3 Gebrochen-rationale Funktionen
|
|
|
- Angela Schuster
- vor 7 Jahren
- Abrufe
Transkript
1 3 Gebrochen-rationale Funktionen In diesem Kapitel werden wir die Kurvendiskussion von gebrochen-rationalen Funktionen besprechen. Prinzipiell sind die zu behandelnden Aspekte die gleichen wie bei der schon behandelten Kurvendiskussion von Polynomen. Allerdings gibt es im Vergleich einige wichtige Änderungen und Ergänzungen, die dem speziellen Charakter der gebrochen-rationalen Funktionen geschuldet sind. 3.1 Ein Bruch als Funktion? Gebrochen-rationale Funktionen unterscheiden sich von den bisher behandelten ganz-rationalen Funktionen dadurch, dass sie einen Quotienten beinhalten, in dessen Nenner sich ebenfalls variable Terme befinden. Anders als bei den Polynomen kann (und wird) es also passieren, dass wir durch x teilen anstatt wie bisher nur Vielfache von Potenzen von x zu addieren. Definition (Gebrochen-rationale Funktion). Eine Funktion, die durch den Quotienten zweier Polynome gebildet wird, bezeichnen wir als gebrochen-rationale Funktion. Wir sprechen analog zu den Begriffen der Bruchrechnung auch von Zählerfunktion und Nennerfunktion und schrieben allgemein: f(x) = g(x) h(x) = a nx n + a n 1 x n a 1 x 1 + a 0 b m x m + b m 1 x m b 1 x 1 + b 0 (3.1.1) Bemerkung Um eine allgemeine Darstellung angeben zu können, benutzen wir für den Grad der Zählerfunktion (Zählergrad) den Buchstaben n und für den Grad der Nennerfunktion (Nennergrad) den Buchstaben m. Diese unterschiedliche Benennung schließt allerdings, wie wir sehen werden, nicht aus, dass beide Teilfunktionen den gleichen Grad besitzen. 35
2 36 Kapitel 3. Gebrochen-rationale Funktionen 3.2 Definitionsbereich und Nullstellen Bei gebrochen-rationalen Funktionen hängen Definitionsbereich und Nullstellen eng zusammen. Das liegt daran, dass solche Stellen, die sowohl im Zähler als auch im Nenner den Wert 0 besitzen sogenannte hebbare Lücken darstellen, die sich in der Linearfaktorzerlegung der Funktion wegkürzen lassen. Allgemein gelten folgende Merkregeln: Definition (Definitionslücken). Die Nullstellen der Nennerfunktion führen zu einer Division durch 0. Sie werden daher von vornherein von der Funktionsuntersuchung ausgeschlossen und beschränken damit den Definitionsbereich der Funktion. Wir nennen sie auch Definitionslücken oder Polstellen. (siehe Abbildung 3.1) Abbildung 3.1: Funktionsgraph mit Polstelle bei x p = 2
3 3.2. Definitionsbereich und Nullstellen 37 Satz Die Nullstellen der Zählerfunktion sind, da jeder Bruch mit Zähler 0 den Wert 0 besitzt, identisch mit den Nullstellen der gesamten Funktion (und umgekehrt). Zum Auffinden der Nullstellen der Funktion reicht es also die Zählerfunktion null zu setzen und mit einem aus Kapitel 2.5 bekannten Verfahren zu berechnen. Satz (Hebbare Lücken). Hebbare Lücken liegen vor, wenn eine Stelle sowohl Zählernullstelle als auch Nennernullstelle ist. Solche Stellen kürzen sich in der Linearfaktordarstellung der Funktion weg. Die gekürzte Funktion kann als Ersatzfunktion für die restliche Kurvendiskussion benutzt werden, da Kürzen den Wert eines Bruches nicht verändert. Trotzdem markieren wir (wie Abbildung 3.2 zeigt) im Schaubild der Funktion eine gefundene hebbare Lücke mit einem Punkt auf dem Graphen. Beispiel (f(x) = x2 7x x 2 +2x ). Die Funktion besitzt die Zählernullstellen 0 und 7 und die Nennernullstellen 0 und -2. Ihre Linearfaktordarstellung ist f(x) = x (x 7) x (x + 2) = x 7 x + 2 Der Linearfaktor der Nullstelle x = 0 tritt sowohl im Zähler als auch im Nenner auf und kann deshalb weggekürzt werden. Die Ersatzfunktion ist x 7 x+2. Mit ihr führen wir die restliche Kurvendiskussion durch. Sie besitzt nun noch eine Nullstelle und eine Polstelle: D f = R\{ 2} Alle reellen Zahlen ohne -2 Nullstelle bei x 1 = 7 Der Funktionswert für die hebbare Lücke kann nun, da er keine Division durch 0 mehr bewirkt, berechnet werden. f(0) = = 7 2 = 3, 5 Wir markieren die hebbare Lücke durch einen Punkt auf dem Funktionsgraph bei (0 3, 5).
4 38 Kapitel 3. Gebrochen-rationale Funktionen Abbildung 3.2: Funktionsgraph mit Polstelle und hebbarer Lücke 3.3 Symmetrieeigenschaften Bei den Symmetrieeigenschaften können wir auf das aus der normalen Kurvendiskussion bekannt Kriterium aus Kapitel 2.2 zurückgreifen, wobei wir es um eine Komponente erweitern müssen, da wir bei gebrochen-rationalen Funktionen theoretisch mit zwei Funktionen arbeiten. Bei einer gebrochen-rationalen Funktion verhält es sich so, dass Symmetrie nur vorliegt, wenn beide Teilfunktionen jeweils schon symmetrisch sind. Dabei gilt: Satz (Symmetriekriterium für gebrochen-rationale Funktionen). achsensymmetrisch Eine gebrochen-rationalen Funktion ist wenn die beiden Teilfunk- punktsymmetrisch
5 3.4. Verhalten im Unendlichen 39 den selben tionen einen unterschiedlichen Symmetrietyp haben. Ist eine der beiden Teilfunktionen nicht symmetrisch, so ist die gesamte Funktion nicht symmetrisch. Beispiel Die Funktion f(x) = x 7 x+2 Nennerfunktion keine Symmetrieeigenschaft aufweisen. Die Funktion f(x) = x2 2 x 4 x 2 ist achsensymmetrisch, da beide Teilfunktionen achsensymmetrisch sind. Die Funktion f(x) = ist achsensymmetrisch, da beide Teilfunktionen punktsymmetrisch sind. x3 x x 7 3x 5 Die Funktion f(x) = x4 x 2 x 3 x ist punktsymmetrisch, da die Zählerfunktion achsensymmetrisch und die Nennerfunktion punktsymmetrisch ist. ist nicht symmetrisch, da sowohl Zählerfunktion als auch 3.4 Verhalten im Unendlichen Das Verhalten im Unendlichen hängt bei gebrochen-rationalen Funktionen sowohl vom Zählergrad n als auch vom Nennergrad m ab. Wir unterscheiden die vier folgenden Fälle: 1. Fall: n < m Der Graph der Funktion nähert sich im Unendlichen der x-achse an. lim f(x) = 0 x ± 2. Fall: n = m Der Graph nähert sich im Unendlichen der waagerechten Geraden y = an b m Gerade nennen wir waagerechte Asymptote. an. Diese lim f(x) = a n x ± b m 3. Fall: n = m + 1 Der Graph nähert sich der schiefen Asymptote a(x) an. Diese finden wir durch Poly-
6 40 Kapitel 3. Gebrochen-rationale Funktionen nomdivision der Zählerfunktion durch die Nennerfunktion. Sie wird durch den ganzrationalen Teil des zerlegten Quotienten gebildet. 4. Fall: n > m + 1 Auch hier führen wir eine Polynomdivision der Zählerfunktion durch die Nennerfunktion durch. Das Verhalten der Funktion f ist nun identisch mit dem des ganz-rationalen Teilergebnisses a(x). f verhält sich also wie ein Polynom mit dieser Gleichung. Beispiel (1. Fall). (vergleiche Abbildung 3.3) f(x) = 1, n = 0, m = 2, n < m, 2x2 lim f(x) = 0 x ± Abbildung 3.3: Verhalten im Unendlichen, 1. Fall Beispiel (2. Fall). f(x) = 3x, n = 1, m = 1, n = m, 2x 4 lim x ± f(x) = 3 2
7 3.4. Verhalten im Unendlichen 41 (vergleiche Abbildung 3.4) Abbildung 3.4: Verhalten im Unendlichen, 2. Fall Beispiel (3. Fall). f(x) = 2x2 + x, n = 2, m = 1, n = m + 1 2x 1 Polynomdivision: ( 2x 2 2x 2 ) ( ) + x : 2x 1 = x x 1 + x 2x 2x a(x) = x + 1, (vergleiche Abbildung 3.5)
8 42 Kapitel 3. Gebrochen-rationale Funktionen Abbildung 3.5: Verhalten im Unendlichen, 3. Fall Beispiel (4. Fall). Polynomdivision: f(x) = x3 + x + 1, n = 3, m = 1, n > m + 1 x ( ) x 3 + x + 1 : x = x x x 3 x x 1 f verhält sich wie das Polynom mit der Gleichung a(x) = x 2 + 1
9 3.5. Der y-achsenabschnitt 43 also gilt (vergleiche Abbildung 3.6) lim f(x) = + x ± Abbildung 3.6: Verhalten im Unendlichen, 4. Fall 3.5 Der y-achsenabschnitt Für den y-achsenabschnitt gilt das selbe wie für alle Funktionen: Satz Der y-achsenanschnitt ist der Funktionswert an der Stelle x = 0, also wird er berechnet durch f(0). Bemerkung Achtung: Es kann sein, dass eine gebrochen-rationale Funktion keinen y-achsenabschnitt besitzt, nämlich dann, wenn x = 0 eine Polstelle ist.
3.6 Verhalten an den Polstellen
44 Kapitel 3. Gebrochen-rationale Funktionen Beispiel 3.5.3. f(x) = 2x2 + 5 2x 1 f(0) = 2 02 + 5 2 0 1 = 5 1 = 5 3.6 Verhalten an den Polstellen Die Polstellen teilen den Graph in mehrere Teile. Da der
Gebrochen-rationale Funktionen
Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Zähler und Nenner eine ganzrationale Funktion (Polynom) befindet: Eigenschaften f(x) = g(x) h(x) Echt gebrochen-rationale
Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit
Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit Diskutieren Sie die Funktionen: a.) f(x) = 1 + x 5 x 2 1 b.) f(x) = x 4 + 5 x+2 c.) f(x) = x3 +2x 2 +x+2 x+2 Lösung: a.) An der Summenform des
Die gebrochenrationale Funktion
Die gebrochenrationale Funktion Definition: Unter einer gebrochenrationalen Funktion versteht man den Quotienten zweier ganzrationaler Funktionen, d.h. Funktionen der Form f :x! a n xn + a n 1 x n 1 +...+
, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n
. Graphen gebrochen rationaler Funktionen ==================================================================. Verhalten in der Umgebung der Definitionslücken ------------------------------------------------------------------------------------------------------------------
Gebrochen-Rationale Funktionen
Gebrochen-Rationale Funktionen Bernhard Scheideler Albrecht-Dürer-Gymnasium Hagen Hilfen zur Analysis (Q1) 20. Januar 2012 Inhalt: Die Diskussion einer gebrochen-rationalen Funktion wird an einem Beispiel
Gebrochen-rationale Funktionen
Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Nenner befindet. f() = a h() Beispiel 1: f() = 1 Beispiel 2: f() = 1 ² Definitionsbereich und Definitionslücken Bei einer
Gebrochen Rationale Funktionen
Gebrochen Rationale Funktionen W. Kippels. September 2017 Inhaltsverzeichnis 1 Vorwort 3 2 Einführung 3 Polstellen und Lücken Asymptote 10 5 Übungsaufgaben 11 5.1 Aufgabe 1...................................
4.6. Rationale Funktionen
Rationale Funktionen Eine Funktion der Form f() = z() n().. Rationale Funktionen heißt rationale Funktion, wenn z() und n() zwei ganzrationale Funktionen sind. Der maimale Definitionsbereich ist R\{: n()
GF MA Differentialrechnung A2
Kurvendiskussion Nullstellen: Für die Nullstellen x i ( i! ) einer Funktion f gilt: Steigen bzw. Fallen: f ( x i ) = 0 f '( x) > 0 im Intervall I f ist streng monoton wachsend in I f '( x) < 0 im Intervall
Mathematik-Aufgabenpool > Kurvendiskussion gebrochen rationaler Funktionen I
Michael Buhlmann Mathematik-Aufgabenpool > Kurvendiskussion gebrochen rationaler Funktionen I Einleitung: Eine gebrochen rationale Funktion (Polynom) f: D f -> R (mit maximaler Definitionsbereich D f)
5 Gebrochen rationale Funktionen
c 003, Thomas Barmetler FOS, 11 Jahrgangsstufe (technisch) 5 Gebrochen rationale Funktionen Unter einer gebrochen rationalen Funktion versteht man den Quotienten zweier ganzrationaler Funktionen Dabei
I. Verfahren mit gebrochen rationalen Funktionen:
I. Verfahren mit gebrochen rationalen Funktionen: 1. Definitionslücken bestimmen: Nenner wird gleich 0 gesetzt! 2. Prüfung ob eine hebbare Definitionslücke vorliegt: Eine hebbare Definitionslücke liegt
Gerade, ungerade oder weder noch? Algebraische und graphische Beweise. 4-E1 Vorkurs, Mathematik
Gerade, ungerade oder weder noch? Algebraische und graphische Beweise 4-E1 Symmetrie einer Funktion: Aufgabe 3 Bestimmen Sie algebraisch und graphisch, ob die Funktionen gerade oder ungerade sind, oder
Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften:
1 KURVENDISKUSSION Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1.1 Definitionsbereich Zuerst bestimmt man den maximalen Definitionsbereich
Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4
Mag. Mone Denninger 10. Oktober 2004 Inhaltsverzeichnis 1 Definitionsmenge 2 1.1 Verhalten am Rand und an den Lücken des Definitionsbereichs............................ 2 2 Nullstellen 2 3 Extremwerte
27 Verhalten gebrochen rationaler Funktionen im Unendlichen; Asymptoten
7 Verhalten gebrochen rationaler Funktionen im Unendlichen; symptoten Wie wir schon gesehen haben schmiegt sich der Graph einer ganzrationalen Funktion an seiner Polstelle an eine senkrechte symptote (hier:
GRENZWERTE BEI GEBROCHENRATIONALEN FUNKTIONEN
GRENZWERTE BEI GEBROCHENRATIONALEN FUNKTIONEN Graph von f mit Epsilonstreifen und Asymptoten.5.5 y-achse 0.5 6 0 8 6 0 6 8 0 6 0.5.5 -Achse Inhaltsverzeichnis Kapitel Inhalt Seite Einführung Der Grenzwertbegriff.
5 Gebrochen-rationale Funktionen
5 Gebrochen-rationale Funktionen 5. Definition: Eine Funktion f, deren Term f(x) als Bruch Z(x) N(x) von zwei Polynomfunktion Z(x) und N(x) geschrieben werden kann und deren Nennergrad größer als 0 ist,
F u n k t i o n e n Rationale Funktionen
F u n k t i o n e n Rationale Funktionen Die erste urkundlich erwähnte Rechenmaschine wurde 163 von Wilhelm Schickard in einem Brief an Johannes Kepler knapp beschrieben. Die Maschine besteht aus einem
Aufgabe zum Thema: Gebrochen - rationale Funktionen
Aufgabe zum Thema: Gebrochen - rationale Funktionen Eine gebrochen-rationale Funktion Z (x) hat als Zähler- N (x) funktion Z (x) eine lineare Funktion und als Nennerfunktion N (x) eine ganz-rationale Funktion
Ganzrationale Funktionen
Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade
Analysis 1. Einführung. 22. März Mathe-Squad GbR. Einführung 1
Analysis 1 Einführung Mathe-Squad GbR 22. März 2017 Einführung 1 y 10 9 8 7 6 5 4 3 2 1 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 910 2 x /* */ Einführung Allgemeines 2 Allgemeines Funktion f(x) bildet jeden
Gebrochen rationale Funktion f(x) = x2 +1
Gebrochen rationale Funktion f() = +. Der Graph der Funktion f ist punktsmmetrisch, es gilt: f( ) = ( ) + f() = f( ) = + = + = f(). An der Stelle = 0 ist f nicht definiert, an dieser Stelle liegt ein Pol
Zusammenfassung der Kurvendiskussion
Zusammenfassung der Kurvendiskussion Diskussionspunkte 1 Größtmögliche Definitionsmenge D f 2 Symmetrieeigenschaften des Graphen G f 3 Nullstellen, Polstellen, Schnittpunkte mit der y-achse, Vielfachheit
B Anwendungen der Differenzialrechnung
B Anwendungen der Differenzialrechnung Kurvendiskussionen Um den Verlauf eines Funktionsgraphen zu bestimmen, kann eine Wertetabelle aufgestellt werden. Dies kann jedoch sehr mühselig sein und es ist nicht
Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung
Kurvendiskussion Gesetzmäßigkeiten Lineare Funktionen Funktionsgleichung y = mx + c m: Steigung c: y-achsenabschnitt (Funktionswert für y, bei dem der Graph die y-achse schneidet Beispiel : y = x 3 mit
Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft
Algebra Roger Burkhardt [email protected] Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft FS 2010 Roger Burkhardt [email protected] Algebra
Beispiele für eine vollständige Kurvendiskussion
Seite von Ganzrationale Funktionen Nur mit Ausklammern Beispiel. Diskutiere die Funktion f 8. Es handelt sich um eine ganzrationale Funktion dritten Grades.. Definitionsmenge: D.. Verhalten gegen : Da
Symmetrien, gerade und ungerade Funktionen
Symmetrien, gerade und ungerade Funktionen Wir Menschen fühlen uns von Symmetrien angezogen. 1-E1 1-E2 Vorausgesetzte Kenntnisse Definition einer Funktion, einer Relation, des Definitionsbereiches einer
Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker
REELLE FUNKTIONEN 1 Was muss aufgeführt werden, wenn man eine reelle Funktion angibt? a) Ihre Funktionsvorschrift und ihren Wertebereich. Ihre Funktionsvorschrift und ihren Definitionsbereich. c) Den Wertebereich
Funktion. Eine Funktion. x f (x) ordnet jedem Argument x aus dem Definitionsbereich D R einen Wert f (x) aus dem Wertebereich W R zu.
Funktion Eine Funktion f : D R, x f (x) ordnet jedem Argument x aus dem Definitionsbereich D R einen Wert f (x) aus dem Wertebereich W R zu. Funktion 1-1 Der Graph von f besteht aus den Paaren (x, y) mit
durch folgende Einschränkungen bestimmt:
1 von 11 27.04.2008 16:00 Kurvendiskussion aus Wikipedia, der freien Enzyklopädie Unter Kurvendiskussion versteht man in der Mathematik die Untersuchung des Graphen einer Funktion auf dessen Eigenschaften,
Partialbruchzerlegung
Partialbruchzerlegung Lucas Kunz 27. Januar 207 Inhaltsverzeichnis Theorie 2. Definition.................................... 2.2 Nullstellen höheren Grades........................... 2.3 Residuen-Formel................................
Basistext Kurvendiskussion
Basistext Kurvendiskussion In einer Kurvendiskussion sollen zu einer vorgegebenen Funktion (bzw. Funktionsschar) Aussagen über ihrem Verlauf gemacht werden. Im Nachfolgenden werden die einzelnen Untersuchungspunkte
Funktionstypen und ihre Schaubilder 1
Funktionstypen und ihre Schaubilder 1 Funktionen können Nullstellen, Extremstellen, Sattelstellen, Wendestellen, Polstellen bzw. deren Schaubilder (Kurven) können Schnittpunkte mit der x-achse, Extrempunkte
Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik
e Exponentialfunktionen Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik Exponentialfunktionen Potenzfunktion: y = x 9 Exponentialfunktion: y = 9 x Die Potenz- und die Exponentialfunktionen
Aufgabe Was wissen Sie über die Symmetrie ganzrationaler Funktionen?
R. Brinkmann http://brinkmann-du.de Seite 0.0.0 Lösungen VBKA Ganzrationale Funktionen I Zur Vorbereitung einer Klassenarbeit en: A A A A A A A4 A4 n n Was bedeutet: f(x) = a x + a x +... + a x + a x +
Symmetrien Regel: Eine Funktion ist achsensymmetrisch, wenn. Beispiel: f(x)=2x 5-15x 3 +2x 2 =>Grad(f) KA: Ergebnis 1P, Schreibweise 1P
Ganzrationale Funktionen Definition: Eine Funktion ist ganzrational, wenn diese auf Summen von x-potenzen mit positiven Exponenten mit Faktoren besteht z.b. f(x)=2x 5-15x 3 +2x 2 Beispiel: f(x)=2x 5-15x
4. Funktionen in einer Variable. Lineare Funktionen Quadratische Funktionen Polynome. Trigonometrische Funktionen. Übersicht. Vorkurs Mathematik
4. in einer Variable Lineare Quadratische Trigonometrische Lineare Quadratische Trigonometrische Seite 171 Reelle in einer Variablen Definition 4.1 Eine reelle Funktion f ist eine Zuordnung, die jedem
Kurvendiskussion. Martin Schunkert. Stand: 27. November für Klassen der FOS
Kurvendiskussion für Klassen der FOS Martin Schunkert Stand: 27. November 2018 Inhaltsverzeichnis 1 Einleitung 1 1.1 Funktionen..................................... 1 1.2 Polynome......................................
Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.
Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden
sfg Direkte Proportionalität Zwei einander zugeordnete Größen x und y sind (direkt) proportional, wenn
M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen x und y sind (direkt) proportional, wenn zum n-fachen Wert von x der n-fache Wert von y gehört. y der Quotient = q für alle Wertepaare gleich
Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11.
Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version.0. September 05) E. Cramer, U. Kamps, M. Kateri, M. Burkschat 05 Cramer, Kamps, Kateri, Burkschat
Analysis f(x) = x 2 1. (x D f )
Analysis 15 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f mit f(x) = x3 x 1 (x D f ) a) Geben Sie den maximalen Definitionsbereich der Funktion f an. Zeigen Sie, dass der Graph der Funktion
Gebrochen rationale Funktionen
Gebrochen rationale Funktionen Anmerkung: Auf dieser Seite wurden LaTeX Formeln mit MathJa eingebaut die nötigen Formatierungen werden über einen eternen Server (cdn.mathja.org) bezogen. Keine Garantie,
Wahrscheinlichkeitsrechnung. Trigonometrie Sinus und Kosinus
Gymnasium Neutraubling Grundwissen Mathematik 10. Jahrgangsstufe Wissen und Können Aufgaben, Beispiele und Erläuterungen 1. Bedingte Wahrscheinlichkeit Bezeichnungen: P(A): Wahrscheinlichkeit des Ereignisses
1.2 Einfache Eigenschaften von Funktionen
1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine
4.5. Ganzrationale Funktionen
.5. Ganzrationale Funktionen Definition Eine Funktion der Gestalt f(x) = a n x n a n 1 x n 1... a 2 x 2 a 1 x a 0 mit reellen Koeffizienten a n, a n 1,... und a n 0 heißt ganzrationale Funktion n-ten Grades
Mathematik Semester 3 / Arbeitsblatt f (x) = x x 3 4 x. 5 x 3 20 x. x 2 1
9.2 Aufgaben Aufgabe 16.39 aus dem Buch. 1. f (x) = x4 + 1 x 3 + x 4. f (x) = x4 1 2 x 3 8 x 2. f (x) = x3 + 1 x 3 4 x 5. f (x) = x5 + 1 5 x 3 20 x 3. f (x) = 4 x2 x 2 + 1 6. f (x) = x2 2 x 2 7. f (x)
Brückenkurs Mathematik
Technische Universität Hamburg Harburg WiSe 016/17 Kai Rothe Brückenkurs Mathematik Beispielaufgaben 5 Aufgabe 1: Für folgende Funktionen gebe man den Definitionsbereich D und Wertebereich W an und berechne,
Ganzrationale Funktionen (ohne Ableitungen) Datei Nr Ausdrucken ist nur von der Mathematik-CD möglich. Mai 2002.
Funktionen Klassenstufe 0/ Teil Ganzrationale Funktionen (ohne Ableitungen) Datei Nr. 80 Ausdrucken ist nur von der Mathematik-CD möglich Mai 00 Friedrich Buckel Internatsgymnasium Schloß Torgelow Funktionen
Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I
Diese Lösung wurde erstellt von Tanja Reimbold. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. Teil 1 Aufgabe 1 Definitionsbereich: Bestimmung der Nullstelle
Brüche, Polynome, Terme
KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................
50-Ableitungsbeispiele für Funktionen
50-Ableitungsbeispiele für Funktionen Georg Lauenstein 24. August 2006 e-mail: [email protected] 1 Thema: 50 - Ableitungsbeispiele für Funktionen Übersicht der Aufgaben Ganzrationale Funktionen
Zuammenfassung: Reelle Funktionen
Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,
FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.
FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f
Dieses Kapitel vermittelt:
2 Funktionen Lernziele Dieses Kapitel vermittelt: wie die Abhängigkeit quantitativer Größen mit Funktionen beschrieben wird die erforderlichen Grundkenntnisse elementarer Funktionen grundlegende Eigenschaften
gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind
Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl
Ansgar Schiffler. Die Polynomdivision. Seite 1 von 5. Aufgabe 1: Es sollen die Nullstellen des Graphens der folgenden Funktion bestimmt werden.
Seite 1 von 5 Aufgabe 1: Es sollen die Nullstellen des Graphens der folgenden Funktion bestimmt werden. Dies ist der Graph der Funktion: y = f(x) =,5x³,5x² + 1,8x +,88 Die erste Nullstelle können Sie durch
Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur 11. Übung
TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, 06. Dezember 06 Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur. Übung In
Urs Wyder, 4057 Basel Funktionen. f x x x x 2
Urs Wyder, 4057 Basel [email protected] Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4
Mathemathik-Prüfungen
M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie
Anwendungen der Differentialrechnung
KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................
VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA
VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Dienstag: (Un)Gleichungen in einer Variable, Reelle Funktionen Reelle Funktionen und Lineare Gleichungen. Funktionen sind von
Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn
M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Quotientengleichheit
Rationale Funktionen
Rationale Funktionen ANALYSIS Kapitel 6 WRProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 15. August 2016 Überblick über die bisherigen ANALYSIS - Themen:
Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich
(Quelle Abitur BW 2004) Gegeben sind die Schaubilder der Funktion mit, ihrer Ableitungsfunktion, einer Stammfunktion von und der Funktion mit.
Aufgabe A5/04 Die Abbildung zeigt das Schaubild der Ableitungsfunktion einer Funktion. Welche der folgenden Aussagen über die Funktion sind wahr, falsch oder unentscheidbar? (1) ist streng monoton wachsend
13. Funktionen in einer Variablen
13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier
SYMMETRIE FRANZ LEMMERMEYER
SYMMETRIE FRANZ LEMMERMEYER Symmetrie ist ein außerordentlich wichtiges Konzept in der Mathematik und der Physik. Ist beispielsweise (x, y) eine Lösung des Gleichungssystems x + y = 5, xy = 1, so muss
Eigenschaften gebrochen rationaler Funktionen
Aufgabe 1: 1 Zeichne mit geogebra den Graphen der Funktion f: f() = Beantworte (zusammen mit deinem Tischnachbar) folgende Fragen: Welche Zahlen dürfen nicht in den Funktionsterm eingesetzt werden? Wie
Aufgaben für Analysis in der Oberstufe. Robert Rothhardt
Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................
Kurvendiskussion Gebrochenrationale Funktion Aufgaben und Lösungen
Kurvendiskussion Gebrochenrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 7. September 0 Inhaltsverzeichnis Gebrochenrationale Funktion Gebrochen rationale Funktion Zählergrad < Nennergrad
Algebraische Kurven - Vorlesung 29. Projektion weg von einem Punkt
Algebraische Kurven - Vorlesung 29 Definition 1. Die Abbildung P n K Projektion weg von einem Punkt {(1, 0,..., 0)} Pn 1 K, (x 0, x 1...,x n ) (x 1,..., x n ), heißt die Projektion weg vom Punkt (1, 0,...,
R. Brinkmann Seite Klassenarbeit Mathematik Bearbeitungszeit 90 min. Di SG10 D Gruppe A NAME: Lösungen
R. Brinkmann http://brinkmann-du.de Seite 8..0 Klassenarbeit Mathematik Bearbeitungszeit 90 min. Di.06. SG0 D Gruppe A NAME: Lösungen Hilfsmittel: Taschenrechner Alle Ergebnisse sind soweit möglich durch
Analysis Inhaltsverzeichnis
Analysis Inhaltsverzeichnis 1. Verfahren zur Berechnung von Nullstellen... 3 2. Vier Ableitungsregeln... 5 2.1 Produktregel:... 5 2.2 Quotientenregel:... 5 2.3 Kettenregel:... 5 2.4 Ableitung der Umkehrfunktion...
Polynomiale Gleichungen
Vorlesung 5 Polynomiale Gleichungen Definition 5.0.3. Ein polynomiale Funktion p(x) in der Variablen x R ist eine endliche Summe von Potenzen von x, die Exponenten sind hierbei natürliche Zahlen. Wir haben
Logarithmusfunktion zur Basis 2, Aufgaben. 7-E Vorkurs, Mathematik
Logarithmusfunktion zur Basis 2, Aufgaben 7-E Vorkurs, Mathematik Logarithmusfunktion zur Basis 2: Aufgaben 7-9 Aufgabe 7: Bestimmen Sie eine vertikale Asymptote für die folgenden Funktionen: f ( x) =
Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen
Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Etremstellen-Bedingungen Häufig sind Ableitungsfunktionsterme leichter zu handhaben als die Terme der Ausgangsfunktonen, weil sie niedrigere Eponenten
Polynome und ihre Nullstellen
Polynome und ihre Nullstellen 29. Juli 2017 Inhaltsverzeichnis 1 Einleitung 2 2 Explizite Berechnung der Nullstellen 2.1 Polynome vom Grad 0............................. 2.2 Polynome vom Grad 1.............................
Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen
Mathematik für Studierende der Biologie Wintersemester 207/8 Grundlagentutorium 4 Lösungen Sebastian Groß Termin Mittwochs 5:45 7:45 Großer Hörsaal Biozentrum (B00.09) E-Mail [email protected] Sprechzeiten
2 Polynome und rationale Funktionen
Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine
F u n k t i o n e n Zusammenfassung
F u n k t i o n e n Zusammenfassung Johann Carl Friedrich Gauss (*1777 in Braunschweig, 1855 in Göttingen) war ein deutscher Mathematiker, Astronom und Physiker mit einem breit gefächerten Feld an Interessen.
Übungsaufgaben zur Kurvendiskussion
SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen
Partialbruchzerlegung
Partialbruchzerlegung Eine rationale Funktion r mit n verschiedenen Polstellen z j der Ordnung m j, r = p q, lässt sich in der Form r(z) = f (z) + n j=1 q(z) = c(z z 1) m1 (z z n ) mn r j (z), r j (z)
Mathematik. Jahrgangsstufe 13. Berufliche Gymnasien. Dr. Claus-Günter Frank, Elisabeth Kettel, Arim Shukri, Harald Ziebarth
Dr. Claus-Günter Frank, Elisabeth Kettel, Arim Shukri, Harald Ziebarth unter Mitarbeit von Johannes Schornstein Mathematik Jahrgangsstufe 13 Berufliche Gymnasien 1. Auflage Bestellnummer 11530 Haben Sie
2 Von der Relation zur Funktion
2 Von der Relation zur Funktion 2.1 Relationen Gegeben seien zwei Zahlenmengen P = 1, 2, 3, 4 und Q = 5, 6, 7. Setzt man alle Elemente der Menge P in Beziehung zu allen Elementen der Menge Q, nennt man
Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240.
I. Funktionen 1. Direkt proportionale Zuordnungen Grundwissen Mathematik Klasse x und y sind direkt proportional, wenn zum n fachen Wert für x der n fache Wert für y gehört, die Wertepaare quotientengleich
Polynome. Ein Term der Form. mit n und a 0 heißt Polynom. Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms.
Polynome Ein Term der Form a x + a x + a x + a x +... + a x + a x + a n n 1 n 2 n 3 2 1 2 3 4 n 2 n 1 n mit n und a 0 heißt Polynom. 1 Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms. 1 2 3 Als
Ableitung und Steigung. lim h
Ableitung und Steigung Aufgabe 1 Bestimme die Ableitung der Funktion f(x) = x über den Differentialquotienten. f (x f '(x ) lim h h) f (x h ) (x lim h h) h x x lim h hx h h x h(x lim h h h) lim x h h x
Sätze über ganzrationale Funktionen
Sätze über ganzrationale Funktionen 1. Sind alle Koeffizienten a i ganzzahlig und ist x 0 eine ganzzahlige Nullstelle, so ist x 0 ein Teiler von a 0. 2. Haben alle Koeffizienten dasselbe Vorzeichen, so
Aufgaben zu den ganzrationalen Funktionen
Aufgaben zu den ganzrationalen Funktionen. Bestimmen Sie die Nullstellen folgender ganzrationaler Funktionen. a) y x + x 6 b) y x x + x c) y (x + )(x + x ) d) y x 5x + e) y x + x x + 0 f) y x x 5x +50x
