GF MA Differentialrechnung A2
|
|
|
- Sigrid Lorentz
- vor 9 Jahren
- Abrufe
Transkript
1 Kurvendiskussion Nullstellen: Für die Nullstellen x i ( i! ) einer Funktion f gilt: Steigen bzw. Fallen: f ( x i ) = 0 f '( x) > 0 im Intervall I f ist streng monoton wachsend in I f '( x) < 0 im Intervall I f ist streng monoton fallend in I Krümmungsverhalten: f ''( x) > 0 im Intervall I Die Kurve ist in I linksgekrümmt. f ''( x) < 0 im Intervall I Die Kurve ist in I rechtsgekrümmt. Lokales Extremum: Hinreichende Bedingungen sind: f '( x 0 ) = 0 und f ''( x 0 ) < 0 f hat bei x 0 ein lokales Maximum f '( x 0 ) = 0 und f ''( x 0 ) > 0 f hat bei x 0 ein lokales Minimum Wendepunkt: In einem Wendepunkt ändert das Krümmungsverhalten von links nach rechts oder umgekehrt. In einem Wendepunkt ist die Steigung der Wendetange extremal. Hinreichende Bedingung ist: f ''( x 0 ) = 0 und f '''( x 0 ) 0 Sattelpunkt/Terrassenpunkt: Ein Sattelpunkt ist ein Wendepunkt mit horizontaler Wendetangente. Hinreichende Bedingung ist: f '( x 0 ) = f ''( x 0 ) = 0 und f '''( x 0 ) 0 Steigungswinkel: Für den Steigungswinkel α und die Steigung m eines Graphen gilt: m = tan( α ) 1/5
2 Schnittwinkel: Für den Schnittwinkel α und die Steigungen m! und m! zweier Graphen gilt: tan( α ) = m 2 m 1 1+ m 1 m 2 Symmetrische Funktionen: Der Graph einer Funktion ist symmetrisch zur y-achse, wenn f ( x) = f ( x). Eine solche Funktion heisst gerade Funktion. Eine Polynomfunktion ist gerade, wenn nur gerade Exponenten vorkommen. Der Graph einer Funktion ist symmetrisch zum Ursprung, wenn f ( x) = f ( x). Eine solche Funktion heisst ungerade. Eine Polynomfunktion ist ungerade, wenn nur ungerade Exponenten vorkommen. 2/5
3 Gebrochen rationale Funktion, Zähler- und Nennergrad: Eine Funktion der Art y = f x ( ) = p( x) q( x), wobei p( x) und q( x) Polynome sind, heisst gebrochen rationale Funktion. Der Grad von p( x) heisst Zählergrad und der Grad von q( x) heisst Nennergrad. Symmetrie bei gebrochen rationalen Funktionen: a) Ein Polynom ist gerade, das andere ungerade: Dann ist die Funktion ungerade (punktsymmetrischer Graph) b) Zähler- und Nennerpolynom sind beide gerade: Dann ist die Funktion gerade (achsensymmetrischer Graph) c) Wenn Zähler- und Nennerpolynom beide ungerade sind, dann dann kann man in Zähler und Nenner x ausklammern, also gleich wie bei b) Verhalten im Unendlichen, horizontale bzw. schräge Asymptoten: a) Wenn der Zählergrad kleiner ist als der Nennergrad: Dann nähert sich der Funktionsgraph der x -Achse und diese ist horizontale Asymptote. b) Wenn Zählergrad und Nennergrad gleich sind: Dann hat der Graph eine horizontale Asymptote (in bestimmter Höhe) c) Wenn Z = N +1 ( Z : Zählergrad / N : Nennergrad) Dann hat der Graph eine schräge Asymptote (Berechnung mit expand) Definitionsbereich, Polstellen, vertikale Asymptoten: Wenn das Nennerpolynom keine Nullstellen hat, dann gilt: D = R In den Nullstellen des Nennerpolynoms ist die Funktion nicht definiert. Es entsteht also eine (oder mehrere) Definitionslücke(n). Eine solche Definitionslücke nennt man Polstelle. Zu jeder Polstelle gehört eine vertikale Asymptote. Einfache Nullstelle des Nennerpolynoms: Polstellen mit Vorzeichenwechsel Doppelte Nullstelle des Nennerpolynoms: Polstellen ohne Vorzeichenwechsel 3/5
4 Übungen 1. In welchem Bereich sind die Graphen der folgenden Funktionen streng monoton steigend? a) f ( x) = 2x 3 3x 2 12x + 6 b) f ( x) = x x2 4x 2. Der Graph einer Polynomfunktion dritten Grades hat im Punkt P( 2 /1) einen Sattelpunkt und schneidet die x -Achse im Punkt A( 4 / 0). Bestimme die Gleichung der Funktion. 3. Wähle a so, dass der Graph der Funktion f mit f ( x) = 1 ( 2 x4 ax 2 ) bei x = 1 einen Wendepunkt hat. Wo liegt der andere Wendepunkt? Bestimme weiter die Extremalstellen. 4. Der Graph der Funktion f mit f ( x) = ax 3 + bx 2 + cx + d geht durch die Punkte A( 1/ 8) und B( 3 / 0). Die Tangente an die Kurve im Punkt C( 1/?) hat die Gleichung t : y = 6x 2. Bestimme die Gleichung der Funktion. 5. Wo und unter welchem Winkel schneidet der Graph der Funktion f mit f ( x) = x ( x 2) ( x 5) die x -Achse? 6. Berechne die Schnittwinkel der Funktion f mit f ( x) = x 2 und g mit g( x) = 2x Bestimme von Hand die Nullstellen der folgenden Polynomfunktionen. a) f ( x) = x ( x 5) 2 b) f ( x) = 4x 2 12x + 9 c) f ( x) = x 4 16 d) f ( x) = 36x2 + 24x + 4 2x 1 8. Handelt es sich bei den folgenden Funktionen jeweils um eine gerade oder eine ungerade Funktion? a) f ( x) = 1 3 x4 + 5x 2 2 b) f ( x) = 1 2 x3 + x 1 c) f ( x) = x2 +1 x d) f x ( ) = x3 + x ( x 1) 2 9. Bestimme von Hand die Gleichungen der schrägen Asymptoten des zu f ( x) gehörenden Graphen. a) f ( x) = x2 +1 x b) f x ( ) = x4 + x 3 + x 2 x 3 x /5
5 10. Bestimme die Gleichungen aller Asymptoten des zu f ( x) gehörenden Graphen und gib gegebenenfalls die Schnittpunkte mit den Asymptoten an. a) f ( x) = x2 x +1 c) f ( x) = x2 3x + 2 x 2 6x + 9 b) f ( x) = 3x3 + 4x x +12 x Führe jeweils eine Kurvendiskussion mit den folgenden Punkten durch: - Definitionsmenge - Nullstellen - Symmetrie - Asymptoten - Extremalstellen (inkl. Punkte, Nachweise müssen erbracht werden) - Wendestellen (inkl. Punkte, Nachweise müssen erbracht werden) Versuche abschliessend den Graphen von Hand zu zeichnen. a) f ( x) = x 3 3x b) f ( x) = x4 2x x Gegeben ist die Funktion f ( x) = 2bx x 2 + b ( b! \ { 0} ) 2 a) Bestimme den maximalen Definitionsbereich von f ( x). b) Berechne den Schnittpunkt des Graphen von f ( x) mit der Asymptote. c) Bestimme Maxima und Minima des Graphen von f ( x) in Abhängigkeit von b. d) In welchem Bereich ist der Graph von f ( x) linksgekrümmt, falls b > 0? 5/5
Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4
Mag. Mone Denninger 10. Oktober 2004 Inhaltsverzeichnis 1 Definitionsmenge 2 1.1 Verhalten am Rand und an den Lücken des Definitionsbereichs............................ 2 2 Nullstellen 2 3 Extremwerte
Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften:
1 KURVENDISKUSSION Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1.1 Definitionsbereich Zuerst bestimmt man den maximalen Definitionsbereich
Eigenschaften von Funktionen
Eigenschaften von Funktionen Mag. Christina Sickinger HTL v 1 Mag. Christina Sickinger Eigenschaften von Funktionen 1 / 48 Gegeben sei die Funktion f (x) = 1 4 x 2 1. Berechnen Sie die Steigung der Funktion
Basistext Kurvendiskussion
Basistext Kurvendiskussion In einer Kurvendiskussion sollen zu einer vorgegebenen Funktion (bzw. Funktionsschar) Aussagen über ihrem Verlauf gemacht werden. Im Nachfolgenden werden die einzelnen Untersuchungspunkte
Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.
Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden
, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n
. Graphen gebrochen rationaler Funktionen ==================================================================. Verhalten in der Umgebung der Definitionslücken ------------------------------------------------------------------------------------------------------------------
R. Brinkmann Seite
R. Brinkmann http://brinkmann-du.de Seite 1 1.08.016 Kurvendiskussion Vorbetrachtungen Um den Graphen einer Funktion zeichnen und interpretieren zu können, ist es erforderlich einiges über markante Punkte
I. Verfahren mit gebrochen rationalen Funktionen:
I. Verfahren mit gebrochen rationalen Funktionen: 1. Definitionslücken bestimmen: Nenner wird gleich 0 gesetzt! 2. Prüfung ob eine hebbare Definitionslücke vorliegt: Eine hebbare Definitionslücke liegt
Kurvendiskussion von Polynomfunktionen
Kurvendiskussion von Polynomfunktionen Theorie: Für die weiteren Berechnungen benötigen wie die 1. f (x) und 2. f (x) Ableitung der zu untersuchenden Funktion f (x). Wir werden viele Gleichungen lösen
GRENZWERTE BEI GEBROCHENRATIONALEN FUNKTIONEN
GRENZWERTE BEI GEBROCHENRATIONALEN FUNKTIONEN Graph von f mit Epsilonstreifen und Asymptoten.5.5 y-achse 0.5 6 0 8 6 0 6 8 0 6 0.5.5 -Achse Inhaltsverzeichnis Kapitel Inhalt Seite Einführung Der Grenzwertbegriff.
Übungsaufgaben zur Kurvendiskussion
SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen
Gebrochen-rationale Funktionen
Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Zähler und Nenner eine ganzrationale Funktion (Polynom) befindet: Eigenschaften f(x) = g(x) h(x) Echt gebrochen-rationale
B Anwendungen der Differenzialrechnung
B Anwendungen der Differenzialrechnung Kurvendiskussionen Um den Verlauf eines Funktionsgraphen zu bestimmen, kann eine Wertetabelle aufgestellt werden. Dies kann jedoch sehr mühselig sein und es ist nicht
Die gebrochenrationale Funktion
Die gebrochenrationale Funktion Definition: Unter einer gebrochenrationalen Funktion versteht man den Quotienten zweier ganzrationaler Funktionen, d.h. Funktionen der Form f :x! a n xn + a n 1 x n 1 +...+
Zusammenfassung der Kurvendiskussion
Zusammenfassung der Kurvendiskussion Diskussionspunkte 1 Größtmögliche Definitionsmenge D f 2 Symmetrieeigenschaften des Graphen G f 3 Nullstellen, Polstellen, Schnittpunkte mit der y-achse, Vielfachheit
(Quelle Abitur BW 2004) Gegeben sind die Schaubilder der Funktion mit, ihrer Ableitungsfunktion, einer Stammfunktion von und der Funktion mit.
Aufgabe A5/04 Die Abbildung zeigt das Schaubild der Ableitungsfunktion einer Funktion. Welche der folgenden Aussagen über die Funktion sind wahr, falsch oder unentscheidbar? (1) ist streng monoton wachsend
Mathemathik-Prüfungen
M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie
streng monoton steigend. streng monoton fallend. Ist f eine in einem Intervall stetige und im Innern des Intervalls differenzierbare Funktion mit
3. Anwendungen ================================================================= 3.1 Monotonie Eine Funktion f heißt in ihrem Definitionsbereich D monoton steigend, wenn für alle x 1, x 2 D mit x 1 < x
3.6 Verhalten an den Polstellen
44 Kapitel 3. Gebrochen-rationale Funktionen Beispiel 3.5.3. f(x) = 2x2 + 5 2x 1 f(0) = 2 02 + 5 2 0 1 = 5 1 = 5 3.6 Verhalten an den Polstellen Die Polstellen teilen den Graph in mehrere Teile. Da der
F u n k t i o n e n Rationale Funktionen
F u n k t i o n e n Rationale Funktionen Die erste urkundlich erwähnte Rechenmaschine wurde 163 von Wilhelm Schickard in einem Brief an Johannes Kepler knapp beschrieben. Die Maschine besteht aus einem
Diskussion einzelner Funktionen
Diskussion einzelner Funktionen. Wir betrachten die Funktion f mit f() = cos sin (a) Berechne f() für { π, π, π, π, } 5π und zeichne den Grafen von f im - Intervall [ π, ] 5π. Einheiten: cm auf der y-achse,
Kurvendiskussion Gebrochenrationale Funktion Aufgaben und Lösungen
Kurvendiskussion Gebrochenrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 7. September 0 Inhaltsverzeichnis Gebrochenrationale Funktion Gebrochen rationale Funktion Zählergrad < Nennergrad
Anwendungen der Differentialrechnung
KAPITEL 7 Anwendungen der Differentialrechnung 7.1 Maxima und Minima einer Funktion................. 141 7.2 Mittelwertsatz............................ 144 7.3 Kurvendiskussion..........................
)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.
Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen
4.3 Differentialrechnung III
4. Differentialrechnung III Inhaltsverzeichnis Extremalpunkte Wendepunkte 5 Zusammenfassung 7 4 Kurvendiskussion 8 Diff rechnung III 6..6 Theorie und Übungen Differentialrechnung III-Spezielle Punkte auf
Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 12. Übung
TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, WS 017/18 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 1. Übung
Grundfunktion Wendepunkt Extrempunkt Nullstelle 1. Ableitung Extrempunkt Nullstelle - 2. Ableitung Nullstelle - -
KURVENDISKUSSION Vorüberlegungen Die Kurvendiskussion ist ein wichtiges Teilgebiet der Mathematik, das speziell für die Matura von großer Bedeutung ist. Dabei untersucht man einen Graphen auf dessen geometrische
Kapitel 5: Differentialrechnung
Kapitel 5: Differentialrechnung Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 1 / 23 Gliederung 1 Grundbegriffe 2 Abbildungen
F u n k t i o n e n Zusammenfassung
F u n k t i o n e n Zusammenfassung Johann Carl Friedrich Gauss (*1777 in Braunschweig, 1855 in Göttingen) war ein deutscher Mathematiker, Astronom und Physiker mit einem breit gefächerten Feld an Interessen.
4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion.
4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. Definition 4.3. Es sei f : R D R eine auf D erklarte Funktion. Die Funktion f hat in a D eine globales oder
Inhaltsverzeichnis. Beispiel einer Abiturprüfung 18
VB 004 Inhaltsverzeichnis Kurvendiskussion Einführung Ableitungen einer Funktion 3 Monotonieverhalten der Funktion 3 Wie bekommen wir nun raus, wo eine Funktion steigt oder fällt? 3 Symmetrieverhalten
Mathematik-Aufgabenpool > Kurvendiskussion gebrochen rationaler Funktionen I
Michael Buhlmann Mathematik-Aufgabenpool > Kurvendiskussion gebrochen rationaler Funktionen I Einleitung: Eine gebrochen rationale Funktion (Polynom) f: D f -> R (mit maximaler Definitionsbereich D f)
Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung
Kurvendiskussion Gesetzmäßigkeiten Lineare Funktionen Funktionsgleichung y = mx + c m: Steigung c: y-achsenabschnitt (Funktionswert für y, bei dem der Graph die y-achse schneidet Beispiel : y = x 3 mit
Anwendungen der Differentialrechnung
KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................
Aufgabe zum Thema: Gebrochen - rationale Funktionen
Aufgabe zum Thema: Gebrochen - rationale Funktionen Eine gebrochen-rationale Funktion Z (x) hat als Zähler- N (x) funktion Z (x) eine lineare Funktion und als Nennerfunktion N (x) eine ganz-rationale Funktion
3 Funktionen diskutieren
3 Funktionen diskutieren 3.1 Polynomfunktionen Siehe dazu die Abschnitte 8.6 11 in der Formelsammlung. 1. f x = 1 3 x3 x 2. f x = 1 27 x 3 3 x 2 24 x + 26 mit f 1 = 0 3. f x = 1 4 x4 2 x 2 4. f x = 1 4
Tiefpunkt = relatives Minimum hinreichende Bedingung:
R. Brinkmann http://brinkmann-du.de Seite 1 0.0.01 Kurvendiskussion Vorbetrachtungen Um den Graphen einer Funktion zeichnen und interpretieren zu können, ist es erforderlich einiges über markante Punkte
1.4 Schaubild von Schaubild von Schaubild von 1., /
Lösung A1 1.1 Das Integral ist größer als Null, da die Fläche die der Graph der - Funktion oberhalb der -Achse größer ist als die Fläche unterhalb der -Achse. 1.2 Aussagen über das Schaubild von sind:
Polynome. Ein Term der Form. mit n und a 0 heißt Polynom. Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms.
Polynome Ein Term der Form a x + a x + a x + a x +... + a x + a x + a n n 1 n 2 n 3 2 1 2 3 4 n 2 n 1 n mit n und a 0 heißt Polynom. 1 Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms. 1 2 3 Als
4.2 Differentialrechnung III
4. Differentialrechnung III Inhaltsverzeichnis 1 Überblick Extremal- und Wendepunkte Monotonie und erste Ableitung 3 Krümmung und zweite Ableitung 6 4 Extremalpunkte 7 5 Wendepunkte 1 6 Anwendungsaufgaben
Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur 11. Übung
TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, 06. Dezember 06 Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur. Übung In
LÖSUNGEN Kurvendiskussion
M. Sc.Petra Clauÿ Wintersemester 2015/16 Mathematische Grundlagen und Analysis 24. November 2015 LÖSUNGEN Kurvendiskussion Aufgabe 1. Bestimmen Sie die Gleichung der Tangente an den Graphen folgender Funktionen
1.2 Weisen Sie rechnerisch nach, dass das Schaubild der Funktion mit 4P! bei 1 einen Sattelpunkt aufweist.
Aufgabe A1 1.1 Erläutere anhand einer Skizze, ob das Integral 3P größer, kleiner oder gleich Null ist. 1.2 Für eine Funktion gilt: (1) 0 für 2 und 1 (2) 23 (3) 13 (4) 2 (5) 1 6 Welche Aussagen lassen sich
Zusammenfassung: Differenzialrechnung 2
LGÖ Ks M 11 Schuljahr 17/18 Zusammenfassung: Differenzialrechnung Inhaltsverzeichnis Etrem- und Wendepunkte... 1 Etremwertprobleme... 8 Etrem- und Wendepunkte Definition: Ist eine reelle Zahl, dann heißt
Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung
Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 55 4. Anwendungen der Differentialrechnung Monotonie Krümmung Linearisierung einer Funktion Extremwerte
Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen
Kurvendiskussion Ganzrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Ganzrationale Funktion Quadratische Funktionen f x) = ax + bx + c 8. Aufgaben...................................................
Gebrochen-rationale Funktionen
Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Nenner befindet. f() = a h() Beispiel 1: f() = 1 Beispiel 2: f() = 1 ² Definitionsbereich und Definitionslücken Bei einer
3 Gebrochen-rationale Funktionen
3 Gebrochen-rationale Funktionen In diesem Kapitel werden wir die Kurvendiskussion von gebrochen-rationalen Funktionen besprechen. Prinzipiell sind die zu behandelnden Aspekte die gleichen wie bei der
mathphys-online Abschlussprüfung Berufliche Oberschule 2011 Mathematik 12 Technik - A II - Lösung Teilaufgabe 1.0
Abschlussprüfung Berufliche Oberschule Mathematik Technik - A II - Lösung Teilaufgabe. Gegeben sind die reellen Funktionen f( x) mit x IR. Teilaufgabe. (5 BE) Untersuchen Sie das Verhalten der Funktionswerte
13. Funktionen in einer Variablen
13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier
a) Begründen Sie, dass der Graph von f symmetrisch zum Punkt S 0 2 f) Ermitteln Sie eine Gleichung der Tangente im Punkt B
I. Wendepunkte 1. Bestimmen Sie Art und Lage der Extrempunkte sowie die Wendepunkte des Graphen der Funktion f mit der angegebenen Funktionsgleichung. a) f(x) 1 b) 12 (x + 1) (x 2) (x + 6) f(x) 1 4 x4
Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79
Mathematik W14 Christina Sickinger Berufsreifeprüfung v 1 Christina Sickinger Mathematik W14 1 / 79 Die Steigung einer Funktion Wir haben bereits die Steigung einer linearen Funktion kennen gelernt! Eine
Matur-/Abituraufgaben Analysis
Matur-/Abituraufgaben Analysis 1. Tropfen Die folgende Skizze zeigt die Kurve k mit der Gleichung y = (1 ) im Intervall 1. Die Kurve k bildet zusammen mit ihrem Spiegelbild k eine zur -Achse symmetrische
Mathematik Semester 3 / Arbeitsblatt f (x) = x x 3 4 x. 5 x 3 20 x. x 2 1
9.2 Aufgaben Aufgabe 16.39 aus dem Buch. 1. f (x) = x4 + 1 x 3 + x 4. f (x) = x4 1 2 x 3 8 x 2. f (x) = x3 + 1 x 3 4 x 5. f (x) = x5 + 1 5 x 3 20 x 3. f (x) = 4 x2 x 2 + 1 6. f (x) = x2 2 x 2 7. f (x)
Formelsammlung Analysis
Formelsammlung Analysis http://www.fersch.de Klemens Fersch. August 0 Inhaltsverzeichnis Analysis. Grenzwert - Stetigkeit.............................................. Grenzwert von f(x) für x gegen x0...................................
Lösungen zu Grundwissensaufgaben 11. Jahrgangstufe Teil 1
Lösungen zu Grundwissensaufgaben. Jahrgangstufe Teil. Eigenschaften gebrochen-rationaler Funktionen Umformungen DD ff NS GW ff(xx) xx + (xx )(xx + ) + xx² + xx xx(xx + ) xx + xx + xx + xx + RR\{ } xx xx
Beispiele für eine vollständige Kurvendiskussion
Seite von Ganzrationale Funktionen Nur mit Ausklammern Beispiel. Diskutiere die Funktion f 8. Es handelt sich um eine ganzrationale Funktion dritten Grades.. Definitionsmenge: D.. Verhalten gegen : Da
und geben Sie die Gleichungen und Art aller Asymptoten an. an, bestimmen Sie die Koordinaten der Achsenschnittpunkte von G f auflösen x x 2 2 ( 2/ 0)
Abiturprüfung Berufliche Oberschule Mathematik Nichttechnik - A II - Lösung Teilaufgabe. x Gegeben ist die Funktion f( x) ( x ) in ihrer maximalen Definitionsmenge D f IR. Der zugehörige Graph heißt. Teilaufgabe.
Differenzial- und Integralrechnung II
Differenzial- und Integralrechnung II Rainer Hauser Dezember 011 1 Einleitung 1.1 Ableitung Die Ableitung einer Funktion f: R R, x f(x) ist definiert als f (x) = df(x) dx = d f(x + h) f(x) f(x) = lim dx
In der nachstehenden Abbildung ist der Graph einer Polynomfunktion f dargestellt.
Polynomfunktion In der nachstehenden Abbildung ist der Graph einer Polynomfunktion f dargestellt. f(), f (),5 f,5,5,5,5,5 Skizzieren Sie in der obigen Abbildung den Graphen der Ableitungsfunktion f von
Vollständige Kurvendiskussion mit Erläuterungen
Vollständige Kurvendiskussion mit Erläuterungen Aufgabe: Gegeben ist die Funktion =³ 3 +. Führen Sie eine vollständige Kurvendiskussion durch. 1.) Ableitungen: =3 6+1 =6 6 =6 (relevant für die Steigung
Abschlussprüfung Fachoberschule 2016 Mathematik
Abschlussprüfung Fachoberschule 06 Aufgabenvorschlag A Funktionsuntersuchung /6 Gegeben ist die Funktion f mit der Funktionsgleichung f ( x) = x + x; x IR. Berechnen Sie die Funktionswerte f( x ) für folgende
Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.
Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der
2 Differenzialrechnung für Funktionen einer Variablen
2 Differenzialrechnung für Funktionen einer Variablen Ist f eine ökonomische Funktion, so ist oft wichtig zu wissen, wie sich die Funktion bei kleinen Änderungen verhält. Beschreibt etwa f einen Wachstumsprozess,
Nachhilfen: Algebra und Differentialrechnung Wiederholung: 2. Abschnitt mit Übungsaufgaben
Wiederholung:. Abschnitt mit Übungsaufgaben Grundwissen (GW) GW. Lösen Sie folgende algebraische Gleichungen bzw. Ungleichungen in der Grundmenge R: a) 5 = 0 a) 5 0 Teilergebnis: ] ;,5] b) Lösen Sie die
Da der Nenner immer positiv ist, folgt. g (x) > 0 2x(2 x) > 0 0 < x < 2 g (x) < 0 2x(2 x) < 0 x < 0 oder x > 2
Da der Nenner immer positiv ist, folgt g (x) > 0 x( x) > 0 0 < x < g (x) < 0 x( x) < 0 x < 0 oder x > Also ist g auf (0,) streng monoton wachsend sowie auf (,0) und auf (, ) strengmonotonfallend.außerdemistg
Aufgaben zur e- und ln-funktion
Aufgaben zur e- und ln-funktion 1.0 Gegeben ist die Funktion f(x) = 2x2 2 mit D. Ihr Graph sei G f. (Abitur 2008 AI) e x f =! 1.1 Geben Sie die Schnittpunkte von G f mit den Koordinatenachsen an. 1.2 Untersuchen
1.2 Einfache Eigenschaften von Funktionen
1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine
4. Klassenarbeit Mathematik
Name: 30. Mai 2007 Klasse 11A 4. Klassenarbeit Mathematik Thema: Differentialrechnung Allgemeine Bearbeitungshinweise: Die Bearbeitung muss von einer geeigneten Dokumentation begleitet werden. Hierzu gehören:
Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung
Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/
Analysis 7. f(x) = 4 x (x R)
Analysis 7 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch fx) = 4 x R) a) Führen Sie für die Funktion f eine Kurvendiskussion durch Nullstellen, Koordinaten der lokalen Extrempunkte,
Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit
Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit Diskutieren Sie die Funktionen: a.) f(x) = 1 + x 5 x 2 1 b.) f(x) = x 4 + 5 x+2 c.) f(x) = x3 +2x 2 +x+2 x+2 Lösung: a.) An der Summenform des
Differenzialrechnung
Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =
2) 2 4 in der größtmöglichen Definitionsmenge
Abschlussprüfung Berufliche Oberschule 009 Mathematik 13 Nichttechnik - A I - Lösung Teilaufgabe 1.0 Gegeben ist die Funktion f( x) ln ( x ) 4 in der größtmöglichen Definitionsmenge D f IR. Ihr Graph wird
Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:
Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x
Aufgaben zur e-funktion
Aufgaben zur e-funktion 1.0 Gegeben ist die reelle Funktion f(x) = 2x 2x e 1 x2 mit x R (Abitur 2000 AII). 1.1 Untersuchen Sie das Symmetrieverhalten des Graphen der Funktion f und bestimmen Sie die Nullstellen
Mathematischer Vorkurs NAT-ING II
Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 7 Differenzierbarkeit Mathematischer Vorkurs TU Dortmund Seite
1.2 Berechne den Inhalt der Fläche, die das Schaubild von mit 5P der -Achse einschließt.
Diese Aufgaben sind zu bearbeiten. Sie können nicht abgewählt werden. Aufgabe A1 1. Gegeben ist die Funktion mit 2 3; 1.1 Eine der folgenden Abbildung zeigt das Schaubild. 6P Untersuche für jede der Abbildungen,
Arbeitsblätter Förderplan EF
Arbeitsblätter Förderplan EF I.1 Nullstellen bestimmen Lösungen I.2 Parabeln: Nullstellen, Scheitelpunkte,Transformationen Lösungen I.3 Graphen und Funktionsterme zuordnen Lösungen II.1 Transformationen
( ) 6 eine. 1. Führen Sie für die Funktion f mit vollständige Kurvendiskussion durch. eine. 5. Führen Sie für die Funktion f mit f ( x) = 2x
. Führen Sie für die Funktion f mit vollständige Kurvendiskussion durch. Berücksichtigen Sie dabei die folgenden Punkte: f( ) 0 7 eine -Definitionsmenge; -Symmetrie; -Grenzwertverhalten; -Schnittpunkt
Satz: Eine Funktion f ist monoton wachsend auf einem Intervall ]a, b[, wenn gilt: f (x) < 0 x ]a, b[
Monotonie und erste Ableitung: Satz: Eine Funktion f ist monoton wachsend auf einem Intervall ]a, b[, wenn gilt: f (x) 0 x ]a, b[ Eine Funktion f ist monoton fallend auf einem Intervall ]a, b[, wenn gilt:
I 1. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (d) 4cosxdx (e) 3e x dx (f) ( e x + x 2) dx
Integralrechnung: I. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (a) y =,5 (b) y = + (c) y = 5 (d) y = 3 (e) y = (f) y = (g) y = 3 (h) y = (i) y = 3 4 4 (j) y = 6 + 3 (k) y = 3 + 4 (l)
3.3 Linkskurve, Rechtskurve Wendepunkte
166 FUNKTIONSUNTERSUCHUNGEN 3.3 Linkskurve, Rechtskurve Wendepunkte Einführung (1) Anschauliche Erklärung des Begriffs Wendepunkt Bei Motorradrennen lässt sich beobachten, wie sich die Motorradfahrer beim
Kontrollfragen zur Unterrichtsstunde
Kontrollfragen zur Unterrichtsstunde Frage 1: Das Newtonverfahren ist eine Methode zur Bestimmung A: der Extremstellen eines C: des Verhalten im Unendlichen. B: der Nullstellen eines D: der Fallzeit eines
13 3. a) Uhrzeit Wasseranstieg (in cm pro Stunde)
1 Funktionen als mathematische Modelle Noch it in Dierenzialrechnung? 1 1. a) Höhenänderung zwischen 0 m und 1 00 m (in der Horizontalen): ca. 800 m 600 m = 00 m durchschnittliche Änderungsrate im Intervall
Der Differenzenquotient
Der Differenzenquotient Von den linearen Funktionen kennen wir den Begriff des Differenzenquotienten k = y 2 y 1 x 2 x 1 mit dem die Steigung einer Geraden festgelegt wird. Der Begriff des Differentialkoeffizienten
Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik
e Exponentialfunktionen Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik Exponentialfunktionen Potenzfunktion: y = x 9 Exponentialfunktion: y = 9 x Die Potenz- und die Exponentialfunktionen
Analysis. Ganzrationale Funktionen: Nullstellen, Extrempunkte, Monotonie, Verhalten im Unendlichen, Tangente. Gymnasium Klasse 10
Analysis Ganzrationale Funktionen: Nullstellen, Extrempunkte, Monotonie, Verhalten im Unendlichen, Tangente Gymnasium Klasse 1 Hilfsmittel: wissenschaftlicher Taschenrechner Alexander Schwarz März 18 1
Abschlussprüfung Berufliche Oberschule 2014 Mathematik 12 Technik - A II - Lösung. f a ( x) = 1. x 2 in der jeweils
Abschlussprüfung Berufliche Oberschule 04 Mathematik Technik - A II - Lösung Teilaufgabe.0 ( a) a Gegeben sind mit a IR die reellen Funktionen f a mit f a ( ) in der jeweils ( a) größtmöglichen Definitionsmenge
Mathematik LK M2, 2. KA Eigenschaften ganzr. Funktionen Lösung
Aufgabe 1: Grenzwerte 2 x 3 1.1 Berechne unter Anwendung der 3( +12 x 10 Grenzwertsätze für Funktionen: lim x 3 x 3 +2 x+10 2 x 2 x 3 +12 x 10 1+ 6 lim x 3 x 3 +2 x+10 = lim x 10 3) 2 x 2 x 2 3 x 3( 1
Aufgaben zum Aufstellen von Funktionen aus gegebenen Bedingungen
Augaben zum Austellen von Funktionen aus gegebenen Bedingungen 1. Die Parabel Gp ist der Graph der quadratischen Funktion p(. Diese Parabel schneidet die x-achse im Punkt N(6/0). Ihr Scheitelpunkt S(/yS)
