung und Betrag
Kapitel 3 Relationen, Ordnung und Betrag Kapitel 3 Relationen, Ordnung und Betrag Mathematischer Vorkurs TU Dortmund Seite 27 / 254 Kapitel 3 Relationen, Ordnung und Betrag Definition 3.1 (Relationen)
Vorkurs Mathematik B
Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 8. September 2011 Für die Mathematik zentral sind Abbildungen und Funktionen. Häufig wird zwischen beiden Begriffen nicht unterschieden.
GF MA Differentialrechnung A2
Kurvendiskussion Nullstellen: Für die Nullstellen x i ( i! ) einer Funktion f gilt: Steigen bzw. Fallen: f ( x i ) = 0 f '( x) > 0 im Intervall I f ist streng monoton wachsend in I f '( x) < 0 im Intervall
Vorlesung. Inhalt. Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016
Vorlesung Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016 Inhalt Polynome, Algebraische Strukturen Vektorrechnung Lineare Algebra Elementare
Funktionen (Teschl/Teschl 5.2) Beispiele. Eine Funktion (oder Abbildung) f : M N,
Funktionen (Teschl/Teschl 5.2) Eine Funktion (oder Abbildung) f : M N, x f (x) ordnet jedem Element x einer Menge M (Denitionsbereich) eindeutig ein Element y = f (x) einer Menge N (Werte- oder Bildbereich)
Dieses Kapitel vermittelt:
2 Funktionen Lernziele Dieses Kapitel vermittelt: wie die Abhängigkeit quantitativer Größen mit Funktionen beschrieben wird die erforderlichen Grundkenntnisse elementarer Funktionen grundlegende Eigenschaften
1.2 Einfache Eigenschaften von Funktionen
1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine
Zuammenfassung: Reelle Funktionen
Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,
4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen
4.1. Grundlegende Definitionen Elemente der Analysis I Kapitel 4: Funktionen einer Variablen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 22./29. November 2010 http://www.mathematik.uni-trier.de/
2 Funktionen einer Variablen
2 Funktionen einer Variablen 2.1 Einführende Beispiele Kostenfunktion und Stückkostenfunktion: Das Unternehmen Miel produziert hochwertige Waschmaschinen. Es hat monatliche Fikosten von 170.000. Die sind
Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 2.1
.1 Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen & Gleichungssysteme Quadratische und Gleichungen
F u n k t i o n e n Zusammenfassung
F u n k t i o n e n Zusammenfassung Johann Carl Friedrich Gauss (*1777 in Braunschweig, 1855 in Göttingen) war ein deutscher Mathematiker, Astronom und Physiker mit einem breit gefächerten Feld an Interessen.
Gerade, ungerade oder weder noch? Algebraische und graphische Beweise. 4-E1 Vorkurs, Mathematik
Gerade, ungerade oder weder noch? Algebraische und graphische Beweise 4-E1 Symmetrie einer Funktion: Aufgabe 3 Bestimmen Sie algebraisch und graphisch, ob die Funktionen gerade oder ungerade sind, oder
Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5
Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Der Graph einer Funktion
2. Funktionen einer Variablen
. Funktionen einer Variablen Literatur: [SH, Kapitel 4].1. Definitionen.. Typen von Funktionen..1. Lineare Funktionen... Quadratische Funktionen..3. Polynome..4. Potenzfunktionen..5. Exponentialfunktionen..6.
Polynome. Analysis 1 für Informatik
Gunter Ochs Analysis 1 für Informatik Polynome sind reelle Funktionen, die sich ausschlieÿlich mit den Rechenoperation Addition, Subtraktion und Multiplikation berechnen lassen. Die allgemeine Funktionsgleichung
Einführung. Ablesen von einander zugeordneten Werten
Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,
Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2. 1 Translationen 2. 2 Skalierungen 4. 3 Die Wurzelfunktion 6
Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2 Inhaltsverzeichnis 1 Translationen 2 2 Skalierungen 4 3 Die
, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n
. Graphen gebrochen rationaler Funktionen ==================================================================. Verhalten in der Umgebung der Definitionslücken ------------------------------------------------------------------------------------------------------------------
Brüche, Polynome, Terme
KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................
Ganzrationale Funktionen
Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade
Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion
Mathe - Lernzettel: Nullstellen, Monotonie und Ableitungen
Mathe - Lernzettel: Nullstellen, Monotonie und Ableitungen Leun4m 29. April 2015 Version: 0 Ich kann nicht für Richtigkeit garantieren! Inhaltsverzeichnis 1 Themenübersicht 1 2 Funktionen und Graphen 2
Kapitel 6 Grenzwerte von Funktionen und Stetigkeit
Kapitel 6 Grenzwerte von Funktionen und Stetigkeit 225 Relle Funktionen Im Folgenden betrachten wir reelle Funktionen f : D R, mit D R. Wir suchen eine formale Definition für den folgenden Sachverhalt.
x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.
SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten
Kapitel II. Vektoren und Matrizen
Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft
1 Analysis Kurvendiskussion
1 Analysis Kurvendiskussion 1.1 Allgemeingültige Betrachtungen Die folgenden aufgezeigten Betrachtungen und Rechenschritte gelten für alle Arten von Funktionen. Funktion (z.b. Polynom n-ten Grades) Schreibweise
Mathematik für Wirtschaftswissenschaftler
Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel
Urs Wyder, 4057 Basel Funktionen. f x x x x 2
Urs Wyder, 4057 Basel [email protected] Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4
Funktionen. Mathematik-Repetitorium
Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2
5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0).
5 Quadriken Kegelschnitte Ein Kegelschnitt ist eine Teilmenge K R 2, welche durch eine quadratische Gleichung in zwei Unbestimmten beschrieben werden kann: x K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f =
4 Ganzrationale Funktionen
FOS, Jahrgangsstufe (technisch) 4 Ganzrationale Funktionen 4 Polynomfunktionen Eine Funktion, die man auf die Form f : x a n x n + a n x n + + a 2 x 2 + a x + a 0 mit x R bringen kann, heißt ganzrationale
Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen
Kurvendiskussion Ganzrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Ganzrationale Funktion Quadratische Funktionen f x) = ax + bx + c 8. Aufgaben...................................................
Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard
GRUNDWISSEN MATHEMATIK Funktionenlehre Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngmnasiums Bad Neustadt und des Kurt-Huber-Gmnasiums Gräfelfing J O H A N N
Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion :
Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x, D = R, heißt Quadratfunktion. Wertetabelle : x 0 0,5 1 3 4 0,5 1
Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }
Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird
4.5. Ganzrationale Funktionen
.5. Ganzrationale Funktionen Definition Eine Funktion der Gestalt f(x) = a n x n a n 1 x n 1... a 2 x 2 a 1 x a 0 mit reellen Koeffizienten a n, a n 1,... und a n 0 heißt ganzrationale Funktion n-ten Grades
Bezeichnung von Funktionen x := y:=
Bezeichnung von Funktionen x := y:= Bezeichnung von Funktionen x := y:= Analytische Darstellung (Funktionsgleichung) Explizit: (aufgelöst nach y) Analytische Darstellung (Funktionsgleichung) Explizit:
Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11.
Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version.0. September 05) E. Cramer, U. Kamps, M. Kateri, M. Burkschat 05 Cramer, Kamps, Kateri, Burkschat
Vorkurs Mathematik 2016
Vorkurs Mathematik 2016 Natürliche Zahlen Der grundlegende Zahlenbereich ist die Menge der natürlichen Zahlen N = {1, 2, 3,...}. In vielen Fällen ist es sinnvoll die Zahl 0 mit einzubeziehen: N 0 = N [
Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form
3. Polynome 3.1 Definition und Grundlagen Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0,
Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt
Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt f 1 : W D, y wobei D mit f() = y die Umkehrfunktion zu f. Der Graph G f 1 = {(y,
Definitions- und Formelübersicht Mathematik
Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar
Funktionenklassen. Einiges, was wir bisher über Funktionen gelernt haben kann auf alle Funktionen übertragen werden.
R. Brinkmann http://brinkmann-du.de Seite 0.0.008 Einführung: Funktionenklassen Bisher haben wir nur ganzrationale Funktionen kennen gelernt. Sie gehören zu der Klasse der Rationalen Funktionen. In der
4 FUNKTIONEN 71. Sind a < b und c < d zwei reelle Zahlen, so nennt man [a, b] [c, d] ein abgeschlossenes Rechteck.
4 FUNKTIONEN 7 4 Funktionen Die Paarmengen {x, y} und {y, x} sind gleich, weil sie die gleichen Elemente enthalten. Manchmal legt man aber zusätzlich Wert auf die Reihenfolge der Elemente. Die Objekte
Beschränktheit, Monotonie & Symmetrie
Beschränktheit, Monotonie & Symmetrie ein Referat Dies ist eine Beilage zum Gruppen-SOL - Projekt Potenz- & Exponentialfunktionen Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch November 2015 Inhaltsverzeichnis
1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem
.0.0. Funktionen einer reellen Veränderlichen und ihre Darstellung im, - Koordinatensstem Vereinbarungen Wir betrachten vorerst nur noch Funktionen f, deren Definitionsund Wertebereich jeweils R oder ein
Übungsaufgaben zur Kurvendiskussion
SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen
Zahlen und metrische Räume
Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus
Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4
Mag. Mone Denninger 10. Oktober 2004 Inhaltsverzeichnis 1 Definitionsmenge 2 1.1 Verhalten am Rand und an den Lücken des Definitionsbereichs............................ 2 2 Nullstellen 2 3 Extremwerte
K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis
Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).
Symmetrien, gerade und ungerade Funktionen
Symmetrien, gerade und ungerade Funktionen Wir Menschen fühlen uns von Symmetrien angezogen. 1-E1 1-E2 Vorausgesetzte Kenntnisse Definition einer Funktion, einer Relation, des Definitionsbereiches einer
gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind
Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl
Mathematik für Anwender I
Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren
Gleichungen und Ungleichungen
Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.
Gleichungen und Ungleichungen
Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.
Gleichungen und Ungleichungen
Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung
Übungen zur Vorlesung Mathematik für Chemiker 1
Prof. Dr. D. Egorova Prof. Dr. B. Hartke Lösungen Aufgabe Übungen zur Vorlesung Mathematik für Chemiker WiSe 204/5 Blatt 2 0.-2..204 f( x) = f(x) = gerade f( x) = f(x) = ungerade 8 6 4 2. f ( x) = ( x
Celle. Betragsfunktion 1-E1. Vorkurs, Mathematik
Celle Betragsfunktion 1-E1 1-E2 Betragsfunktion y = x : Aufgabe 1 Abb. 1: Graph der Betragsfunktion y = x Die Abb. 3-1 zeigt die Betragsfunktion y = x. Beschreiben Sie die Eigenschaften dieser Funktion:
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 21. Januar 2016 Definition 8.1 Eine Menge R zusammen mit zwei binären Operationen
Definitions- und Wertebereich von Funktionen und Relationen
Definitions- und Wertebereich von Funktionen und Relationen -E -E2 -E3 Wiederholung: Definition einer Funktionen Definition: Unter einer Funktion versteht man eine Vorschrift, die jedem Element x aus einer
HTBLA VÖCKLABRUCK STET
HTBLA VÖCKLABRUCK STET Relationen und Funktionen 2 INHALTSVERZEICHNIS 1. RELATIONEN... 3 2. FUNKTIONEN... 4 2.1. LINEARE FUNKTION... 6 Relationen und Funktionen 3 1. RELATIONEN Def.: Eine Relation zwischen
WURZEL Werkstatt Mathematik Polynome Grundlagen
Die WURZEL Werkstatt Mathematik Polynome Grundlagen Wer lange genug über hunderten von Problemen gebrütet hat, kann bei vielen bereits erraten, aus welchem Land sie kommen. So lieben die Briten etwa die
Mathematik II. D K, z P(z) Q(z), wobei D das Komplement der Nullstellen von Q ist, eine rationale Funktion.
rof. Dr. H. Brenner Osnabrück SS 200 Mathematik II Vorlesung 34 Wir erinnern an den Begriff einer rationalen Funktion. Definition 34.. Zu zwei olynomen,q K[X], Q 0, heißt die Funktion D K, z (z) Q(z),
F u n k t i o n e n Potenzfunktionen
F u n k t i o n e n Potenzfunktionen Die Kathedrale von Brasilia steht in der brasilianischen Hauptstadt Brasilia wurde von Oscar Niemeyer (*907 in Rio de Janeiro). Die Kathedrale von Brasilia besteht
e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1.
8. GRENZWERTE UND STETIGKEIT VON FUNKTIONEN 51 e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme cos(x+y) = cos(x) cos(y) sin(x) sin(y) und sin(x+y) = cos(x) sin(y)+sin(x) cos(y). f. Für eine
+ 2. Bruchgleichungen
Bruchgleichungen Gleichungen mit einer Lösungsvariablen im Nenner eines Bruchs heißen Bruchgleichungen. Definitionsmenge: Nenner 0 Lösungsweg: 1. Multiplikation mit dem Hauptnenner 2. Äquivalenzumformungen
4 Gewöhnliche Differentialgleichungen
4 Gewöhnliche Differentialgleichungen 4.1 Einleitung Definition 4.1 Gewöhnliche Differentialgleichung n-ter Ordnung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten
Kapitel III Ringe und Körper
Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem
Mathematischer Vorkurs NAT-ING II
Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 15 Komplexe Zahlen Mathematischer Vorkurs TU Dortmund Seite
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x
6 Polynome mit reellen Koeffizienten
6 Polynome mit reellen Koeffizienten 6.1 Verknüpfungen reellwertiger Funktionen 6.2 Polynome und rationale Funktionen 6.4 Nullstellensatz und Identitätssatz für Polynome 6.5 Grad eines Polynoms 6.8 Division
Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker
REELLE FUNKTIONEN 1 Was muss aufgeführt werden, wenn man eine reelle Funktion angibt? a) Ihre Funktionsvorschrift und ihren Wertebereich. Ihre Funktionsvorschrift und ihren Definitionsbereich. c) Den Wertebereich
VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA
VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Dienstag: (Un)Gleichungen in einer Variable, Reelle Funktionen Reelle Funktionen und Lineare Gleichungen. Funktionen sind von
Mathematik für Ökonomen 1
Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen
f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1
III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare
Ableitungsfunktion einer linearen Funktion
Ableitungsfunktion einer linearen Funktion Aufgabennummer: 1_009 Prüfungsteil: Typ 1! Typ 2 " Aufgabenformat: Konstruktionsformat Grundkompetenz: AN 3.1! keine Hilfsmittel! gewohnte Hilfsmittel möglich
mathphys-online POTENZFUNKTIONEN
POTENZFUNKTIONEN Potenzfuntionen Inhaltsverzeichnis Kapitel Inhalt Seite Definition Parabeln Hyperbeln Wurzelfuntionen 6 Graphien erstellt mit Mathcad 5 Januar 0 Potenzfuntionen Potenzfuntionen. Definition
Differential- und Integralrechnung
Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik
Aufgaben zu den ganzrationalen Funktionen
Aufgaben zu den ganzrationalen Funktionen. Bestimmen Sie die Nullstellen folgender ganzrationaler Funktionen. a) y x + x 6 b) y x x + x c) y (x + )(x + x ) d) y x 5x + e) y x + x x + 0 f) y x x 5x +50x
Inhaltsverzeichnis Mathematik
1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)
Einleitung 1. 3 Beweistechniken und einige Beweise Teil I 19
Inhaltsverzeichnis Inhaltsverzeichnis iv Einleitung 1 1 Aussagen, Mengen und Quantoren 3 1.1 Aussagen und logische Verknüpfungen........................ 3 1.2 Mengen.........................................
Grundwissen Mathematik JS 11
GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math-naturw u neusprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 957 PEGNITZ FERNRUF 94/48 FAX 94/564 Grundwissen Mathematik JS Was versteht man allgemein unter einer
Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007
Workshops zur VO Einführung in das mathematische Arbeiten im SS 007 Inhaltsverzeichnis Funktionen Evelina Erlacher 7. März 007 Der Funktionsbegriff Darstellungsmöglichkeiten von Funktionen 3 Einige Typen
1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:
Lösung 1. Übung Elemente der Algebra WS017/18 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 3x+4y 1}.
Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik
e Exponentialfunktionen Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik Exponentialfunktionen Potenzfunktion: y = x 9 Exponentialfunktion: y = 9 x Die Potenz- und die Exponentialfunktionen
