1 Analysis Kurvendiskussion
|
|
|
- Sofia Pfaff
- vor 9 Jahren
- Abrufe
Transkript
1 1 Analysis Kurvendiskussion 1.1 Allgemeingültige Betrachtungen Die folgenden aufgezeigten Betrachtungen und Rechenschritte gelten für alle Arten von Funktionen. Funktion (z.b. Polynom n-ten Grades) Schreibweise als: Funktionsgleichung: Zuordnungsvorschrift: f(x) = a n x n +a n 1 x n 1 + +a 0 f : x a n x n +a n 1 x n 1 + +a 0 eine Funktion liegt vor, wenn jedem x-wert genau ein y-wert zugeordnet ist wobei einem y-wert mehrere x-werte zugeordnet sein können Beachte: ist einem x-wert mehr als ein y-wert zugeordnet, dann liegt keine Funktion, sondern eine Relation vor (z.b. Kreis im Koordinatensystem) Schnittpunkt S y (0 y) mit y-achse alle x-werte x = 0 setzen, d.h. f(0) = = = ausrechnen Nullstellen N i (x i 0) (Schnittpunkte mit x-achse) y-wert y = 0 setzen, d.h. f(x) = 0 =... = Gleichung nach x auflösen zugehöriger y-wert bei gegebenem x-wert gegebenen x-wert einsetzen in f(x) = = = ausrechnen zugehöriger x-wert bei gegebenem y-wert gegebenen y-wert in f(x) = y =... einsetzen = Gleichung nach x auflösen Monotonieverhalten beschreibt das Verhalten der Funktion bei ansteigenden x-werten (d.h. von links nach rechts) monoton steigend, wenn gilt (h IR + ) monoton fallend, wenn gilt (h IR + ) f(x) < f(x+h) f(x) > f(x+h) Definitionsmenge D f Menge D f aller x-werte, für welche die Funktion f(x) definiert ist (d.h. x-werte, die die Funktion annehmen kann) 1
2 die Definitionsmenge D f wird eingeschränkt durch Definitionslücken bzw. senkrechte Asymptoten Wertemenge W f Menge W f aller y-werte, die die Funktion annimmt die Wertemenge W f wird eingeschränkt durch absolute Maxima oder Minima und durch waagerechte (schräge) Asymptoten Schnittpunkte S i (x i y i ) der Graphen zweier Funktionen Gleichsetzen der Funktionsgleichungen f(x) = g(x) Auflösen der entstandenen Gleichung nach x Einsetzen der x-werte in eine der beiden Funktionsgleichungen und berechnen der dazugehörigen y-werte = S 1 (x 1 y 1 ), S 2 (x 2 y 2 ), etc. Extremwerte (Maxima, Minima, Terrassenpunkte) Wendepunkte und Krümmungsverhalten Stetigkeit Differenzierbarkeit Definitionslücke und Asymptoten Differentialrechnung Integralrechnung 1.2 Lineare Funktionen Geraden Funktionsgleichung f(x) = mx+t bei gegebenen Graphen durch Ablesen des Schnittpunktes t mit der y-achse und der Steigung m mittels Steigungsdreieck Steigung Schnittpunkt mit y-achse Zeichnen des Graphen m = y x = y 2 y 1 x 2 x 1 f(0) = m 0+t = t markieren von S y (0 t) als Schnittpunkt auf der y-achse 2
3 ausgehend von S y (0 t) markieren eines zweiten Punktes S(x 2 y 2 ) mittels Steigungsdreieck ( x nach rechts oder links entsprechend Vorzeichen und y nach oben) verbinden der beiden Punkte S y (0 t) und S(x 2 y 2 ) Nullstellen (Schnittpunkt mit x-achse) Funktionsgleichung gleich Null setzen f(x) = 0 und nach x auflösen mx+t = 0 Monotonieverhalten monoton steigend für m > 0 monoton fallend für m < 0 x = t m für m = 0 = f(x) = t = f(x) ist parallel zur x-achse Definitionsmenge D f = IR Wertemenge W f = IR (für m 0) Erstellen der Funktionsgleichung bei zwei gegebenen Punkten A(x 1 y 1 ) und B(x 2 y 2 ) sind gegeben Steigung berechnen m = y 2 y 1 x 2 x 1 m und x-, y-wert von A oder B in y = mx+t einsetzen und t berechnen m und t in f(x) = mx+t einsetzen Schnittpunkte mit Graphen anderer Funktionen z.b. Schnittpunkt zweier Geraden f(x) = m 1 x+t 1 und g(x) = m 2 x+t 2 = m 1 x+t 1 = m 2 x+t 2 (m 1 m 2 ) x = t 2 t 1 x s = t 2 t 1 m 1 m 2 x s in f(x) oder g(x) einsetzen und y s ausrechnen = S(x s y s ) oder: f(x) und g(x) als Gleichungssystem mit zwei Gleichungen I und II (Variablen x und y) mittels Gleichsetzungs-, Einsetz- oder Additionsverfahren lösen Normale zwei Geraden stehen aufeinander senkrecht unter einer NormalenimPunkt P(x 0 y 0 )versteht maneinegeradeg n (x) = m n x+ t n, die im Punkt P(x 0 y 0 ) auf dem Graphen einer anderen Funktion, z.b. Gerade f(x) = mx+t, senkrecht steht Steigung m n der Normalen berechnet sich durch m n = 1 m 3
4 1.3 Gebrochen rationale Funktionen Hyperbeln Funktionsgleichung f(x) = a nx n +a n 1 x n a 1 x+a 0 b m x m +b m 1 x m b 1 x+b 0 eine gebrochen rationale Funktion ist eine Funktion, welche im Nenner die Variable x enthält Beispiele: f(x) = 1 ; g(x) = 1 ; h(x) = x2 +2x ; k(x) = x3 +x 2 +1 x x 2 1 x 3 +x 2 2x Definitionsmenge, Definitionslücke und Asymptoten Definitionslücke x l wird berechnet, durch Null setzen des Nenners b m x m +b m 1 x m b 1 x+b 0 = 0 und auflösen nach der Variable x l =... Definitionsmenge D f = IR\{x l } senkrechte Asymptoten sind vorhanden an der Stelle der Definitionslücke x l =... x-achse als Asymptote, wenn Zaehlergrad < Nennergrad waagerechte Asymptoten sind vorhanden, wenn Zaehlergrad = Nennergrad d.h. der Grenzwert der Funktion geht gegen eine Konstante = Konstante ist Asymptote schräge Asymptoten sind vorhanden, wenn der Zaehhlergrad > Nennergrad Wertemenge ist abhängig von waagerechten, schrägen Asymptoten etc. Schnittpunkt mit y-achse vorhanden, wenn keine Definitionslücke an der Stelle x = 0 existiert x = 0 in die Funktionsgleichung einsetzen = f(0) =... = Nullstellen Nullstellen werden berechnet, durch Null setzen des Zählers a n x n +a n 1 x n a 1 x+a 0 = 0 und auflösen nach der Variable x i = Quadratische Funktionen Parabeln Formen quadratischer Gleichungen allgemeine Form f(x) = ax 2 +bx+c Scheitelpunktform f(x) = a(x x s ) 2 +y s mit Scheitelpunkt S(x s y s ) Nullstellenform f(x) = a (x x 1 ) (x x 2 ) mit Nullstellen N 1 (x 1 0), N 2 (x 2 0) 4
5 Abbildung 1: Beziehungen/Umwandlung verschiedener Formen quadratischer Gleichungen Normalform f(x) = x 2 +px+q Faktor a a > 0: Parabel nach oben geöffnet a < 0: Parabel nach unten geöffnet a = 1: Normalparabel a > 1: gestreckte Parabel, d.h. schmaler als Normalparabel a < 1: gestauchte Parabel, d.h. breiter als Normalparabel Verschiebung der Graph der Funktion f(x) = a(x x s ) 2 +y s entsteht aus der unverschobenen Funktion f(x) = ax 2 durch Verschiebung um x s in x-richtung und um y s in y-richtung Definitionsmenge D f = IR Wertemenge W f = [x s ; [ (für a > 0) und W f =] ;x s ] (für a < 0) Nullstellen für b = 0 = ax 2 +c = 0 = x 1,2 = ± c a für c = 0 = ax 2 +bx = x(ax+b) = 0 = x 1 = 0 und x 2 = b a für ax 2 +bx+c = 0 = x 1,2 = b ± b 2 4 a c 2 a Schnittpunkt mit der y-achse f(0) = a 0+b 0+c = c Aufstellung der Funktionsgleichung Scheitelpunkt S(x s y s ) und weiterer Punkt P(x y) x-, y-werte von S und P in die Scheitelpunktsform einsetzen und Parameter a ausrechnen = f(x) = a(x x s ) 2 +y s 5
6 Nullstellen N 1 (x 1 0), N 2 (x 2 0) und weiterer Punkt P(x y) x-, y-werte von N 1 und N 2 in die Nullstellenform einsetzen und Parameter a ausrechnen = f(x) = a (x x 1 ) (x x 2 ) drei Punkte P(x 1 y 1 ), Q(x 2 y 2 ), R(x 3 y 3 ) Punkte P, Q, R jeweils in die allgemeine Form einsetzen und System aus drei Gleichungen I, II, III mittels Einsetz-Verfahren etc. nach den drei Parametern a, b, c auflösen = f(x) = ax 2 +bx+c Schnittpunkte mit Graphen anderer Funktionen Parabel & Gerade: Funktionen gleich setzen = x-werte berechnen = y- Werte mit einer Funktionsgleichung berechnen ax 2 +bx+c = mx+t ax 2 +(b m)x+(c t) = 0 x 1,2 = (b m) ± (b m) 2 4a(c t) 2a Parabel & Parabel: Funktionen gleich setzen = x-werte berechnen = y- Werte mit einer Funktionsgleichung berechnen a 1 x 2 +b 1 x+c 1 = a 2 x 2 +b 2 x+c 2 (a 1 a 2 )x 2 +(b 1 b 2 )x+(c 1 c 2 ) = 0 Extremwert-Probleme x 1,2 = (b 1 b 2 ) ± (b 1 b 2 ) 2 4(a 1 a 2 )(c 1 c 2 ) 2(a 1 a 2 ) Aufstellung einer Extremwert-Gleichung für den Extremwert der gesuchten Größe (z.b. Formel für Fläche etc.) aus den Angaben/Fragestellung der Aufgabe enthält die aufgestellte Extremwert-Gleichung zwei Variable, so muss eine weitere Gleichung aus den Bedingungen aufgestellt werden, die es ermöglicht, eine der beiden Variablen durch die andere Variable auszudrücken = eine Variable kann in der Extremwertgleichung eliminiert werden die neue Form der Extremwert-Gleichung mit nur noch einer Variablen hat die Form einer quadratischen Gleichung = der Scheitelpunkt ist die Lösung des Problems die Extremwertgleichung muss mittels quadratischer Ergänzung in die Scheitelpunktsform umgewandelt werden = der y-wert des Scheitelpunktes gibt den Maximal- bzw. Minimalwert der gesuchten Größe an der x-wert des Scheitelpunktes gibt den Wert an, für welchen die gesuchte Größe maximal bzw. minimal wird 6
7 1.5 Trigonometrische Funktionen sin, cos, tan, cot 1.6 Wurzelfunktionen 1.7 Logarithmische Funktionen 1.8 Exponetialfunktionen 1.9 Potenzfunktionen 1.10 Polynome 7
f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1
III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare
+ 2. Bruchgleichungen
Bruchgleichungen Gleichungen mit einer Lösungsvariablen im Nenner eines Bruchs heißen Bruchgleichungen. Definitionsmenge: Nenner 0 Lösungsweg: 1. Multiplikation mit dem Hauptnenner 2. Äquivalenzumformungen
Mathematik 9. Quadratische Funktionen
Mathematik 9 Funktionen Eine Zuordnung f, die jedem x einer Menge D (Definitionsmenge) genau ein Element y = f(x) einer Menge Z (Zielmenge) zuordnet, heißt Funktion. Dabei heißt y = f(x) Funktionswert
Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion :
Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x, D = R, heißt Quadratfunktion. Wertetabelle : x 0 0,5 1 3 4 0,5 1
Grundwissen Mathematik JS 11
GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math-naturw u neusprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 957 PEGNITZ FERNRUF 94/48 FAX 94/564 Grundwissen Mathematik JS Was versteht man allgemein unter einer
Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.
Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m
x 0 0,5 1 2 3 4 0,5 1 2. Die Quadratfunktion ist für x 0 streng monoton fallend und für x 0 streng monoton steigend.
Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x 2, D = R, heißt Quadratfunktion. Ihr Graph heißt Normalparabel. Wertetabelle
Parabeln - quadratische Funktionen
Parabeln - quadratische Funktionen Roland Heynkes 9.11.005, Aachen Das Gleichsetzungsverfahren und die davon abgeleiteten Einsetzungs- und Additionsverfahren kennen wir als Methoden zur Lösung linearer
3 Lineare und quadratische Funktionen
3 Lineare und quadratische Funktionen 31 Lineare Funktion Eine Funktion der Art f : mx + t, sind reelle Zahlen) x D heißt lineare Funktion (m und t Man kann die Funktionsgleichung auf zwei verschiedene
Quadratische Funktion
Quadratische Funktion sind Funktionen die nur eine Variable enthalten, deren Exponent 2 ist und keine Variable die einen Exponenten enthält, der größer ist als 2. Zum Beispiel die quadratische Funktion
f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5
11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =
Quadratische Funktion Aufgaben und Lösungen
Quadratische Funktion Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Graph und Eigenschaften. y = a x + b x + c...............................................
Gebrochen-rationale Funktionen
Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Zähler und Nenner eine ganzrationale Funktion (Polynom) befindet: Eigenschaften f(x) = g(x) h(x) Echt gebrochen-rationale
6 Trigonometrische Funktionen
6 Trigonometrische Funktionen 6. Definition Die Trigonometrischen Funktionen (oder Winkelfunktionen) Sinus-, Kosinusund Tangensfunktion stellen den Zusammenhang zwischen Winkel und Seitenverhältnis dar.
Einführung. Ablesen von einander zugeordneten Werten
Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,
Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen
Kurvendiskussion Ganzrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Ganzrationale Funktion Quadratische Funktionen f x) = ax + bx + c 8. Aufgaben...................................................
Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation
Verschiebung/Streckung von Funktionsgraphen Verwenden von Schablonen zum Zeichnen von Funktionsgraphen Idee der Koordinatentransformation Rahmenlehrplan Berlin P4 9/10: Situationen mit n und Potenzfunktionen
Quadratische Funktionen Arbeitsblatt 1
Quadratische Funktionen Arbeitsblatt 1 Spezielle quadratische Funktion Die Funktionsgleichung einer speziellen quadratischen Funktion hat die Form y = 3 x 2. Der dazugehörige Graph heißt Parabel. Bei einer
gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind
Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl
Was ist eine Funktion?
Lerndomino zum Thema Funktionsbegriff Kopiereen Sie die Seite (damit Sie einen Kontrollbogen haben), schneiden Sie aus der Kopie die "Dominosteine" zeilenweise aus, mischen Sie die "Dominosteine" und verteilen
Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen
Thema: Quadratische Funktionen quadratische Gleichungen Normalform einer linearen Funktion Normalform einer quadratischen Funktion Handelt es sich um quadratische Funktionen??? Ja, denn a = 3, b = 0, c
Die gebrochenrationale Funktion
Die gebrochenrationale Funktion Definition: Unter einer gebrochenrationalen Funktion versteht man den Quotienten zweier ganzrationaler Funktionen, d.h. Funktionen der Form f :x! a n xn + a n 1 x n 1 +...+
Kurvendiskussion Gebrochenrationale Funktion Aufgaben und Lösungen
Kurvendiskussion Gebrochenrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 7. September 0 Inhaltsverzeichnis Gebrochenrationale Funktion Gebrochen rationale Funktion Zählergrad < Nennergrad
Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu.
Basistext Funktionen Definition Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu. Man schreibt: f: x -> y mit y = f(x) Die Wertemenge einer Funktion f besteht aus
Zuammenfassung: Reelle Funktionen
Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,
1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,2)
Vermischte Übungen (1) Verschiebung der Normalparabel 1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,). In der Abbildung
Repetitionsaufgaben: Quadratische Funktionen
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Quadratische Funktionen Zusammengestellt von Felix Huber, KSR Lernziele: - Sie wissen, dass der Graph einer quadratischen Funktion eine Parabel ist
Einfache quadratische Funktionen und Gleichungen. x y Wertetabelle. y-achse
Einfache quadratische Funktionen und Gleichungen Eine quadratische Funktion hat allgemein die Funktion: y = ax 2 + bx + c Dabei gilt: a, b und c R und a 0 Der Graph, der hierbei entsteht ist eine Parabel.
Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.
Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden
Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate
Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +
Potenzen Potenzfunktionen und ihre Eigenschaften Abbilden von Funktionsgraphen
Wie können Gleichungen der Form x n = a; a 0 n N gelöst werden? Wir benötigen die n-te Wurzel: n x = a Was ist, wenn n Q statt n N? (Q: rationale Zahlen; alle Brüche, auch negative N: natürliche Zahlen;
Urs Wyder, 4057 Basel Funktionen. f x x x x 2
Urs Wyder, 4057 Basel [email protected] Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4
1 Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an.
Teste dich! - (/6) Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an. 0 Cornelsen Verlag, Berlin. Alle Rechte vorbehalten. Gemeinsamkeiten: Beide
Abitur 2010 Mathematik GK Infinitesimalrechnung I
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2010 Mathematik GK Infinitesimalrechnung I Teilaufgabe 2 (4 BE) Gegeben ist für k R + die Schar von Funktionen f k : x 1 Definitionsbereich D k. Der
Übungsaufgaben zur Kurvendiskussion
SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen
Gebrochen-rationale Funktionen
Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Nenner befindet. f() = a h() Beispiel 1: f() = 1 Beispiel 2: f() = 1 ² Definitionsbereich und Definitionslücken Bei einer
GF MA Differentialrechnung A2
Kurvendiskussion Nullstellen: Für die Nullstellen x i ( i! ) einer Funktion f gilt: Steigen bzw. Fallen: f ( x i ) = 0 f '( x) > 0 im Intervall I f ist streng monoton wachsend in I f '( x) < 0 im Intervall
13. Funktionen in einer Variablen
13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier
Abiturprüfung Mathematik 13 Technik A II - Lösung
GS.6.6 - m6_3t-a_lsg_gs.pdf Abiturprüfung 6 - Mathematik 3 Technik A II - Lösung Teilaufgabe Gegeben ist die Funktion f mit f( x) mit der Definitionsmenge D f IR \ { ; 3 }. Teilaufgabe. ( BE) Geben Sie
mathphys-online QUADRATISCHE FUNKTIONEN
QUADRATICHE FUNKTIONEN Inhaltsverzeichnis Kapitel Inhalt eite Zuordnungsvorschriften, Funktionsgraph ymmetrie. ymmetrie zur. ymmetrie zu einer Parallelen zur Nullstellen Anzahl der Nullstellen 7 cheitel
= mit der Definitionsmenge D f = IR \ { 1 ; 3 }.
Abiturprüfung Berufliche Oberschule 6 Mathematik 3 Technik - A II - Lösung Teilaufgabe Gegeben ist die Funktion f mit f( x) ( x ) mit der Definitionsmenge D ( x ) ( x 3) f IR \ { ; 3 }. Teilaufgabe. (
Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard
GRUNDWISSEN MATHEMATIK Funktionenlehre Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngmnasiums Bad Neustadt und des Kurt-Huber-Gmnasiums Gräfelfing J O H A N N
Diese Funktion ist mein Typ!
Diese Funktion ist mein Typ! Überblick über die wichtigsten Funktionstypen der 10.Jgst.: Lineare Funktionen Quadratische Funktionen Ganzrationale Funktionen Gebrochen-rationale Funktionen Trigonometrische
Theorie: Quadratische Funktionen
1 Theorie: Quadratische Funktionen Ben Hambrecht Inhaltsverzeichnis 1 Zahlenfolgen und ihre Differenzen 2 2 Parabeln 3 3 Einfache quadratische Funktionen 4 4 Allgemeine quadratische Funktionen 5 5 Quadratische
Vorbereitung auf die erste Klassenarbeit
01 QUADRATISCHE FUNKTIONEN Wiederholungen Alles um Quadratische Funktionen Vorbereitung auf die erste Klassenarbeit Aufgabe 1: Schuljahr 2017/18 Seite 1/12 Aufgabe 2: Schuljahr 2017/18 Seite 2/12 Aufgabe
Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen
Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen Das hast du schon gelernt: Aufgabe : a) Definitionsbereich TIPP: Definitionsbereich Nenner darf nicht Null werden x 0 x
4 Funktionen und Gleichungen Funktionen und Gleichungen
4 Funktionen und Gleichungen 66 4 Funktionen und Gleichungen Funktionen sind ganz grundlegende Objekte der Mathematik und nehmen daher auch im Schulunterricht einen breiten Raum ein. Normalerweise wird
QUADRATISCHE FUNKTIONEN
QUADRATISCHE FUNKTION DARSTELLUNG MIT DER FUNKTIONSGLEICHUNG Allgemeine Form - Vorzeichen von a gibt an, ob die Funktion nach oben (+) oder unten (-) geöffnet ist. Der Wert (Betrag) von gibt an, ob die
Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.
LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)
Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform. y 2 x 2x 3 2 ausklammern. Binom.
Parabel zeichnen Parabel zeichnen Schritt für Schrittanleitungen unter www.fraengg.ch Klasse, GeoGebra) Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform
Wiederholung Quadratische Funktionen (Parabeln)
SEITE 1 VON 7 Wiederholung Quadratische Funktionen (Parabeln) VON HEINZ BÖER 1. Regeln a) Funktionsvorschriften Normalform f(x) = a x² + b x + c Normalparabel: f(x) = x 2 Graf der Normalparabel Die einfachste
Ü b u n g s a r b e i t
Ü b u n g s a r b e i t Aufgabe. a) Die Querschnittsfläche eines Abwasserkanals ist im unteren Teil von einer Parabel k begrenzt, an die sich nach oben die beiden Geraden g und h anschließen. Bestimmen
Übungsaufgaben zur Linearen Funktion
Übungsaufgaben zur Linearen Funktion Aufgabe 1 Bestimmen Sie den Schnittpunkt der beiden Geraden mit den Funktionsgleichungen f 1 (x) = 3x + 7 und f (x) = x 13! Aufgabe Bestimmen Sie den Schnittpunkt der
Leitprogramm Funktionen
3. Quadratische Funktionen (Zeit 10 Lektionen) Lernziel: Grundform y = ax + bx + c und Scheitelform y = a(x + m) + n der Funktionsgleichungen quadratischer Funktionen kennen. Bedeutung der Parameter a,
B Anwendungen der Differenzialrechnung
B Anwendungen der Differenzialrechnung Kurvendiskussionen Um den Verlauf eines Funktionsgraphen zu bestimmen, kann eine Wertetabelle aufgestellt werden. Dies kann jedoch sehr mühselig sein und es ist nicht
Dierentialrechnung mit einer Veränderlichen
Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben
Gruber I Neumann. Erfolg im Mathe-Abi. Basiswissen Schleswig-Holstein. Übungsbuch mit Tipps und Lösungen
Gruber I Neumann Erfolg im Mathe-Abi Basiswissen Schleswig-Holstein Übungsbuch mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist speziell auf die Anforderungen der Profiloberstufe
1 Allgemeines, Verfahrensweisen
1 Allgemeines, Verfahrensweisen 1.1 Allgemeines Definition einer Funktion Eine Funktion f ist eine eindeutige Zuordnung, die jedem x-wert genau einen y-wert zuordnet. Dem y-wert, welchem ein x-wert zugeordnet
Gleichsetzungsverfahren
Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift
Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.
Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der
4.1. Aufgaben zu linearen Funktionen
.. Aufgaben zu linearen Funktionen Aufgabe : Koordinatensystem a) Gib die Koordinaten der Punkte P - P 8 in dem rechts abgebildeten Koordinatensystem an. b) Markiere die Punkte A( ); B( ); C( ); D( );
Quadratische Funktion
Quadratische Funktion Wolfgang Kippels 6. Oktober 018 Inhaltsverzeichnis 1 Vorwort Zusammenstellung der Grundlagen 3.1 Nullstellen................................... 3. Scheitelpunkt.................................
12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben!
12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September 2008 1. Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben! a) Untersuche den Graphen von f(x) auf Standardsymmetrien (Punktsymmetrie
I. Verfahren mit gebrochen rationalen Funktionen:
I. Verfahren mit gebrochen rationalen Funktionen: 1. Definitionslücken bestimmen: Nenner wird gleich 0 gesetzt! 2. Prüfung ob eine hebbare Definitionslücke vorliegt: Eine hebbare Definitionslücke liegt
Mathematik Übungsaufgaben zur Vorbereitung auf die 3. Klausur Lösung. 1. Formen Sie die Scheitel(punkt)form der quadratischen Funktion
Datum:.0.0 Thema: Quadratische Funktionen. Formen Sie die Scheitel(punkt)form der quadratischen Funktion f mit f(x) = ( x ) + in die Polynomdarstellung um und bestimmen Sie die Nullstellen und den Schnittpunkt
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Geraden & Parabeln - Was mache ich, wenn?
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: - Was mache ich, wenn? Das komplette Material finden Sie hier: School-Scout.de Inhalt Seite Vorwort 5 Spickzettel 6-7 MindMap Geraden
Nullstellen. Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt. Man schreibt
Nullstellen Aufgabe 1 Gegeben ist die folgende quadratische Funktion: Bestimme die Nullstellen. f( x) x² 3 x² 3 : x² 16 16 x² 16 Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt.
Geraden. Somit scheiden die Gerade im Punkt N(-b/m; 0) die x-achse.
Geraden Eine Gerade wird durch eine Gleichung der Form y = mÿx + b bzw. f(x) = mÿx + b beschrieben. Die Schreibweise f(x) = wird teils erst in der Oberstufe verwendet. b ist der y- Achsenabschnitt, d.h.
F u n k t i o n e n Potenzfunktionen
F u n k t i o n e n Potenzfunktionen Die Kathedrale von Brasilia steht in der brasilianischen Hauptstadt Brasilia wurde von Oscar Niemeyer (*907 in Rio de Janeiro). Die Kathedrale von Brasilia besteht
Aufgaben für Analysis in der Oberstufe. Robert Rothhardt
Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................
Quadratische Funktionen
Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,
Verschiedene Varianten von Aufgaben zu Parabeln
Verschiedene Varianten von Aufgaben zu Parabeln 1) Gesucht werden die Nullstellen der Parabel mit der Gleichung: a) f(x) = 2x² 4x 16 b) f(x) = 5/3 (x 1) (x + 3) c) f(x) = - 1/2 (x + 4)² + 8 d) f(x) = 2x²
F u n k t i o n e n Quadratische Funktionen
F u n k t i o n e n Quadratische Funktionen Eine Parabolantenne bündelt Radio- und Mikrowellen in einem Brennpunkt. Dort wird die Strahlung detektiert. Die Form einer Parabolantenne entsteht durch die
Definition des Begriffs Funktion
Definition des Begriffs Funktion In der Mathematik ist eine Funktion (lateinisch functio) oder Abbildung eine Beziehung (Relation) zwischen zwei Mengen, die jedem Element der Definitionsmenge (Funktionsargument,
Klasse 9+ (Mittelstufe Plus) Hinweise und Lösungen
Klasse 9+ (Mittelstufe Plus) Hinweise und Lösungen. a) (x + y) (x y) = x + xy + y [x xy + y ] = = x + xy + y x + xy y = 4xy b) z 3 z ) = z + z z z(z ) z (z ) (z 0; ) c) (8a 3 b) = ( 3²a3 b) = 3 4 a 6 b
Münchner Volkshochschule. Themen
Themen Logik und Mengenlehre Zahlensysteme und Arithmetik Gleichungen und Ungleichungen Lin. Gleichungssysteme und spez. Anwendungen Geometrie und Trigonometrie Vektoren in der Ebene und Punktemengen Funktionen
Quadratische Funktionen
Quadratische Funktionen Mag. DI Rainer Sickinger HTL v 2 Mag. DI Rainer Sickinger Quadratische Funktionen 1 / 33 Definition Quadratische Funktion Definition (Quadratische Funktion) Sei D R und f : D R
Graphen quadratischer Funktionen und deren Nullstellen
Binomische Formeln Mithilfe der drei binomischen Formeln kann man Funktionen bzw. Gleichungen vereinfachen. 1. Binomische Formel ( Plusformel ) a 2 + 2 a b+ b 2 = (a+ b) 2 Herleitung: (a+ b) 2 = (a+ b)
FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.
FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f
4. Funktionen in einer Variable. Lineare Funktionen Quadratische Funktionen Polynome. Trigonometrische Funktionen. Übersicht. Vorkurs Mathematik
4. in einer Variable Lineare Quadratische Trigonometrische Lineare Quadratische Trigonometrische Seite 171 Reelle in einer Variablen Definition 4.1 Eine reelle Funktion f ist eine Zuordnung, die jedem
Differenzialrechnung
Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =
Bestimmung ganzrationaler Funktionen
Bestimmung ganzrationaler Funktionen 30 0 0-50 -40-30 -0-0 0 0 30 40 50 x. Eine Brücke ist 30 m hoch und hat eine Spannweite von 00 m. Welche Parabel beschreibt die Krümmung des Stützbogens? Wir führen
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Von der Gleichung
Lösungen zum Arbeitsblatt: y = mx + b Alles klar???
I. Zeichnen von Funktionen a) Wertetabelle x -4-3 - -1 0 1 3 4 y =,5x -10-7,5-5 -,5 0,5 5 7,5 10 y = - x,7 1,3 0,7 0-0,7-1,3 - -,7 3 y = x 1,5-9,5-7,5-5,5-3,5-1,5 0,5,5 4,5 6,5 y = - 1 x + 4 3,5 3,5 1,5
Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen
Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen Aufgabe : Eine zum Ursprung symmetrische ganzrationale Funktion.Ordnung hat im Ursprung die Tangente mit der Gleichung y = 7x und in
4 Ganzrationale Funktionen
FOS, Jahrgangsstufe (technisch) 4 Ganzrationale Funktionen 4 Polynomfunktionen Eine Funktion, die man auf die Form f : x a n x n + a n x n + + a 2 x 2 + a x + a 0 mit x R bringen kann, heißt ganzrationale
Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen
A1 Funktionen/Funktionsklassen 1 Grundbegriffe Analysis A 1.1 Gegeben sei die Funktion f mit f(x) = 2 x 2 + x. a) Bestimme, wenn möglich, die Funktionswerte an den Stellen 0, 4 und 2. b) Gib die maximale
Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1
Abiturprüfung Mathematik 007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (8 Punkte) Das Schaubild einer Polynomfunktion. Grades geht durch den Punkt S(0/) und hat den 3 Wendepunkt
Lineare Funktion Aufgaben und Lösungen
Lineare Funktion Aufgaben und Lösungen http://www.fersch.de Klemens Fersch. November 0 Inhaltsverzeichnis Ursprungsgerade. y = m x...................................................... Aufgaben.................................................
Skript Mathematik Klasse 10 Realschule
Skript Mathematik Klasse 0 Realschule Das vorliegende Skript wurde erstellt durch: Marco Johannes Türk [email protected] Die aktuellste Version dieses Skriptes ist online auf www.marco-tuerk.de
Abitur 2017 Mathematik Infinitesimalrechnung I
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.
Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10
Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-0 Aufgaben Richtig Themengebiet : Terme /. Vereinfache: (9x ) + 3x xy + x ( 3xy) (x + 3) (x ) + (x + 3)² abc 5x 0 3yx x +. Kürze: a) b) c) d) 5a² b 5
F u n k t i o n e n Rationale Funktionen
F u n k t i o n e n Rationale Funktionen Die erste urkundlich erwähnte Rechenmaschine wurde 163 von Wilhelm Schickard in einem Brief an Johannes Kepler knapp beschrieben. Die Maschine besteht aus einem
Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS
GS.6.6 - m6_3t-a_lsg_cas_gs.pdf Abiturprüfung 6 - Mathematik 3 Technik A II - Lösung mit CAS Teilaufgabe Gegeben ist die Funktion f mit ( x ) mit der Definitionsmenge D ( x ) ( x 3) f IR \ { ; 3 }. Teilaufgabe.
Prüfungsteil B, Aufgabengruppe 1: Analysis. Bayern Aufgabe 1. BundesabiturMathematik: Musterlösung
Abitur MathematikBayern 04 Prüfungsteil B, Aufgabengruppe BundesabiturMathematik: Prüfungsteil B, Aufgabengruppe : Bayern 04 Aufgabe a). SCHRITT: SCHNITTPUNKTE MIT DEN KOORDINATENACHSEN Die Koordinatenachsen
Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen
Das rechtwinklige (kartesische) Koordinatensystem Funktionen Funktion: Eine Funktion ist eine eindeutige Zuordnung. Jedem x D wird genau eine reelle Zahl zugeordnet. Schreibweise: Funktion: f: x f (x)
Klasse Dozent. Musteraufgaben. f(x) = g(x) = Bestimme die zu den abgebildeten Graphen. gehörenden Funktionsgleichungen!0.
Fach: Mathematik - Quadratische Funktionen Anzahl Aufgaben: 51 Musteraufgaben Diese Aufgabensammlung wurde mit KlasseDozent erstellt. Sie haben diese Aufgaben zusätzlich als KlasseDozent-Importdatei (.xml)
