Kapitel 5: Differentialrechnung

Größe: px
Ab Seite anzeigen:

Download "Kapitel 5: Differentialrechnung"

Transkript

1 Kapitel 5: Differentialrechnung Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 1 / 23

2 Gliederung 1 Grundbegriffe 2 Abbildungen und elementare Funktionen 3 Folgen und Reihen 4 Grenzwerte bei Funktionen, Stetigkeit 5 Differentialrechnung Untersuchung von Eigenschaften einer Funktion mittels en Anwendung: Kurvendiskussion Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 2 / 23

3 Motivation Bislang: Stetigkeit, Monotonie, Beschränktheit... von Funktionen Jetzt: Wie stark und wie rasch nehmen Funktionswerte zu oder ab, wenn sich Werte des Arguments x ändern? Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 3 / 23

4 Motivation Steigung einer Geraden: f (x) f (x 2 ) f (x 1 ) P 1 P 2 f (x 2 ) f (x 1 ) x 2 x 1 α 0 x 1 x 2 x f (x2) f (x1) Geradensteigung: m = x 2 x 1, m = tan α (0 α < 180, α 90 ) Die Geradensteigung gibt an, wie steil die Gerade verläuft. Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 4 / 23

5 Motivation Idee: mittlere Steigung zwischen zwei Punkten P 1, P 2 einer beliebigen Funktion durch Geradensteigung messen: f (x) f (x 2 ) P 2 f (x 1 ) P 1 0 x 1 x 2 x Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 5 / 23

6 Motivation mittlere Steigung der Sekante durch P 1 und P 2 : m s = f (x 2) f (x 1 ) x 2 x 1 (Differenzenquotient) Beispiel 5.1 Tafel Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 6 / 23

7 Motivation Idee: Bestimme die Steigung der Tangente (= Gerade, die Funktionsgraph in einem Punkt berührt) durch Sekantensteigungen, wobei P 2 sich P 1 annähert. f (x) P 2 P 2 P 2 P 1 = (x 1, f (x 1 )) 0 x Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 7 / 23

8 Motivation P 2 wandert zu P 1: Die Sekantensteigung nähert sich mehr und mehr der Tangentensteigung. Formal bedeutet dies: Bilde den Grenzwert des Differenzenquotienten, um die Tangentensteigung zu bekommen. f (x 2 ) f (x 1 ) lim =: f (x 1 ) x 2 x 1 x 2 x }{{ 1 }{{}} (wenn dieser Grenzwert existiert:) Differenzenquotient, der Funktion an der Stelle x 1 Sekantensteigung Steigung der Funktion }{{} Differentialquotient Tangentensteigung Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 8 / 23

9 Definition 5.2 Die Funktion f : I R, I R, heißt in x 0 I differenzierbar (diffbar) oder ableitbar, wenn f (x) f (x 0 ) lim x x 0 x x 0 existiert. Dieser Grenzwert heißt 1. von f an der Stelle x 0 und wird mit f (x 0 ) bezeichnet. Es ist: f (x 0 ) = lim x x0 f (x) f (x 0 ) x x 0 Alternativ: f (x 0 ) = lim x x0 f (x 0 + h) f (x 0 ) h Beispiel 5.3 Tafel Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 9 / 23

10 Beispiel 5.4 Tafel Definition 5.5 a) Eine Funktion f : A R heißt im Intervall [x 1, x 2 ] diffbar, wenn f für jedes x 0 [x 1, x 2 ] diffbar ist. b) Die Funktion f : A R, x f (x) heißt sfunktion von f. Beispiel 5.6 Tafel Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 10 / 23

11 sregeln Satz 5.7 a) f (x) = c f (x) = 0 b) f (x) = u(x) + c f (x) = u (x) c) f (x) = c u(x) f (x) = c u (x) d) f (x) = u(x) + v(x) f (x) = u (x) + v (x) e) f (x) = x n, n N f (x) = n x n 1 f) Kettenregel: Ist g in x 0 diffbar und h in g(x 0 ), dann ist f = h g diffbar in x 0 und es gilt: f (x 0 ) = h (g(x 0 )) g (x 0 ) g) Produktregel: Sind u und v auf dem Intervall I diffbar, so ist auch f = u v auf I diffbar und es gilt: f (x) = u (x) v(x) + v (x) u(x) h) Quotientenregel: Sind u und v auf I diffbar und stets v(x) 0, so ist f = u v auf I diffbar und es gilt: f (x) = u (x)v(x) v (x)u(x) (v(x)) 2 Beweis. Tafel Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 11 / 23

12 sregeln Beispiel 5.8 Tafel Satz 5.9 f (x) f (x) x 1 x 2 2x x 3 3x 2 x n nx n 1 1 x 1 x 1 2 x 1 2 2x 3 x 1 2 x sin x cos x cos x sin x tan x 1 e x cos 2 x e x ln x 1 x Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 12 / 23

13 Diffbar vs. Stetig Satz 5.10 Ist f in x 0 A diffbar, so ist f in x 0 auch stetig. Beachte: Satz 5.10 ist nicht umkehrbar! Betrachte f (x) = x. Es ist aber x 0 lim x 0 x>0 x 0 lim x 0 x<0 x 0 = lim x 0 x>0 x 0 = lim x 0 x<0 x x = 1 x x = 1 1 Die Betragsfunktion ist zwar (überall) stetig, aber in x 0 = 0 nicht diffbar. Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 13 / 23

14 Untersuchung von Eigenschaften einer Funktion mittels en Sätze zur Differenzierbarkeit und Monotonie Satz 5.11 Ist f diffbar auf I und gilt f (x) > 0 (f (x) < 0) für alle x I, dann ist f auf I streng monoton wachsend (fallend). Beispiel 5.12 Tafel Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 14 / 23

15 Untersuchung von Eigenschaften einer Funktion mittels en Notwendige/Hinreichende Bedingungen für Extrema Satz 5.13 (Notwendige Bedingung für Extrema) f hat in x 0 eine Extremstelle (d. h. ein Maximum oder ein Minimum) f (x 0 ) = 0 Definition 5.14 Gibt es bei f : A R eine Umgebung U δ der Stelle x 0 A, so dass für alle x A U δ gilt f (x) f (x 0 ) (bzw. f (x) f (x 0 )), dann nennt man f (x 0 ) ein lokales Maximum (bzw. Minimum) von f. Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 15 / 23

16 Untersuchung von Eigenschaften einer Funktion mittels en Notwendige/Hinreichende Bedingungen für Extrema Definition 5.15 Bildet man die sfunktion der 1. f, so erhält man die 2. f von f. Analog: f Satz 5.16 Sei f : A R in U δ (x 0 ) A zweimal diffbar. Wenn f (x 0 ) = 0 und f (x 0 ) 0 ist, dann hat f in x 0 ein Extremum. Bei f (x 0 ) < 0 ist f (x 0 ) ein Maximum, bei f (x 0 ) > 0 ein Minimum. Beispiel 5.17 Tafel Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 16 / 23

17 Untersuchung von Eigenschaften einer Funktion mittels en Konvexe/Konkave Funktionen Definition 5.18 Die auf I diffbare Funktion f heißt auf I konvex (bzw. konkav), wenn f auf I monoton wächst (bzw. fällt). Satz 5.19 Sei f auf I zweimal diffbar. Dann gilt: a) f (x) > 0 x I f konvex auf I und Graph linksgekrümmt b) f (x) < 0 x I f konkav auf I und Graph rechtsgekrümmt Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 17 / 23

18 Untersuchung von Eigenschaften einer Funktion mittels en Konvexe/Konkave Funktionen Illustration: f (x) x Abbildung: 1. steigt 2. > 0 linksgekrümmt Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 18 / 23

19 Untersuchung von Eigenschaften einer Funktion mittels en Konvexe/Konkave Funktionen Illustration: f (x) x Abbildung: 1. fällt 2. < 0 rechtsgekrümmt Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 19 / 23

20 Untersuchung von Eigenschaften einer Funktion mittels en Konvexe/Konkave Funktionen Illustration: f (x) x Abbildung: Übergang Rechtskurve zu Linkskurve Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 20 / 23

21 Untersuchung von Eigenschaften einer Funktion mittels en Wendepunkt Definition 5.20 Ist f auf I diffbar und geht ihr Graph beim Durchlaufen eines Punktes W = (x 0, f (x 0 )) von einer Rechts- in eine Linkskurve über (oder umgekehrt), so nennt man W einen Wendepunkt und die Stelle x 0 eine Wendestelle von f. Illustration: rot: Wendetangente f (x) x4 Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 21 / 23

22 Untersuchung von Eigenschaften einer Funktion mittels en Wendepunkt Definition 5.20 Ist f auf I diffbar und geht ihr Graph beim Durchlaufen eines Punktes W = (x 0, f (x 0 )) von einer Rechts- in eine Linkskurve über (oder umgekehrt), so nennt man W einen Wendepunkt und die Stelle x 0 eine Wendestelle von f. Illustration: rot: Wendetangente f (x) x4 Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 21 / 23

23 Untersuchung von Eigenschaften einer Funktion mittels en Wendepunkt Definition 5.20 Ist f auf I diffbar und geht ihr Graph beim Durchlaufen eines Punktes W = (x 0, f (x 0 )) von einer Rechts- in eine Linkskurve über (oder umgekehrt), so nennt man W einen Wendepunkt und die Stelle x 0 eine Wendestelle von f. Illustration: rot: Wendetangente f (x) x4 Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 21 / 23

24 Untersuchung von Eigenschaften einer Funktion mittels en Wendepunkt Satz 5.21 (Notwendiges Kriterium) Wenn f : I R in x 0 I zweimal diffbar ist und bei x 0 eine Wendestelle hat, dann ist f (x 0 ) = 0 Satz 5.22 (Hinreichendes Kriterium) Sei f : I R in x 0 I dreimal diffbar. Ist f (x 0 ) = 0 und f (x 0 ) 0, dann hat f in x 0 eine Wendestelle. Beispiel 5.23 Tafel Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 22 / 23

25 Anwendung: Kurvendiskussion Anwendung: Kurvendiskussion Jetzt: wende bisheriges Wissen an, um Funktionen näher zu untersuchen, bzgl. 1 Definitionsbereich 2 Symmetrie des Graphs bzgl. y-achse bzw. Ursprung 3 Stetigkeitsuntersuchung und Untersuchung der Funktion in der Nähe von Definitionslücken 4 Verhalten für große Zahlen x 5 Nullstellen, Schnittpunkt mit y-achse 6 Extremwerte und Monotoniebereiche 7 Wendestellen 8 Skizze des Schaubilds aufgrund obiger Erkenntnisse Beispiel 5.24 Tafel Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 23 / 23

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de SS 2017 Vorlesung 7 MINT Mathkurs SS 2017 1 / 25 Vorlesung 7 (Lecture 7) Differentialrechnung differential

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 7 Differenzierbarkeit Mathematischer Vorkurs TU Dortmund Seite

Mehr

Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 55 4. Anwendungen der Differentialrechnung Monotonie Krümmung Linearisierung einer Funktion Extremwerte

Mehr

Der Differenzenquotient

Der Differenzenquotient Der Differenzenquotient Von den linearen Funktionen kennen wir den Begriff des Differenzenquotienten k = y 2 y 1 x 2 x 1 mit dem die Steigung einer Geraden festgelegt wird. Der Begriff des Differentialkoeffizienten

Mehr

2015, MNZ. Jürgen Schmidt. Vorkurs. Mathematik. Ableiten. Tag WS 2015/16

2015, MNZ. Jürgen Schmidt. Vorkurs. Mathematik. Ableiten. Tag WS 2015/16 Vorkurs 4. Mathematik Ableiten WS 2015/16 Tag Einführendes Beispiel Vernachlässigen wir den Luftwiderstand, so können wir in hinreichender Näherung für den freien Fall eines Körpers s(t) = 5t 2 als Weg-Zeit-Abhängigkeit

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 7 Anwendungen der Differentialrechnung 7.1 Maxima und Minima einer Funktion................. 141 7.2 Mittelwertsatz............................ 144 7.3 Kurvendiskussion..........................

Mehr

streng monoton steigend. streng monoton fallend. Ist f eine in einem Intervall stetige und im Innern des Intervalls differenzierbare Funktion mit

streng monoton steigend. streng monoton fallend. Ist f eine in einem Intervall stetige und im Innern des Intervalls differenzierbare Funktion mit 3. Anwendungen ================================================================= 3.1 Monotonie Eine Funktion f heißt in ihrem Definitionsbereich D monoton steigend, wenn für alle x 1, x 2 D mit x 1 < x

Mehr

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

I. Verfahren mit gebrochen rationalen Funktionen:

I. Verfahren mit gebrochen rationalen Funktionen: I. Verfahren mit gebrochen rationalen Funktionen: 1. Definitionslücken bestimmen: Nenner wird gleich 0 gesetzt! 2. Prüfung ob eine hebbare Definitionslücke vorliegt: Eine hebbare Definitionslücke liegt

Mehr

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion.

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. 4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. Definition 4.3. Es sei f : R D R eine auf D erklarte Funktion. Die Funktion f hat in a D eine globales oder

Mehr

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4 Mag. Mone Denninger 10. Oktober 2004 Inhaltsverzeichnis 1 Definitionsmenge 2 1.1 Verhalten am Rand und an den Lücken des Definitionsbereichs............................ 2 2 Nullstellen 2 3 Extremwerte

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

3.2 Funktionsuntersuchungen mittels Differentialrechnung

3.2 Funktionsuntersuchungen mittels Differentialrechnung 3. Funktionsuntersuchungen mittels Differentialrechnung 46 3. Funktionsuntersuchungen mittels Differentialrechnung In diesem Abschnitt betrachten wir Funktionen f: D, welche je nach Bedarf zumindest ein-

Mehr

Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften:

Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1 KURVENDISKUSSION Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1.1 Definitionsbereich Zuerst bestimmt man den maximalen Definitionsbereich

Mehr

Basistext Kurvendiskussion

Basistext Kurvendiskussion Basistext Kurvendiskussion In einer Kurvendiskussion sollen zu einer vorgegebenen Funktion (bzw. Funktionsschar) Aussagen über ihrem Verlauf gemacht werden. Im Nachfolgenden werden die einzelnen Untersuchungspunkte

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

GF MA Differentialrechnung A2

GF MA Differentialrechnung A2 Kurvendiskussion Nullstellen: Für die Nullstellen x i ( i! ) einer Funktion f gilt: Steigen bzw. Fallen: f ( x i ) = 0 f '( x) > 0 im Intervall I f ist streng monoton wachsend in I f '( x) < 0 im Intervall

Mehr

Kapitel 4: Grenzwerte bei Funktionen, Stetigkeit

Kapitel 4: Grenzwerte bei Funktionen, Stetigkeit Kapitel 4: Grenzwerte bei Funktionen, Stetigkeit Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Grenzwerte bei Funktionen, Stetigkeit 1 / 27 Gliederung

Mehr

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79 Mathematik W14 Christina Sickinger Berufsreifeprüfung v 1 Christina Sickinger Mathematik W14 1 / 79 Die Steigung einer Funktion Wir haben bereits die Steigung einer linearen Funktion kennen gelernt! Eine

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de WS 2016/2017 Vorlesung 7 MINT Mathkurs WS 2016/2017 1 / 20 Stetigkeit einer Funktion (continuity of a

Mehr

Abb lokales Maximum und Minimum

Abb lokales Maximum und Minimum .13 Lokale Extrema, Monotonie und Konvexität Wir kommen nun zu den ersten Anwendungen der Dierentialrechnung. Zwischen den Eigenschaten einer Funktion, dem Verlau des zugehörigen Graphen und den Ableitungen

Mehr

Eigenschaften stetiger Funktionen Buch Kap. 2.5

Eigenschaften stetiger Funktionen Buch Kap. 2.5 Eigenschaften stetiger Funktionen Buch Kap. 2.5 Satz 2.6: (Nullstellensatz) Ist f : [a, b] R stetig und haben f (a) und f (b) unterschiedliche Vorzeichen, so besitzt f in (a, b) mindestens eine Nullstelle.

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2017/18 04.10.2017 Einführung, R, Grundlagen 1 11.10.2017 Grundlagen, Aussagen 2 18.10.2017 Aussagen

Mehr

Funktionen untersuchen

Funktionen untersuchen Funktionen untersuchen Mögliche Fragestellungen Definition: lokale und globale Extrema Monotonie und Extrema Notwendige Bedingung für Extrema Hinreichende Kriterien, Vergleich Krümmungsverhalten Neumann/Rodner

Mehr

HM I Tutorium 9. Lucas Kunz. 19. Dezember 2018

HM I Tutorium 9. Lucas Kunz. 19. Dezember 2018 HM I Tutorium 9 Lucas Kunz 19. Dezember 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Definition der Ableitung............................ 2 1.2 Ableitungsregeln................................ 2 1.2.1 Linearität................................

Mehr

Vorlesung Analysis I WS 07/08

Vorlesung Analysis I WS 07/08 Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................

Mehr

x 1 keinen rechtsseitigen Grenzwert x 0+ besitzen. (Analog existiert der linksseitige Grenzwert nicht.)

x 1 keinen rechtsseitigen Grenzwert x 0+ besitzen. (Analog existiert der linksseitige Grenzwert nicht.) Differentialrechnung 1 Grenzwerte Gegeben sei ein Intervall I R, a I {, } und f : I\{a} R. Die Funktion f kann sehr wohl auch an der Stelle x = a erklärt sein, wir wollen aber nur wissen wie sich die Funktion

Mehr

R. Brinkmann Seite

R. Brinkmann   Seite R. Brinkmann http://brinkmann-du.de Seite 1 1.08.016 Kurvendiskussion Vorbetrachtungen Um den Graphen einer Funktion zeichnen und interpretieren zu können, ist es erforderlich einiges über markante Punkte

Mehr

Satz: Eine Funktion f ist monoton wachsend auf einem Intervall ]a, b[, wenn gilt: f (x) < 0 x ]a, b[

Satz: Eine Funktion f ist monoton wachsend auf einem Intervall ]a, b[, wenn gilt: f (x) < 0 x ]a, b[ Monotonie und erste Ableitung: Satz: Eine Funktion f ist monoton wachsend auf einem Intervall ]a, b[, wenn gilt: f (x) 0 x ]a, b[ Eine Funktion f ist monoton fallend auf einem Intervall ]a, b[, wenn gilt:

Mehr

Eigenschaften von Funktionen

Eigenschaften von Funktionen Eigenschaften von Funktionen Mag. Christina Sickinger HTL v 1 Mag. Christina Sickinger Eigenschaften von Funktionen 1 / 48 Gegeben sei die Funktion f (x) = 1 4 x 2 1. Berechnen Sie die Steigung der Funktion

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

6 Die Bedeutung der Ableitung

6 Die Bedeutung der Ableitung 6 Die Bedeutung der Ableitung 24 6 Die Bedeutung der Ableitung Wir wollen in diesem Kapitel diskutieren, inwieweit man aus der Kenntnis der Ableitung Rückschlüsse über die Funktion f ziehen kann Zunächst

Mehr

Zusammenfassung: Differenzialrechnung 2

Zusammenfassung: Differenzialrechnung 2 LGÖ Ks M 11 Schuljahr 17/18 Zusammenfassung: Differenzialrechnung Inhaltsverzeichnis Etrem- und Wendepunkte... 1 Etremwertprobleme... 8 Etrem- und Wendepunkte Definition: Ist eine reelle Zahl, dann heißt

Mehr

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant)

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant) Modul Grundbildung Analysis WiSe 10/11 Im Folgenden bedeutet A: Wurde in diesem Kapitel behandelt B: Interessante Aufgaben C: Weitere Fragen (Nicht nur für die Klausur interessant) V1 Konvergenz, Grenzwert

Mehr

Da der Nenner immer positiv ist, folgt. g (x) > 0 2x(2 x) > 0 0 < x < 2 g (x) < 0 2x(2 x) < 0 x < 0 oder x > 2

Da der Nenner immer positiv ist, folgt. g (x) > 0 2x(2 x) > 0 0 < x < 2 g (x) < 0 2x(2 x) < 0 x < 0 oder x > 2 Da der Nenner immer positiv ist, folgt g (x) > 0 x( x) > 0 0 < x < g (x) < 0 x( x) < 0 x < 0 oder x > Also ist g auf (0,) streng monoton wachsend sowie auf (,0) und auf (, ) strengmonotonfallend.außerdemistg

Mehr

Zusammenfassung: Differenzialrechnung 1

Zusammenfassung: Differenzialrechnung 1 LGÖ Ks M Schuljahr 7/8 Zusammenfassung: Differenzialrechnung Inhaltsverzeichnis Aufgabenformulierungen Gleichungen Graphen, Trigonometrie und Geraden Ableitung Ableitungsregeln, höhere Ableitungen 3 Kettenregel

Mehr

V.1 Konvergenz, Grenzwert und Häufungspunkte

V.1 Konvergenz, Grenzwert und Häufungspunkte V.1 Konvergenz, Grenzwert und Häufungspunkte S. 108 110 A. Bereits bekannt: Folge Extrem wichtig: Grenzwert bzw. Konvergenz: a n a oder lim n a n = a : ε R, ε > 0 n 0 N : a n a < ε n n 0 Begriffe: Fast

Mehr

bestimmt werden. Allein die Regel (5.4) würde wegen g(x) = 2, folglich erhalten wir den korrekten lim

bestimmt werden. Allein die Regel (5.4) würde wegen g(x) = 2, folglich erhalten wir den korrekten lim bestimmt werden. Allein die Regel (5.4) würde wegen f (x) lim x g (x) = lim 2e 2x = lim x e x x 2ex = 0 dengrenzwert0für(5.5)liefern.dasistaberfalsch,dennwegen lim 0 ist lim x g(x) = 2, folglich erhalten

Mehr

Übersicht. 1. Motivation. 2. Grundlagen

Übersicht. 1. Motivation. 2. Grundlagen Übersicht 1. Motivation 2. Grundlagen 3. Analysis 3.1 Folgen, Reihen, Zinsen 3.2 Funktionen 3.3 Differentialrechnung 3.4 Extremwertbestimmung 3.5 Nichtlineare Gleichungen 3.6 Funktionen mehrerer Variabler

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 14

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 14 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 03.02.2019 Dr. Markus Lange Analysis 1 Aufgabenzettel 14 Dieser Zettel wird in der letzten Übung des Semesters am 08.02.2019 besprochen Aufgabe

Mehr

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen Version 01.02. Januar 2007 MIA Analysis einer reellen Veränderlichen WS 06/07 Kurzfassung Martin Schottenloher Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen In diesem Kapitel werden differenzierbare

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a . Einführung in die Differentialrechnung ==================================================================. Differenzenquotient und mittlere Änderungsrate ------------------------------------------------------------------------------------------------------------------

Mehr

Übungsaufgaben zur Kurvendiskussion

Übungsaufgaben zur Kurvendiskussion SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen

Mehr

dx nf(x 0). dx f(n 1) (x 0 ) = dn

dx nf(x 0). dx f(n 1) (x 0 ) = dn 4.3. Höhere Ableitungen, Konveität, Newtonverfahren 65 4.3 Höhere Ableitungen, Konveität, Newtonverfahren Ist f:i R differenzierbar auf einem Intervall I, so erhalten wir eine neue Funktion auf I, nämlich

Mehr

Mathematik 1 Bachelorstudiengang Maschinenbau

Mathematik 1 Bachelorstudiengang Maschinenbau Mathematik 1 Bachelorstudiengang Maschinenbau Prof. Dr. Stefan Etschberger Hochschule Augsburg Sommersemester 2012 7. Differentialrechnung einer Veränderlichen 7.2. Differentialquotient und Ableitung

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+ D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Lösung - Serie 6 1. MC-Aufgaben (Online-Abgabe) 1. Für alle ganzen Zahlen n 1 gilt... (a) e 1/x = o(x n ) für x 0 + (b) e 1/x = o(x n ) für x 0 + (c)

Mehr

2 Differenzialrechnung für Funktionen einer Variablen

2 Differenzialrechnung für Funktionen einer Variablen 2 Differenzialrechnung für Funktionen einer Variablen Ist f eine ökonomische Funktion, so ist oft wichtig zu wissen, wie sich die Funktion bei kleinen Änderungen verhält. Beschreibt etwa f einen Wachstumsprozess,

Mehr

Polynome. Ein Term der Form. mit n und a 0 heißt Polynom. Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms.

Polynome. Ein Term der Form. mit n und a 0 heißt Polynom. Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms. Polynome Ein Term der Form a x + a x + a x + a x +... + a x + a x + a n n 1 n 2 n 3 2 1 2 3 4 n 2 n 1 n mit n und a 0 heißt Polynom. 1 Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms. 1 2 3 Als

Mehr

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2 SBP Mathe Grundkurs 2 # 0 by Clifford Wolf SBP Mathe Grundkurs 2 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

3.3 Linkskurve, Rechtskurve Wendepunkte

3.3 Linkskurve, Rechtskurve Wendepunkte 166 FUNKTIONSUNTERSUCHUNGEN 3.3 Linkskurve, Rechtskurve Wendepunkte Einführung (1) Anschauliche Erklärung des Begriffs Wendepunkt Bei Motorradrennen lässt sich beobachten, wie sich die Motorradfahrer beim

Mehr

Vollständige Kurvendiskussion mit Erläuterungen

Vollständige Kurvendiskussion mit Erläuterungen Vollständige Kurvendiskussion mit Erläuterungen Aufgabe: Gegeben ist die Funktion =³ 3 +. Führen Sie eine vollständige Kurvendiskussion durch. 1.) Ableitungen: =3 6+1 =6 6 =6 (relevant für die Steigung

Mehr

6 Di erentialrechnung, die Exponentialfunktion

6 Di erentialrechnung, die Exponentialfunktion 6 Di erentialrechnung, die Exonentialfunktion 6. Exonentialfunktion Wir führen die Exonentialfunktion ein, die eine stetige Funktion mit folgenden Eigenschaften ist: ex(x + y) =ex(x)ex(y) (8) ex(0) =,

Mehr

differenzierbare Funktionen

differenzierbare Funktionen Kapitel IV Differenzierbare Funktionen 18 Differenzierbarkeit und Rechenregeln für differenzierbare Funktionen 19 Mittelwertsätze der Differentialrechnung mit Anwendungen 20 Gleichmäßige Konvergenz von

Mehr

5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation

5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation 5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation Aufgabe : Verschiebung und Streckung trigonometrischer Funktionen (5) a) Bestimmen Sie die Periode p sowie die Nullstellen der Funktion

Mehr

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg elementarer Funktionen Gegeben: f : D R, mit D R und a > 0, b R. Dann gilt: f(x) f (x) 1 ln x x 1 log a x x ln a e x e

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Diskussion einzelner Funktionen

Diskussion einzelner Funktionen Diskussion einzelner Funktionen. Wir betrachten die Funktion f mit f() = cos sin (a) Berechne f() für { π, π, π, π, } 5π und zeichne den Grafen von f im - Intervall [ π, ] 5π. Einheiten: cm auf der y-achse,

Mehr

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f x = f (x 0 + x) f (x 0 ) x = f (x)

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 2008/09) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 9. November 2008) Die

Mehr

Kompetenz: Verinnerlichung des Mittelwertsatzes Daraus ergibt sich leicht der wichtige Mittelwertsatz der Differentialrechnung:

Kompetenz: Verinnerlichung des Mittelwertsatzes Daraus ergibt sich leicht der wichtige Mittelwertsatz der Differentialrechnung: 16 Mittelwertsätze und Anwendungen 71 16 Mittelwertsätze und Anwendungen Lernziele: Konzepte: Konvexität und Konkavität Resultate: Mittelwertsätze der Differentialrechnung Methoden: Regeln von de l Hospital

Mehr

Differenzialrechnung. Mathematik-Repetitorium

Differenzialrechnung. Mathematik-Repetitorium Differenzialrechnung 5.1 Die Ableitung 5.2 Differentiation elementarer Funktionen 5.3 Differentiationsregeln 5.4 Höhere Ableitungen 5.5 Partielle Differentiation 5.6 Anwendungen Differenzialrechnung 1

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Kontrollfragen zur Unterrichtsstunde

Kontrollfragen zur Unterrichtsstunde Kontrollfragen zur Unterrichtsstunde Frage 1: Das Newtonverfahren ist eine Methode zur Bestimmung A: der Extremstellen eines C: des Verhalten im Unendlichen. B: der Nullstellen eines D: der Fallzeit eines

Mehr

Tutorium Mathematik ITB1(B), WI1(B)

Tutorium Mathematik ITB1(B), WI1(B) Tutorium Mathematik ITB(B), WI(B) Aufgabenblatt D Differenzialrechnung Prof Dr Peter Plappert Fachbereich Grundlagen Die Aufgaben dieses Aufgabenblattes sollen ohne die Benutzung von Taschenrechnern bearbeitet

Mehr

Differentiation und Taylorentwicklung. Thomas Fehm

Differentiation und Taylorentwicklung. Thomas Fehm Differentiation und Taylorentwicklung Thomas Fehm 4. März 2009 1 Differentiation in R 1.1 Grundlagen Definition 1 (Ableitung einer Funktion) Es sei f eine Funktion die auf dem Intervall I R definiert ist.

Mehr

2.6 Lokale Extrema und Mittelwertsatz

2.6 Lokale Extrema und Mittelwertsatz 2.6. Lokale Etrema und Mittelwertsatz 49 2.6 Lokale Etrema und Mittelwertsatz In diesem Kapitel bezeichne f stets eine reellwertige Funktion, definiert auf einem abgeschlossenen Intervall [a, b]. Unter

Mehr

Mathematik: Infinitesimalrechnung

Mathematik: Infinitesimalrechnung Mathematik: Infinitesimalrechnung Ingo Blechschmidt 11. Juli 2005 Inhaltsverzeichnis 1 Mathematik: Infinitesimalrechnung 2 1.1 Schulheft.......................... 2 1.1.1 Funktion......................

Mehr

9. Übungsblatt zur Vorlesung Mathematik I für Informatik

9. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sven Herrmann Dipl.-Math. Susanne Pape 9. Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 2009/2010 8./9. Dezember 2009 Gruppenübung

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. Dezember 2011)

Mehr

Analysis I. Guofang Wang , Universität Freiburg

Analysis I. Guofang Wang , Universität Freiburg Universität Freiburg 10.1.2017, 11.1.2017 Definition 1.1 (Ableitung) Die Funktion f : I R n hat in x 0 I die Ableitung a R n (Notation: f (x 0 ) = a), falls gilt: f(x) f(x 0 ) lim = a. (1.1) x x 0 x x

Mehr

Zusammenfassung der Kurvendiskussion

Zusammenfassung der Kurvendiskussion Zusammenfassung der Kurvendiskussion Diskussionspunkte 1 Größtmögliche Definitionsmenge D f 2 Symmetrieeigenschaften des Graphen G f 3 Nullstellen, Polstellen, Schnittpunkte mit der y-achse, Vielfachheit

Mehr

1.2 Einfache Eigenschaften von Funktionen

1.2 Einfache Eigenschaften von Funktionen 1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine

Mehr

Abitur 2013 Mathematik Infinitesimalrechnung II

Abitur 2013 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 213 Mathematik Infinitesimalrechnung II Teilaufgabe Teil 1 1 (5 BE) Geben Sie für die Funktion f mit f(x) = ln(213 x) den maximalen Definitionsbereich

Mehr

Abitur 2010 Mathematik GK Infinitesimalrechnung I

Abitur 2010 Mathematik GK Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2010 Mathematik GK Infinitesimalrechnung I Teilaufgabe 2 (4 BE) Gegeben ist für k R + die Schar von Funktionen f k : x 1 Definitionsbereich D k. Der

Mehr

Kapitel 7 Differentialrechnung

Kapitel 7 Differentialrechnung Kapitel 7 Differentialrechnung 245 Kapitel 7.1 Grundbegriffe 246 Der Differentialquotient und das Integral sind die Kernbegriffe der Analysis. Ableitung und Integralbegriff werden durch gewisse Grenzwerte

Mehr

( 0 ( x) d) Die Funktionsgleichung der Funktion 1 lautet: f( Für x 2 = 0 : Wähle die Werte -1 und 1. Überprüfe x1 = 1,

( 0 ( x) d) Die Funktionsgleichung der Funktion 1 lautet: f( Für x 2 = 0 : Wähle die Werte -1 und 1. Überprüfe x1 = 1, Differentialrechnung IV (Wendepunkte) (Kap 7) (Haben Sie Probleme bei der Bearbeitung dieser Aufgaben versuchen Sie diese in Ihrer Kleingruppe mit Hilfe des Arbeitsbuchs Mathematik zu klären Führt dies

Mehr

16. Differentialquotient, Mittelwertsatz

16. Differentialquotient, Mittelwertsatz 16. Differentialquotient, Mittelwertsatz Gegeben sei eine stetige Funktion f : R R. Wir suchen die Gleichung der Tangente t an die Kurve y = f(x) im Punkt (x, f(x ), x R. Das Problem dabei ist, dass vorderhand

Mehr

Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang

Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang . Die Momentangeschwindigkeit eines Autos Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang s(t) = t gilt. Im s t Diagramm

Mehr

Didaktik der Mathematik der Sekundarstufe II

Didaktik der Mathematik der Sekundarstufe II Didaktik der Mathematik der Sekundarstufe II Teil 8: Satz von Rolle - Mittelwertsatz - Monotoniekriterium Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

B Anwendungen der Differenzialrechnung

B Anwendungen der Differenzialrechnung B Anwendungen der Differenzialrechnung Kurvendiskussionen Um den Verlauf eines Funktionsgraphen zu bestimmen, kann eine Wertetabelle aufgestellt werden. Dies kann jedoch sehr mühselig sein und es ist nicht

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

Lösungen zu den Vermischten Aufgaben Kapitel 5

Lösungen zu den Vermischten Aufgaben Kapitel 5 Band 10 - Einführungsphase NRW Lösungen zu den Vermischten Aufgaben Kapitel 5 1. Qualitative Skizzen der Füllgraphen (oben) und der zugehörigen Geschwindigkeitsgraphen (unten). a) b) c) d). a) IV) b) II)

Mehr

7.9. Kurvendiskussion

7.9. Kurvendiskussion 7.9. Kurvendiskussion Bei der systematischen Untersuchung einer gegebenen Funktion und der durch sie dargestellten Kurve interessiert man sich vor allem für die folgenden Charakteristika, die einen guten

Mehr

Mathematik LK M2, 2. KA Eigenschaften ganzr. Funktionen Lösung

Mathematik LK M2, 2. KA Eigenschaften ganzr. Funktionen Lösung Aufgabe 1: Grenzwerte 2 x 3 1.1 Berechne unter Anwendung der 3( +12 x 10 Grenzwertsätze für Funktionen: lim x 3 x 3 +2 x+10 2 x 2 x 3 +12 x 10 1+ 6 lim x 3 x 3 +2 x+10 = lim x 10 3) 2 x 2 x 2 3 x 3( 1

Mehr

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen Mathematik für Studierende der Biologie Wintersemester 207/8 Grundlagentutorium 4 Lösungen Sebastian Groß Termin Mittwochs 5:45 7:45 Großer Hörsaal Biozentrum (B00.09) E-Mail gross@bio.lmu.de Sprechzeiten

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Zwischenwertsatz Gegeben: f : [a, b] R stetig Dann gilt: f(a) < f(b) y [f(a), f(b)] x [a, b] mit f(x) = y 9.1. Grundbegriffe

Mehr

Stichwortverzeichnis. Stichwortverzeichnis

Stichwortverzeichnis. Stichwortverzeichnis Stichwortverzeichnis Die Ergänzungen (A) und (B) hinter einem Eintrag bedeuten: (A) Dieser Eintrag tritt in einer Aufgabe auf. (B) Dieser Eintrag tritt in einem Beispiel auf. 1 1. Hauptsatz der Differential-

Mehr