Mathematik 1 für Wirtschaftsinformatik
|
|
|
- Gerhard Brodbeck
- vor 9 Jahren
- Abrufe
Transkript
1 Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg
2
3 Zwischenwertsatz Gegeben: f : [a, b] R stetig Dann gilt: f(a) < f(b) y [f(a), f(b)] x [a, b] mit f(x) = y 9.1. Grundbegriffe 9.2. Elementare Funktionen 9.3. Stetigkeit f(b) f(x) a f(a) b x 188
4
5
6 : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration 10 Differenzieren 1 Differentialquotient und Ableitung Änderungsrate und Elastizität Kurvendiskussion
7 Warum Differentialrechnung? Anwendungen Analyse und ökonomische Interpretation wirtschaftswissenschaftlicher Gesetzmäßigkeiten durch Untersuchung der Charakteristika von Funktionen Ermittlung von optimalen Lösungen betriebswirtschaftlicher Entscheidungsprobleme wie zum Beispiel Absatzmengenplanung, Loßgrößenplanung etc. Wesentliche Lernziele Differentialquotient und Ableitung Änderungsrate und Elastizität Kurvendiskussion Verständnis des Differentialquotienten Fähigkeit, eine Funktion zu differenzieren Bestimmung und Interpretation von Änderungsraten und Elastizitäten Durchführung und Interpretation von Kurvendiskussionen 190
8 Preisbestimmung beim Angebotsmonopol Bekannt sind folgende Zusammenhänge: p(x) = c 1 c 2 x (Preis-Absatz-Funktion) K(x) = c 3 + c 4 x (Kostenfunktion) (mit c 1, c 2, c 3, c 4 R + Konstanten) Damit ergibt sich: Umsatzfunktion: U(x) = c 1 x c 2 x 2 Gewinnfunktion: G(x) = U(x) K(x) = c 1 x c 2 x 2 (c 3 + c 4 x) Differentialquotient und Ableitung Änderungsrate und Elastizität Kurvendiskussion Fragen: Welche Menge/Welcher Preis ist Umsatz-/Gewinnmaximal? Welche Veränderung des Umsatzes ergibt sich bei einer Veränderung der Absatzmenge? 191
9 Differenzenquotient: Idee Tour de France: Anstieg nach L Alpe d Huez Länge des Anstiegs: 13,9 km Auf einer Höhe von 740 m beginnen die 21 Kehren Zielankunft liegt auf 1850 m Höhendifferenz Bestimmung von Steigungen: Distanz Differentialquotient und Ableitung Änderungsrate und Elastizität Kurvendiskussion 192
10 Differenzenquotient Gegeben: Reelle Funktion f : D R mit D R Dann heißt der Ausdruck f(x 2) f(x 1 ) x 2 x 1 Differenzenquotient (Steigung) von f im Intervall [x 1, x 2 ] D Alternative Schreibweise, dabei Ersetzen von x 2 durch x 1 + x 1 f (x 1 + x 1 ) f (x 1 ) x 1 = f (x 1) x Differentialquotient und Ableitung Änderungsrate und Elastizität Kurvendiskussion f(x 1 + x 1 ) f(x 1 ) f(x) B A }{{} x 1 x 1 x 1 + x 1 f(x 1 ) x 193
11 Differentialquotient Eine reelle Funktion f : D R mit D R heißt an der Stelle x 1 D differenzierbar, wenn der Grenzwert existiert. f(x 1 ) lim x 1 0 x 1 Ist f an der Stelle x 1 differenzierbar, heißt f(x 1 ) lim x 1 0 x 1 = lim x 1 0 = f(x 1 + x 1 ) f(x 1 ) x 1 df dx 1 (x 1 ) = f (x 1 ) Differentialquotient oder erste Ableitung von f an der Stelle x 1. f heißt in D differenzierbar, wenn f für alle x D differenzierbar ist. G. W. Leibniz ( ) I. Newton ( ) Differentialquotient und Ableitung Änderungsrate und Elastizität Kurvendiskussion 194
12
13
14 Ableitungsregeln Summen, Differenzen, Produkte und Quotienten (soweit definiert) von differenzierbaren Funktionen sind differenzierbar. Summenregel: Produktregel: (f ± g) (x) = f (x) ± g (x) (f g) (x) = f(x) g(x) + f(x) g (x) Daraus ergibt sich für eine Konstante c: (c f) (x) = c f (x) Quotientenregel: Differentialquotient und Ableitung Änderungsrate und Elastizität Kurvendiskussion ( ) z (x) = z (x) n(x) z(x) n (x) n (n(x)) 2 Kettenregel: (g f) (x) = [g (f(x))] = g (f(x)) f (x) 195
15 Ableitung elementarer Funktionen Gegeben: f : D R, mit D R und a > 0, b R. Dann gilt: f(x) f (x) 1 ln x x 1 log a x x ln a e x e x Differentialquotient und Ableitung Änderungsrate und Elastizität Kurvendiskussion a x x b sin x cos x a x ln a bx b 1 cos x sin x 196
Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/
Wirtschafts- und Finanzmathematik
Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2017/18 04.10.2017 Einführung, R, Grundlagen 1 11.10.2017 Grundlagen, Aussagen 2 18.10.2017 Aussagen
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen
Mathematik I Herbstsemester 2018 Kapitel 3: Differentialrechnung
Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 39 3. Differentialrechnung Einführung Ableitung elementarer Funktionen Ableitungsregeln Kettenregel Ableitung
Differentialrechnung
Katharina Brazda 5. März 007 Inhaltsverzeichnis Motivation. Das Tangentenproblem................................... Das Problem der Momentangeschwindigkeit.......................3 Differenzenquotient und
ε δ Definition der Stetigkeit.
ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x
Differentialrechnung
Kapitel 7 Differentialrechnung Josef Leydold Auffrischungskurs Mathematik WS 2017/18 7 Differentialrechnung 1 / 75 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f
Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient
Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrechnung f = f 0 + f 0 = f 0 0 heißt Differenzenquotient an der Stelle 0., Sekante 0, f 0 f 0 Josef Leydold Auffrischungskurs
16. Differentialquotient, Mittelwertsatz
16. Differentialquotient, Mittelwertsatz Gegeben sei eine stetige Funktion f : R R. Wir suchen die Gleichung der Tangente t an die Kurve y = f(x) im Punkt (x, f(x ), x R. Das Problem dabei ist, dass vorderhand
Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56
Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f x = f (x 0 + x) f (x 0 ) x = f (x)
Die Ableitung einer Funktion
Die Ableitung einer Funktion I. Definition der Ableitung Definition. Sei I R ein Intervall und f : I R. 1) f eißt differenzierbar an x 0 I, wenn der Grenzwert f(x) f(x 0 ) lim = f (x 0 ) x x 0 x x 0 existiert.
2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!
Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist
Vorlesung Analysis I WS 07/08
Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................
Differential- und Integralrechnung
Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik
Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a
. Einführung in die Differentialrechnung ==================================================================. Differenzenquotient und mittlere Änderungsrate ------------------------------------------------------------------------------------------------------------------
Wirtschafts- und Finanzmathematik
Prof. Dr. Stefan Etschberger HSA Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2016/17 Grundlagentest Ungleichungen! Testfrage: Ungleichungen 1 Die
Mathematik 2 für Wirtschaftsinformatik
für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg : Gliederung 1 Folgen und Reihen 2 Komplexe Zahlen 3 Reelle Funktionen 4 Differenzieren 1 5 Differenzieren 2 6 Integration 7 Zinsen 8
2015, MNZ. Jürgen Schmidt. Vorkurs. Mathematik. Ableiten. Tag WS 2015/16
Vorkurs 4. Mathematik Ableiten WS 2015/16 Tag Einführendes Beispiel Vernachlässigen wir den Luftwiderstand, so können wir in hinreichender Näherung für den freien Fall eines Körpers s(t) = 5t 2 als Weg-Zeit-Abhängigkeit
Kapitel 5: Differentialrechnung
Kapitel 5: Differentialrechnung Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 1 / 23 Gliederung 1 Grundbegriffe 2 Abbildungen
Mathematik 1 für Wirtschaftsinformatik
Mathematik 1 für Wirtschaftsinformatik Wintersemester 01/13 Hochschule Augsburg Mathematik : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren
Mathematik für Naturwissenschaftler I WS 2009/2010
Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 12 1. Dezember 2009 Kapitel 3. Differenzialrechnung einer Variablen (Fortsetzung) Satz 19. Es seien M und N zwei nichtleere Teilmengen von R,
- 1 - Eine Funktion f(x) heißt differenzierbar an der Stelle x 0, wenn der Grenzwert (siehe Kap. 3)
- 1-4 Differentialrechnung 4.1 Ableitung einer Funktion Eine Funktion f() ist in einer Umgebung definiert. Abb.: Differenzenquotient Man kann immer einen Quotienten bilden, ( + ) f ( + h) f ( ) f h f +
Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang
. Die Momentangeschwindigkeit eines Autos Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang s(t) = t gilt. Im s t Diagramm
Analysis I. 8. Übungsstunde. Steven Battilana. battilana.uk/teaching
Analysis I 8. Übungsstunde Steven Battilana [email protected] battilana.uk/teaching April 9, 207 Grenzwerte Korollar 5.2.2 (Bernoulli-de l Hôpital) Seien f, g : [a, b] R stetig und differenzierbar
Mathematischer Vorkurs NAT-ING II
Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 7 Differenzierbarkeit Mathematischer Vorkurs TU Dortmund Seite
4. Lösung linearer Gleichungssysteme
4. Lösung linearer Gleichungssysteme a x + : : : + a m x m = b a 2 x + : : : + a 2m x m = b 2 : : : a n x + : : : + a nm x m = b n in Matrix-Form: A~x = ~ b (*) mit A 2 R n;m als Koe zientenmatrix, ~x
Differenzialrechnung. Mathematik-Repetitorium
Differenzialrechnung 5.1 Die Ableitung 5.2 Differentiation elementarer Funktionen 5.3 Differentiationsregeln 5.4 Höhere Ableitungen 5.5 Partielle Differentiation 5.6 Anwendungen Differenzialrechnung 1
Wirtschaftsmathematik: Formelsammlung (V1.40)
Wirtschaftsmathematik: Formelsammlung (V.40) Grundlagen n! = 2 3... n = 0! = n i für n N, n 0, i= pq-formel Lösung von x 2 + px + q = 0 x /2 = p p 2 ± 2 4 q abc-formel Lösung von ax 2 + bx + c = 0 Binomische
Der Differenzenquotient
Der Differenzenquotient Von den linearen Funktionen kennen wir den Begriff des Differenzenquotienten k = y 2 y 1 x 2 x 1 mit dem die Steigung einer Geraden festgelegt wird. Der Begriff des Differentialkoeffizienten
Definition: Differenzierbare Funktionen
Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ
Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra
A. Filler Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 3 Folie 1 /41 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 4. Ableitungen von Funktionen
Tutorium: Analysis und lineare Algebra. Differentialrechnung. Steven Köhler. mathe.stevenkoehler.de Steven Köhler
Tutorium: Analysis und lineare Algebra Differentialrechnung Steven Köhler [email protected] mathe.stevenkoehler.de 2 Differenzenquotient Der Di erenzenquotient ist de niert als f(x) x f(x) f(x 0)
Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester
Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester 2015 14.07.2015 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................
Prof. Dr. Rolf Linn
Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen
differenzierbare Funktionen
Kapitel IV Differenzierbare Funktionen 18 Differenzierbarkeit und Rechenregeln für differenzierbare Funktionen 19 Mittelwertsätze der Differentialrechnung mit Anwendungen 20 Gleichmäßige Konvergenz von
f(f 1 (w)) = w f 1 (f(z)) = z Abbildung 21: Eine Funktion und ihre Umkehrfunktion
Mathematik für Naturwissenschaftler I 2.8 2.8 Umkehrfunktionen 2.8. Definition Sei f eine Funktion. Eine Funktion f heißt Umkehrfunktion, wenn f (w) = z für w = f(z). f darf nicht mit f(z) = (f(z)) verwechselt
Technische Universität München Zentrum Mathematik. Übungsblatt 3
Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 3 Hausaufgaben Aufgabe 3. Zeigen Sie mit Hilfe der ɛ-δ-formulierung vgl.
Mathematischer Vorbereitungskurs für das MINT-Studium
Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet [email protected] WS 2016/2017 Vorlesung 7 MINT Mathkurs WS 2016/2017 1 / 20 Stetigkeit einer Funktion (continuity of a
Partielle Ableitungen
Partielle Ableitungen 7-E Partielle Ableitungen einer Funktion von n Variablen Bei einer Funktion y f x1, x,..., xn von n unabhängigen Variablen x1, x,..., x n lassen sich insgesamt n partielle Ableitungen
Mathematik für Betriebswirte II (Analysis) 2. Klausur Sommersemester
Mathematik für Betriebswirte II (Analysis) 2. Klausur Sommersemester 204 24.09.204 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................
SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2
SBP Mathe Grundkurs 2 # 0 by Clifford Wolf SBP Mathe Grundkurs 2 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das
Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 14
Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 03.02.2019 Dr. Markus Lange Analysis 1 Aufgabenzettel 14 Dieser Zettel wird in der letzten Übung des Semesters am 08.02.2019 besprochen Aufgabe
Differentialrechnung
Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 205/6 7 Differentialrechnung / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f () f ( 0) 0 heißt
Differenzenquotient. f(x) Differenzialrechnung. Gegeben sei eine Funktion f(x). 197 Wegener Math/5_Differenzial Mittwoch 04.04.
Gegeben sei eine Funktion f(). Differenzialrechnung Differenzenquotient f() 197 Wegener Math/5_Differenzial Mittwoch 04.04.2007 18:38:45 1 Differenzenquotient Gesucht ist die Tangente an der Stelle, wobei
Übersicht. 1. Motivation. 2. Grundlagen
Übersicht 1. Motivation 2. Grundlagen 3. Analysis 3.1 Folgen, Reihen, Zinsen 3.2 Funktionen 3.3 Differentialrechnung 3.4 Extremwertbestimmung 3.5 Nichtlineare Gleichungen 3.6 Funktionen mehrerer Variabler
Ein Kennzeichen stetiger Funktionen ist es, dass ihre Graphen (evtl. auch nur in Intervallen) nicht. Knicke im Funktionsgraphen auftreten.
FOS, 11 Jahrgangsstufe (technisch) 6 Stetigkeit Ein Kennzeichen stetiger Funktionen ist es, dass ihre Graphen (evtl auch nur in Intervallen) nicht abreißen und gezeichnet werden können, ohne den Zeichenstift
Mathematischer Vorbereitungskurs für das MINT-Studium
Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet [email protected] SS 2017 Vorlesung 7 MINT Mathkurs SS 2017 1 / 25 Vorlesung 7 (Lecture 7) Differentialrechnung differential
Kapitel 16 : Differentialrechnung
Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen
Mathematik 1 für Wirtschaftsinformatik
Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration
Erste Schularbeit Mathematik Klasse 7A G am
Erste Schularbeit Mathematik Klasse 7A G am 12.11.2015 Korrekturversion Aufgabe 1. (2P) Zahlenmengen. Es folgen Aussage über Zahlenmengen. Kreuzen Sie die beiden zutreffenden Aussagen an! 2 10 3 ist eine
I. Verfahren mit gebrochen rationalen Funktionen:
I. Verfahren mit gebrochen rationalen Funktionen: 1. Definitionslücken bestimmen: Nenner wird gleich 0 gesetzt! 2. Prüfung ob eine hebbare Definitionslücke vorliegt: Eine hebbare Definitionslücke liegt
5 Differenzialrechnung für Funktionen einer Variablen
5 Differenzialrechnung für Funktionen einer Variablen Ist f eine ökonomische Funktion, so ist oft wichtig zu wissen, wie sich die Funktion bei kleinen Änderungen verhält. Beschreibt etwa f einen Wachstumsprozess,
Mathematische Grundlagen
Mathematische Grundlagen Ökonomische Entscheidungen und Märkte IK Alexander Ahammer Institut für Volkswirtschaftslehre Johannes Kepler Universität Linz Letztes Update: 6. Oktober 2017, 12:57 Alexander
Tutorium: Analysis und Lineare Algebra
Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 25.06.2018 20. Juni 2018 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2018 Steven Köhler 20. Juni 2018 Konvergenz
Funktionsgrenzwerte, Stetigkeit
Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn
V.1 Konvergenz, Grenzwert und Häufungspunkte
V.1 Konvergenz, Grenzwert und Häufungspunkte S. 108 110 A. Bereits bekannt: Folge Extrem wichtig: Grenzwert bzw. Konvergenz: a n a oder lim n a n = a : ε R, ε > 0 n 0 N : a n a < ε n n 0 Begriffe: Fast
Ableitungen von Funktionen
Kapitel 8 Ableitungen von Funktionen 8. Der Begriff der Ableitung Aufgabe 8. : Prüfen Sie mit Hilfe des Differenzenquotienten, ob folgende Funktionen an den gegebenen Stellen x 0 differenzierbar sind.
Ableitung und Mittelwertsätze
Ableitung und Mittelwertsätze Definition. Sei I R ein Intervall und f : I R. ) f eißt differenzierbar an 0 I, wenn der Grenzwert eistiert. f() f( 0 ) lim 0 0 = f ( 0 ) = lim 0 f( 0 + ) f( 0 ) Ist dabei
Stetigkeit vs Gleichmäßige Stetigkeit.
Stetigkeit vs Gleichmäßige Stetigkeit. Beispiel: Betrachte ie Funktion f(x) = 1/x auf em Intervall D = (0, 1]. f ist in jeem Punkt p (0, 1] stetig. Denn: Sei p (0, 1] un ε > 0 gegeben. Setze δ = min (
Bestimmung von Ableitungen
Bestimmung von Ableitungen W. Kippels 24. November 2013 Inhaltsverzeichnis 1 Vorwort 2 2 Ableitungen von grundlegenden Funktionen 2 3 Ableitungsregeln 2 3.1 Konstantenregel................................
DIFFERENTIALRECHNUNG - ABLEITUNG
DIFFERENTIALRECHNUNG - ABLEITUNG Hintergründe Differenzenquotient und Differentialquotient Beim Ableiten versucht man die Steigung einer Kurve zu berechnen. Da aber eine solche Kurve (wie auch im Bild
Differentialrechnung
KAPITEL 4 Differentialrechnung. Eigenschaften der Ableitung und Differentationsregeln.. Definition der Ableitung. Definition 4.. Ableitung. Die Funktion f sei auf dem Intervall I R deniert und x 0 I. )
Kapitel 6 Folgen und Stetigkeit
Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n
Mathematik: Infinitesimalrechnung
Mathematik: Infinitesimalrechnung Ingo Blechschmidt 11. Juli 2005 Inhaltsverzeichnis 1 Mathematik: Infinitesimalrechnung 2 1.1 Schulheft.......................... 2 1.1.1 Funktion......................
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als
Differenzierbarkeit. Klaus-R. Loeffler. 1 Hinführung, Definition und unmittelbare Folgerungen
Differenzierbarkeit Klaus-R. Loeffler Inhaltsverzeichnis 1 Hinführung, Definition und unmittelbare Folgerungen 1 1.1 Hinführung.......................................... 1 1.2 Definition der Differenzierbarkeit..............................
Kapitel 7 Differentialrechnung
Kapitel 7 Differentialrechnung 245 Kapitel 7.1 Grundbegriffe 246 Der Differentialquotient und das Integral sind die Kernbegriffe der Analysis. Ableitung und Integralbegriff werden durch gewisse Grenzwerte
Mathematik 1 für Wirtschaftsinformatik
Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Prüfung 2 semesterbegleitende Zwischenprüfungen: Termine: am 12.11.2013 und 10.12.2013, Beginn jeweils 8.00 Uhr (!) im
Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant)
Modul Grundbildung Analysis WiSe 10/11 Im Folgenden bedeutet A: Wurde in diesem Kapitel behandelt B: Interessante Aufgaben C: Weitere Fragen (Nicht nur für die Klausur interessant) V1 Konvergenz, Grenzwert
Analysis 1 für Informatiker (An1I)
Hochschule für Technik Rapperswil Analysis 1 für Informatiker (An1I) Stand: 2012-11-13 Inhaltsverzeichnis 1 Funktionen 3 1.1 Gerade, ungerade und periodische Funktionen..................... 3 1.2 Injektive,
Analysis.
Analysis www.schulmathe.npage.de Inhaltsverzeichnis 1 Zahlenfolgen 4 1.1 Bildungsvorschriften für Zahlenfolgen..................... 5 1.2 Monotonie von Zahlenfolgen.......................... 5 1.3 Arithmetische
Analysis I. Vorlesung 19
Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 19 In dieser Vorlesung untersuchen wir mit Mitteln der Differentialrechnung, wann eine Funktion f: I R, wobei I R ein Intervall ist, (lokale)
Thema aus dem Bereich Analysis Differentialrechnung I. Inhaltsverzeichnis
Thema aus dem Bereich Analysis - 3.9 Differentialrechnung I Inhaltsverzeichnis 1 Differentialrechnung I 5.06.009 Theorie+Übungen 1 Stetigkeit Wir werden unsere Untersuchungen in der Differential- und Integralrechnung
Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)
Vorlesung Mathematik für Ingenieure (Wintersemester 2008/09) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 9. November 2008) Die
Brückenkurs Mathematik zum Sommersemester 2015
HOCHSCHULE HANNOVER UNIVERSITY OF APPLIED SCIENCES AND ARTS Dipl.-Math. Xenia Bogomolec Brückenkurs Mathematik zum Sommersemester 2015 Übungsblatt 1 (Grundlagen) Aufgabe 1. Multiplizieren Sie folgende
