Parabeln - quadratische Funktionen
|
|
|
- Franziska Stieber
- vor 9 Jahren
- Abrufe
Transkript
1 Parabeln - quadratische Funktionen Roland Heynkes , Aachen Das Gleichsetzungsverfahren und die davon abgeleiteten Einsetzungs- und Additionsverfahren kennen wir als Methoden zur Lösung linearer Gleichungssysteme. Man kann sie aber auch einsetzen, um die Parameter 1 quadratischer Gleichungen zu ermittlen. Inhaltsverzeichnis 1 quadratische Gleichung - quadratische Funktion 1 Einfluß der Parameter auf Form und Lage der Parabel 1 3 Von Punkten zur quadratischen Gleichung 4 Nullstellenbestimmung 3 5 Scheitelpunkt 3 6 Extremstellen und Extremwerte quadratischer Funktionen 5 1 Man nennt Parameter auch Koeffizienten und meint damit Konstanten, mit denen die Variablen multipliziert werden. i
2 1 quadratische Gleichung - quadratische Funktion Die allgmeine Form einer quadratischen Gleichung ist: y = ax + bx + c 1) Dabei sind x die unabhängige und y die abhängige Variable, deren Werte man durch das Einsetzen eines x-wertes und die Berechnung des dazu gehörigen y-wertes ermittelt. Im Gegensatz dazu sind a, b und c Koeffizienten oder Parameter, die unabhängig vom jeweils eingesetzten x-wert konstant bleiben und das immer gleich bleibende Verhältnis zwischen x und y bestimmen. ax nennt man das quadratische Glied, bx ist das lineare Glied und c ist das absolute Glied der quadratischen Gleichung. Setzt man viele verschiedene x-werte in eine quadratische Gleichung ein und zeichnet die so erhaltenen x,y)-wertepaare in ein zweidimensionales Koordinatensystem ein, dann erhält man eine Parabel, deren genaue Form und Lage durch die Paramter der quadratischen Gleichung bestimmt werden. Wenn eine quadratische Gleichung nicht nur der Ermittlung einzelner Wertepaare, sondern als Zuordnungsvorschrift für die Berechnung der y-koordinaten sehr vieler x-koordinaten bzw. allgemein zur Ermittlung von Form und Lage einer Parabel dient, dann spricht man von einer quadratischen Funktion und schreibt sie in ihrer allgmeinen Form wie folgt: fx) = ax + bx + c ) Während das y in der quadratischen Gleichung für einen einzelnen Wert steht, meint das fx) in der quadratischen Funktion die gesamte Kurve im Definitionsbereich der x-werte. Einfluß der Parameter auf Form und Lage der Parabel Abbildung 1: Einfluß der Parameter auf Form und Lage der Parabel y-werte ,5x +3 x+1) x -1 x + x x x-werte Die einfachste Parabel ist die rote Normalparabel mit der quadratischen Funktion oder fx) = x. Die blaue Parabel oder fx) = x + 1) ist durch die Addition von 1 zum x im quadratischen Glied um 1 Einheit nach links verschoben. Die grüne Parabel fx) = x 1 ist durch den Parameter im quadratischen Glied gestreckt und durch das absolute Glied um 1 Einheit nach unten verschoben. Die violette Parabel fx) = 0, 5x + 0x + 3 ist durch den Parameter -0,5 im quadratischen Glied gestaucht, nach unten geöffnet bzw. an der x-achse gespiegelt und durch das absolute Glied +3) um 3 Einheiten nach oben verschoben. Die türkisfarbene Parabel fx) = x + x + 0 hat als einzige in diesem Beispiel ein lineares Glied. Sie ist in ihrer Form gegenüber der roten Normalparabel nicht verändert, aber so verschoben, daß ihre Nullstellen bei -1 und 0 liegen. 1
3 Eigentlich muß nun die Normalform der quadratischen Funktionsgleichung um einen Parameter d ergänzt werden, der meistens vernachlässigt wird. y = ax d) + bx + c 3) Die Wirkungen der Parameter sind im einzelnen: Wenn a größer als 1 ist, dann wird die Parabel gestreckt. Ein a zwischen 0 und 1 staucht die Parabel. Ist a negativ, dann wird die Parabel an der x-achse gespiegelt. Der Scheitelpunkt einer Parabel wird um den Parameter c parallel zur y-achse nach oben oder unten verschoben. Der Parameter d bewirkt eine Verschiebung des Scheitelpunktes parallel zur x-achse aber in Gegenrichtung. 3 Von Punkten zur quadratischen Gleichung Sind zwei Punkte P 1 x 1 y 1 ) und P x y ) einer mit ihrem Scheitelpunkt auf der y-achse stehenden Parabel gegeben, dann lässt sich mit Hilfe dieser Koordinaten z.b. mittels Subtraktionsverfahren der Parameter a des quadratischen Gliedes der entsprechenden quadratischen Gleichung ermitteln. y 1 = a x 1 + c y = a x + c y 1 y = x 1 x ) a a = y 1 y x 1 x Anschließend kann man den Parameter a in mindestens einer der beiden Gleichungen einsetzen und das absolute Glied ausrechnen. y 1 = a x 1 + c y 1 a x 1 = c c = y 1 a x 1 Beispiel: Gegeben seien die beiden Punkte P 1 1 1) und P 7). Daraus ergibt sich ein Gleichungssystem aus zwei quadratischen Gleichungen: 1 = a 1) + c 7 = a + c 1 = 1 a + c 7 = 4 a + c 6 = 3 a a = 1 = 1) + c c = 1 1 c = 1 Die quadratische Gleichung lautet also y = x 1 Es ginge auch mit dem Gleichsetzungs-, dem Einsetzungs- oder dem Additionsverfahren.
4 4 Nullstellenbestimmung Nullstellen nennt man die Stellen einer Parabel, an denen sie die x-achse schneidet oder zumindest berührt. An diesen Nullstellen nimmt die Funktion fx) den Wert 0 an. Gesucht sind also die x-werte, bei denen die y-werte einer quadratischen Funktionsgleichung gleich Null sind. Deshalb kann man die Nullstellen einer quadratischen Gleichung finden, indem man für das y eine 0 einsetzt und anschließend die quadratische Gleichung löst. Dazu überführt man die quadratische Gleichung zunächst in die Normalform Normalform: x + px + q = 0 4) und wendet dann die pq-formel an. pq-formel: x 1, = p ± p ) q 5) Näheres dazu erläutere ich in einem separaten Text. Beispiel siehe dazu auch die türkisfarbene Kurve in Abbildung 1 auf Seite 1): Normalform: x + 1x + 0 = 0 pq-formel: x 1, = 1 ± 1 ) 0 x 1, = 1 ± 1 x 1 = 1, x = 0 5 Scheitelpunkt Der Scheitelpunkt einer nach oben geöffneten Parabel ist ihr tiefster Punkt. Bei einer nach unten geöffneten Parabel ist der Scheitelpunkt ihr höchster Punkt. Betrachtet man die Abbildung 1 in Kapitel auf Seite 1 genauer, dann erkennt man den Einfluß zweier Parameter auf den Scheitelpunkt. Ist kein lineares Glied vorhanden, dann entspricht die x-koordinate des Scheitelpunktes genau dem Parameter, der im quadratischen Glied vom x-wert abgezogen wird. Die y-koordinate des Scheitelpunktes entspricht dem absoluten Glied. Man kann also aus dieser Form der quadratischen Funktionsgleichung den Scheitelpunkt direkt ablesen, und deshalb nennt man sie die Scheitelpunktform. Scheitelpunktform: fx) = ax d) + c 6) Hat man nun aber eine quadratische Funktionsgleichung mit einem linearen Glied, dann muß man dieses loswerden, um zur Scheitelpunktform zu gelangen. Ähnlich wie schon bei der Suche nach den Nullstellen einer quadratischen Funktion macht man dies mit einer quadratischen Ergänzung. Dies kann unterschiedlich kompliziert sein. Wenn man Glück hat, dann gibt es in der quadratische Funktionsgleichung keinen Parameter d und die quadratischen Ergänzung ist relativ einfach. Die Strategie besteht darin, das x des linearen Gliedes in das quadratische Glied hinein zu rechnen. Dies ist möglich, wenn man das quadratische und das lineare Glied so um ein absolutes Glied ergänzen kann, daß man diese 3 Elemente in eine binomische Formel überführen kann. So bekommt man statt eines linearen Gliedes den Parameter d im quadratischen Glied auf Kosten eines komplexeren absoluten Gliedes. 3
5 Versuchen wir es zunächst in allgemeiner Form, also mit Koeffizienten anstelle von konkreten Zahlen. fx) = ax + bx + c x und bx in eine Klammer fx) = a x + ba ) x + c quadratische Ergänzung fx) = a x + b ) ) ) b b a x + a + c -> binomische Formel a a fx) = a x + b ) a b a 4a + c lineares Glied vereinfachen fx) = a x + b ) b a 4a + c Koordinaten auslesen Der Scheitelpunkt ist S b a b 4a + c) Mit konkreten Zahlen fällt das Rechnen meistens leichter, weil man dann kürzen und addieren kann. fx) = x + 3x + 5 x und 3x in eine Klammer fx) = x + 3 ) x + 5 quadratische Ergänzung fx) = x + 3 ) ) ) 3 3 x > binomische Formel 4 4 fx) = x + 3 ) lineares Glied vereinfachen 4 16 fx) = x + 3 ) lineares Glied vereinfachen 4 8 fx) = x + 3 ) Koordinaten auslesen 4 8 Der Scheitelpunkt ist S 0, 75 3, 875) Deutlich komplizierter wird es, wenn die quadratische Funktionsgleichung einen Parameter d enthält. Auch diesen Fall behandle ich zunächst in allgemeiner Form: fx) = ax d) + bx + c fx) = ax d) + bx bd + bd + c fx) = ax d) + bx d) + bd + c fx) = a[x d) + b x d)] + bd + c a +bd -bd b ausklammern a ausklammern quadr. Ergänz. fx) = a[x d) + b ) b a x d) + ] a a fx) = a[x d + b ) b a ] a + bd + c a ) b + bd + c Binom a 4
6 Hieraus kann man nun die Koordinaten des Scheitelpunktes direkt ablesen. Die Formel ist nur etwas unübersichtlich, aber beim Rechnen mit konkreten Zahlen vereinfacht sich die Sache schnell. S Beispiel: d + b a ) b a + bd + c) a fx) = 0, 5x ) + 4x + 5 fx) = 0, 5x ) + 4x ergänzen 4 ausklammern fx) = 0, 5x ) + 4x ) ,5 ausklammern fx) = 0, 5[x ) + 4 x )] , 5 quadratische Ergänzung fx) = 0, 5[x ) 8x ) + 4 ] + 0, binomische Formel fx) = 0, 5[x ) 4] fx) = 0, 5x 6) + 1 Der Scheitelpunkt ist S6 1) zusammenfassen Abbildung : Beispiel der Scheitelpunkt-Berechnung 0 Die Kurve visualisiert das Ergebnis des konkreten Beispiels für eine Scheitelpunkt-Berechnung. 15 y-werte x-werte 6 Extremstellen und Extremwerte quadratischer Funktionen Aufgabe: Wie lang muß bei einem Umfang von 0 cm die Bodenseite x eines Rechtecks sein, damit seine Fläche y möglichst groß ist? Lösungsansatz: Die Fläche y in Quadratzentimetern entspricht dem Produkt aus der Bodenseite x in Zentimetern und einer seitlichen Seite. Diese seitliche Seite lässt sich aber ausdrücken als die Hälfte der Differenz des Umfanges von 0 cm und der zweifachen Bodenseite. 5
7 Rechnet man dies aus, dann gelangt man mittels quadratischer Ergänzung zur Scheitelpunktform einer quadratischen Gleichung und kann aus dieser die Lösung des Problems ablesen. ) 0cm xcm ycm = xcm ycm = xcm 10cm xcm) ycm = xcm 10 x) y = x 10 x) y = 10x x y = x + 10x y = x 10x) y = x 10x + 5) + 5 y = x 5) + 5 Der Scheitelpunkt ist S5 5). Dieses Ergebnis zeigt, daß die Bodenseite des Rechtecks 5 cm lang sein sollte, um eine Fläche von 5 Quadratzentimetern zu ergeben. Das Rechteck mit der maximalen Fläche ist also ein Quadrat. 6
Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen
Thema: Quadratische Funktionen quadratische Gleichungen Normalform einer linearen Funktion Normalform einer quadratischen Funktion Handelt es sich um quadratische Funktionen??? Ja, denn a = 3, b = 0, c
Gleichsetzungsverfahren
Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift
f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5
11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =
Nullstellen. Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt. Man schreibt
Nullstellen Aufgabe 1 Gegeben ist die folgende quadratische Funktion: Bestimme die Nullstellen. f( x) x² 3 x² 3 : x² 16 16 x² 16 Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt.
Quadratische Funktion
Quadratische Funktion sind Funktionen die nur eine Variable enthalten, deren Exponent 2 ist und keine Variable die einen Exponenten enthält, der größer ist als 2. Zum Beispiel die quadratische Funktion
Graphen quadratischer Funktionen und deren Nullstellen
Binomische Formeln Mithilfe der drei binomischen Formeln kann man Funktionen bzw. Gleichungen vereinfachen. 1. Binomische Formel ( Plusformel ) a 2 + 2 a b+ b 2 = (a+ b) 2 Herleitung: (a+ b) 2 = (a+ b)
Leitprogramm Funktionen
3. Quadratische Funktionen (Zeit 10 Lektionen) Lernziel: Grundform y = ax + bx + c und Scheitelform y = a(x + m) + n der Funktionsgleichungen quadratischer Funktionen kennen. Bedeutung der Parameter a,
Grundwissen 9. Sabine Woellert
Grundwissen 9 1. Quadratische Funktion... 2 1.1 Definition... 2 1.2 Eigenschaften der Normalparabel ( ):... 2 1.3 Veränderung der Normalparabel... 2 1.4 Normalform, Scheitelform... 4 1.5 Berechnung der
Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.
Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m
Wiederholung Quadratische Funktionen (Parabeln)
SEITE 1 VON 7 Wiederholung Quadratische Funktionen (Parabeln) VON HEINZ BÖER 1. Regeln a) Funktionsvorschriften Normalform f(x) = a x² + b x + c Normalparabel: f(x) = x 2 Graf der Normalparabel Die einfachste
1 Analysis Kurvendiskussion
1 Analysis Kurvendiskussion 1.1 Allgemeingültige Betrachtungen Die folgenden aufgezeigten Betrachtungen und Rechenschritte gelten für alle Arten von Funktionen. Funktion (z.b. Polynom n-ten Grades) Schreibweise
Themenerläuterung. Die wichtigsten benötigten Formeln 1. Der Umgang mit der Mitternachtsformel
Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene
Quadratische Funktion
Quadratische Funktion Wolfgang Kippels. September 017 Inhaltsverzeichnis 1 Vorwort Zusammenstellung der Grundlagen 3 3 Aufgaben 3.1 Aufgabe 1:................................... 3. Aufgabe :...................................
Lineare Gleichungssysteme mit zwei Variablen
Lineare Gleichungssysteme mit zwei Variablen Anna Heynkes 4.11.2005, Aachen Enthält eine Gleichung mehr als eine Variable, dann gibt es unendlich viele mögliche Lösungen und jede Lösung besteht aus so
7 Aufgaben im Dokument. Aufgabe P5/2010
Aufgabe P5/2010 7 Aufgaben im Dokument Die nach unten geöffnete Parabel hat die Gleichung 5. Zeichnen Sie die Parabel in ein Koordinatensystem. Die Gerade hat die Steigung und schneidet die -Achse im Punkt
Die Quadratische Gleichung (Gleichung 2. Grades)
- 1 - VB 003 Die Quadratische Gleichung (Gleichung. Grades) Inhaltsverzeichnis Die Quadratische Gleichung (Gleichung. Grades)... 1 Inhaltsverzeichnis... 1 1. Die Quadratische Gleichung (Gleichung. Grades)....
gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind
Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl
Die quadratische Funktion
Die quadratische Funktion In einem Labor wird die Bewegung eines Versuchswagen aufgenommen. Es werden dabei die folgenden Messreihen aufgenommen: Messreihe 1 Messreihe 2 Messreihe 3 x in s 0,0 0,5 1,0
1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,2)
Vermischte Übungen (1) Verschiebung der Normalparabel 1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,). In der Abbildung
Vorbereitung auf die erste Klassenarbeit
01 QUADRATISCHE FUNKTIONEN Wiederholungen Alles um Quadratische Funktionen Vorbereitung auf die erste Klassenarbeit Aufgabe 1: Schuljahr 2017/18 Seite 1/12 Aufgabe 2: Schuljahr 2017/18 Seite 2/12 Aufgabe
Repetitionsaufgaben: quadratische Funktionen
Kantonale Fachschaft Mathematik Repetitionsaufgaben: quadratische Funktionen Zusammengestellt von Bruno Wyrsch und Erich Huber, KS Seetal Inhaltsverzeichnis 1. Einführungsbeispiel.... Allgemeine Form der
Quadratische Funktion - Übungen
Quadratische Funktion - Übungen 1a) "Verständnisfragen" zu "Scheitel und Allgemeine Form" - mit Tipps. Teilweise: Trotz der Tipps nicht immer einfach! Wir haben die Formeln: Allgemeine Form: y = a x 2
Als Untersuchungsbeispiel diene die Funktion: f(x) = x 6x + 5
R. Brinkmann http://brinkmann-du.de Seite 07..009 Achsenschnittpunkte quadratischer Funktionen y P y ( 0 y ) s P ( 0) S y s f() P ( 0) s Bei der Betrachtung des Graphen in nebenstehender Abbildung fallen
Übungsaufgaben zu quadratischen Gleichungen und Parabeln
Übungsaufgaben zu quadratischen Gleichungen und Parabeln Binomische Formeln:. binomische Formel: ( a + b) = a + ab + b. binomische Formel:. binomische Formel: ( a b) = a ab + b ( a + b)(a b) = a b Lösungsformel
Funktionen (linear, quadratisch)
Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)
Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10
Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-0 Aufgaben Richtig Themengebiet : Terme /. Vereinfache: (9x ) + 3x xy + x ( 3xy) (x + 3) (x ) + (x + 3)² abc 5x 0 3yx x +. Kürze: a) b) c) d) 5a² b 5
3 Lineare und quadratische Funktionen
3 Lineare und quadratische Funktionen 31 Lineare Funktion Eine Funktion der Art f : mx + t, sind reelle Zahlen) x D heißt lineare Funktion (m und t Man kann die Funktionsgleichung auf zwei verschiedene
Skript Mathematik Klasse 10 Realschule
Skript Mathematik Klasse 0 Realschule Das vorliegende Skript wurde erstellt durch: Marco Johannes Türk [email protected] Die aktuellste Version dieses Skriptes ist online auf www.marco-tuerk.de
Quadratische Funktionen und Gleichungen Mathematik Jahrgangsstufe 9 (G8) Bergstadt-Gymnasium Lüdenscheid. Friedrich Hattendorf
Mathematik Jahrgangsstufe 9 (G8) Lüdenscheid Friedrich Hattendorf 4. September 2014 Vorbemerkung Die Datei entsteht noch; noch nicht alles ist optimal Hinweis zum Ausdruck: (Fast) Alles sollte noch gut
F u n k t i o n e n Quadratische Funktionen
F u n k t i o n e n Quadratische Funktionen Eine Parabolantenne bündelt Radio- und Mikrowellen in einem Brennpunkt. Dort wird die Strahlung detektiert. Die Form einer Parabolantenne entsteht durch die
Einführung. Ablesen von einander zugeordneten Werten
Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,
1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:
1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen
Quadratische Gleichungen
Quadratische Gleichungen 1/10 Quadratische Gleichungen Teil 1 Grundlagen Lehrstoff Gleichungen und Gleichungssysteme - Lösen von linearen und quadratischen Gleichungen in einer Variablen Inhalt Quadratische
Übungen zur Linearen und zur Quadratischen Funktion
Übungen zur Linearen und zur Quadratischen Funktion W. Kippels 24. November 2013 Inhaltsverzeichnis 1 Die Aufgabenstellungen 2 1.1 Aufgabe 1:................................... 2 1.2 Aufgabe 2:...................................
1 Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an.
Teste dich! - (/6) Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an. 0 Cornelsen Verlag, Berlin. Alle Rechte vorbehalten. Gemeinsamkeiten: Beide
mathphys-online QUADRATISCHE FUNKTIONEN
QUADRATICHE FUNKTIONEN Inhaltsverzeichnis Kapitel Inhalt eite Zuordnungsvorschriften, Funktionsgraph ymmetrie. ymmetrie zur. ymmetrie zu einer Parallelen zur Nullstellen Anzahl der Nullstellen 7 cheitel
Realschule Abschlussprüfung
Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 3 1.1 Skizze.................................................
1 Lineare Funktionen. 1 Antiproportionale Funktionen
Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift
Skript Quadratische Funktionen
Skript Quadratische Funktionen Emir Kujović 2016 Lernen, ohne zu denken ist verlorene Mühe. Denken, ohne etwas gelernt zu haben, ist gefährlich. Dies ist denen gewidmet, die beides tun möchten. Information
Realschule Schüttorf Arbeitsblatt Mathematik Klasse 10d Dezember 2006 Quadratische Funktionen
Arbeitsblatt Mathematik Klasse 0d Dezember 006. Bestimme zu den vier Parabeln die zugehörigen Funktionsgleichungen.. Beschreibe den Verlauf der folgenden Funktionen. Benutze dabei folgende Begriffe: gestreckt
QUADRATISCHE FUNKTIONEN (Funktionen des 2 e Grades)
QUADRATISCHE FUNKTIONEN (Funktionen des 2 e Grades) I. Einführung: Allgemeine Funktionsgleichung: y = ax 2 + px + q Aufgabe 2 1 (Westermann EK, S.14) II. Terminologie: a.) Abhängige Variable (erklärte
Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion :
Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x, D = R, heißt Quadratfunktion. Wertetabelle : x 0 0,5 1 3 4 0,5 1
Einführung der quadratischen Funktionen
R. Brinkmann http://brinkmann-du.de Seite 08.0.008 Einführung der quadratischen Funktionen Jeder, der sich auf die Führerscheinprüfung vorbereitet sollte wissen, dass sich der Anhalteweg eines bremsenden
Aufstellen der Funktionsgleichung aus gegebenen Bedingungen
R. Brinkmann http://brinkmann-du.de Seite.0.0 Aufstellen der Funktionsgleichung aus gegebenen Bedingungen Drei unterschiedliche Punkte, die alle auf einer Parabel liegen sollen sind gegeben. Daraus soll
Übungsaufgabe z. Th. lineare Funktionen und Parabeln
Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen
Flächenberechnung mit Integralen
Flächenberechnung mit Integralen W. Kippels 30. April 204 Inhaltsverzeichnis Übungsaufgaben 2. Aufgabe................................... 2.2 Aufgabe 2................................... 2.3 Aufgabe 3...................................
Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform. y 2 x 2x 3 2 ausklammern. Binom.
Parabel zeichnen Parabel zeichnen Schritt für Schrittanleitungen unter www.fraengg.ch Klasse, GeoGebra) Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform
Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.
Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,
12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben!
12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September 2008 1. Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben! a) Untersuche den Graphen von f(x) auf Standardsymmetrien (Punktsymmetrie
Mathematik Übungsaufgaben zur Vorbereitung auf die 3. Klausur Lösung. 1. Formen Sie die Scheitel(punkt)form der quadratischen Funktion
Datum:.0.0 Thema: Quadratische Funktionen. Formen Sie die Scheitel(punkt)form der quadratischen Funktion f mit f(x) = ( x ) + in die Polynomdarstellung um und bestimmen Sie die Nullstellen und den Schnittpunkt
Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften
Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufgabe 1 Ein Polynom 3. Grades hat eine Nullstelle bei x 0 = 0 und einen Wendepunkt bei x w = 1. Die Gleichung der Wendetangente lautet
lineare Funktion: Graph: Gerade mit der Steigung a und dem y-achsenabschnitt b. quadratische Funktion: Graph: Parabel, sofern a 0
1 7. Der Graph einer quadratischen Funktion lineare Funktion: Graph: Gerade mit der Steigung a und dem y-achsenabschnitt b. quadratische Funktion: Graph: Parabel, sofern a 0 Es wird im Folgenden untersucht,
4.2. Quadratische Funktionen
Definition: Normalform der Parabelgleichung.. Quadratische Funktionen Eine Funktion mit der Gleichung f() = a + b + c mit a R* und b,c R heißt quadratische Funktion oder ganzrationale Funktion. Grades
= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x =
WERRATALSCHULE HERINGEN KOMPENSATION MATHEMATIK JG. 11 1 Lineare Gleichungen Das Lösen linearer Gleichungen ist eine wichtige Rechenfertigkeit, die immer wieder gefordert wird und für den Mathematikunterricht
Grundlagen der Mathematik von Ansgar Schiffler - Seite 1 von 7 -
- Seite von 7 -. Wie lautet die allgemeine Geradengleichung? (Mit Erklärung). Ein Telefontarif kostet 5 Grundgebühr und pro Stunde 8 cent. Wie lautet allgemein die Gleichung für solch einen Tarif? (Mit
Gleichungen Lösen. Ein graphischer Blick auf Gleichungen
Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term
Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften
Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften W. Kippels 10. April 2016 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Prinzipielle Vorgehensweise.......................... 2 1.2 Lösungsrezepte................................
BOS - MATHEMATIK. Hilfe vor den Eintritt und zur einfacheren Verständnis im Fach Mathematik der Berufsoberschule.
BOS - MATHEMATIK Eine Zusammenfassung über die Grundlegenden Themen im Fach Mathematik für die Vorbereitung zur Berufsoberschule (Klasse 12). Hilfe vor den Eintritt und zur einfacheren Verständnis im Fach
Lineare Funktion. Wolfgang Kippels 21. März 2011
Lineare Funktion Wolfgang Kippels. März 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................
Klasse Dozent. Musteraufgaben. f(x) = g(x) = Bestimme die zu den abgebildeten Graphen. gehörenden Funktionsgleichungen!0.
Fach: Mathematik - Quadratische Funktionen Anzahl Aufgaben: 51 Musteraufgaben Diese Aufgabensammlung wurde mit KlasseDozent erstellt. Sie haben diese Aufgaben zusätzlich als KlasseDozent-Importdatei (.xml)
Funktionsgraphen (Aufgaben)
Gymnasium Pegnitz JS 9 August 2007 Funktionsgraphen (Aufgaben) 1. Betrachte die beiden linearen Funktionen f(x) = x + 2 und g(x) = x 3 und die quadratische Funktion p(x) = f(x) g(x) (a) Zeichne die Graphen
Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu.
Basistext Funktionen Definition Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu. Man schreibt: f: x -> y mit y = f(x) Die Wertemenge einer Funktion f besteht aus
1 Kurvenuntersuchung /40
00 Herbst, (Mathematik) Aufgabenvorschlag B Kurvenuntersuchung /40 Die Tragflächen des berühmten Flugzeuges Junkers Ju-5 können an der Nahtstelle zum Flugzeugrumpf mithilfe der Funktionen f und g mit 8
Formelsammlung Mathematik 9
I Lineare Funktionen... 9.) Funktionen... 9.) Proportionale Funktionen... 9.) Lineare Funktionen... 9.4) Bestimmung von linearen Funktionen:... II) Systeme linearer Gleichungen... 9.5) Lineare Gleichungen
Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.
Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2
Repetitionsaufgaben: Quadratische Funktionen
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Quadratische Funktionen Zusammengestellt von Felix Huber, KSR Lernziele: - Sie wissen, dass der Graph einer quadratischen Funktion eine Parabel ist
PARABELN. 10. Klasse
PARABELN 0. Klasse Jens Möller Owingen Tel. 0755-9 [email protected] INHALTSVERZEICHNIS NORMALPARABEL PARABELN MIT FORMFAKTOR VERSCHIEBUNG IN Y-RICHTUNG VERSCHIEBUNG IN X-RICHTUNG 5 ALLGEMEINE
Download. Hausaufgaben: Quadratische Funktionen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:
Download Otto Mar Hausaufgaben: Quadratische Funktionen Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Quadratische Funktionen Üben in drei Differenzierungsstufen
+ 2. Bruchgleichungen
Bruchgleichungen Gleichungen mit einer Lösungsvariablen im Nenner eines Bruchs heißen Bruchgleichungen. Definitionsmenge: Nenner 0 Lösungsweg: 1. Multiplikation mit dem Hauptnenner 2. Äquivalenzumformungen
Kurs 9 Quadratische und exponentielle Funktionen MSA Vollzeit (1 von 2)
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Kurs 9 Quadratische und exponentielle Funktionen MSA Vollzeit (1 von 2) Name: Ich So schätze ich meinen Lernzuwachs
f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1
III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare
2.5 Funktionen 2.Grades (Thema aus dem Bereich Analysis)
.5 Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis 1 Definition einer Funktion.Grades. Die Verschiebung des Graphen 5.1 Die Verschiebung des Graphen in y-richtung.........................
- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen.
MSS Böblingen - Bruchrechnen - - G - Einstiegsaufgaben: a a a) + = 6x 4x a + a b) = 6x x a a c) = 6x 4x a a d) : = 6x 4x e) 7 = Merke: a) Addieren von Brüchen b) Subtrahieren von Brüchen c) Multiplizieren
Ganzrationale Funktionen
Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade
Vorbereitungskurs Mathematik
Vorbereitungskurs Mathematik Grundlagen für das Unterrichtsfach Mathematik für die Fachhochschulreifeprüfung Zweijährige Höhere Berufsfachschule Berufsoberschule I Duale Berufsoberschule Inhalt 0. Vorwort...
QUADRATISCHE UND KUBISCHE FUNKTION
QUADRATISCHE UND KUBISCHE FUNKTION Quadratische Funktion 1. Bedeutung der Parameter Als quadratische Funktionen werde alle Funktionen bezeichnet, die die Form y = a*x² + b*x + c aufweisen, also alle, bei
Lösen einer Gleichung
Zum Lösen von Gleichungen benötigen wir: mindestens einen Term eine Definition der in Frage kommenden Lösungen (Grundmenge) Die Grundmenge G enthält all jene Zahlen, die als Lösung für eine Gleichung in
Realschule Schüttorf Arbeitsblatt Mathematik Klasse 10d Dezember 2006 Quadratische Funktionen
1.) Entscheide, ohne zu zeichnen, ob die Parabeln - eng/weit, - nach oben/nach unten geöffnet, - nach oben/nach unten verschoben sind. Als Vergleich soll die Normalparabel dienen. a) y = 3 x² - 3 b) y=
x 0 0,5 1 2 3 4 0,5 1 2. Die Quadratfunktion ist für x 0 streng monoton fallend und für x 0 streng monoton steigend.
Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x 2, D = R, heißt Quadratfunktion. Ihr Graph heißt Normalparabel. Wertetabelle
Quadratische Funktionen
Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,
Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate
Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +
Kapitel 3. Kapitel 3 Gleichungen
Gleichungen Inhalt 3.1 3.1 Terme, Gleichungen, Lösungen x 2 2 + y 2 2 3.2 3.2 Verfahren zur zur Lösung von von Gleichungen 3x 3x + 5 = 14 14 3.3 3.3 Gleichungssysteme Seite 2 3.1 Terme, Gleichungen, Lösungen
Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation
Verschiebung/Streckung von Funktionsgraphen Verwenden von Schablonen zum Zeichnen von Funktionsgraphen Idee der Koordinatentransformation Rahmenlehrplan Berlin P4 9/10: Situationen mit n und Potenzfunktionen
Parabeln. x y Um die Beziehung von x und y aufzudecken, teilen wir die y-werte durch 5.
c) = (x a) Parabeln Wir stellen uns vor, einen Stein von einem hohen Gebäude fallen zu lassen und interessieren uns für den Zusammenhang von verstrichener Zeit x (in Sekunden) und zurückgelegter Fallstrecke
Quadratische Gleichungen und Funktionen
Unterrichtsfach Lehrplan HAK: Mathematik und angewandte Mathematik -- 2. HAK (2. Jahrgang), 3. Semester Kompetenzmodul 3 -- 1. AUL (1. Jahrgang) Lehrplan HLW: Mathematik und angewandte Mathematik -- 3.
2.3 Quadratische Funktionen
2.3 Quadratische Funktionen 2.3.1 Definition einer quadratischen Funktion Bisher hatten wir uns ganz auf lineare Funktionen beschränkt. Wir stellen sie im Koordinatensystem als Geraden dar.interessanter
Dr. Jürgen Senger MATHEMATIK. Grundlagen für Ökonomen
Dr. Jürgen Senger MATHEMATIK Grundlagen für Ökonomen ÜBUNG.. LÖSUNGEN. Es handelt sich um lineare Funktionen (Geraden), die sich in der Steigung und im Ordinatenschnittpunkt unterscheiden. Der Linearfaktor
ARBEITSBLÄTTER. Verknüpft mit den Lehrwerken: Lineare Funktion und Quadratische Funktion / Parabel. Für meine Enkel Moritz, Matthis, Greta und Zoe
Verknüpft mit den Lehrwerken: Lineare Funktion und Quadratische Funktion / Parabel ARBEITSBLÄTTER Lernen ist mehr als Verstehen! Wie geschieht eigentlich das Lernen? Du wirst die Absichten und das Vorgehen
Mathematik im Berufskolleg I
1 Bohner Ott Deusch Mathematik im Berufskolleg I Ausführliche Lösungen zu im Buch gekennzeichneten Aufgaben ab 6. Auflage 2016 ISBN 978-3-8120-0234-9 Das Werk und seine Teile sind urheberrechtlich geschützt.
Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2. 1 Translationen 2. 2 Skalierungen 4. 3 Die Wurzelfunktion 6
Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2 Inhaltsverzeichnis 1 Translationen 2 2 Skalierungen 4 3 Die
Übungsaufgaben zur Linearen Funktion
Übungsaufgaben zur Linearen Funktion Aufgabe 1 Bestimmen Sie den Schnittpunkt der beiden Geraden mit den Funktionsgleichungen f 1 (x) = 3x + 7 und f (x) = x 13! Aufgabe Bestimmen Sie den Schnittpunkt der
Bestimme dazu die Nullstellen, Scheitelpunkt und Schnittpunkt mit der y-achse und ergänze evtl. einige Punkte durch eine Wertetabelle.
Klasse Art Schwierigkeit Mathematisches Schema Nr. 9 Üben xx Quadratische Funktion 1 Skizziere den Graphen der durch y = 0,5 x 2 + x - 4 gegebenen quadratischen Funktion. Bestimme dazu die Nullstellen,
Expertenpuzzle Quadratische Funktionen
Phase 1 Lösung für die Expertengruppe I Im Folgenden sollen die in IR definierten Funktionen a : x x, b : x x 0,5, c : x x und d: x x 3 untersucht werden. Die Abbildung zeigt den Graphen G a von a, also
Ergänzen Sie die Wertetabellen für die Graphen der Funktionen, und bestimmen Sie die Koordinaten des Scheitelpunktes S:
Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu quadratischen Funktionen Ergänzen
Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis
Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................
Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform. y 2 x 2x 3 2 ausklammern. Binom.
Parabel zeichnen Parabel zeichnen chritt für chrittanleitungen unter www.fraengg.ch Klasse, GeoGebra) Funktionsgleichung in ABC-Form Funktionsgleichung in cheitelform Funktionsgleichung in Nullstellenform
Einführung in die linearen Funktionen. Autor: Benedikt Menne
Einführung in die linearen Funktionen Autor: Benedikt Menne Inhaltsverzeichnis Vorwort... 3 Allgemeine Definition... 3 3 Bestimmung der Steigung einer linearen Funktion... 4 3. Bestimmung der Steigung
Lösungen: Quadratische Funktionen Kompetenzorientiertes Üben 1
Lösungen: Quadratische Funktionen Kompetenzorientiertes Üben 1 Aufgabe 1.: 6,0 5,0,0 3,0,0 1,0 0,0 1,0,0 3,0,0 5,0 6,0 7,0 f() 31,0,5 15,0 8,5 3,0 1,5 5,0 7,5 9,0 9,5 9,0 7,5 5,0 1,5 g(),0 9,0 18,0 9,0,0
Vorkurs Mathematik 2016
Vorkurs Mathematik 2016 Natürliche Zahlen Der grundlegende Zahlenbereich ist die Menge der natürlichen Zahlen N = {1, 2, 3,...}. In vielen Fällen ist es sinnvoll die Zahl 0 mit einzubeziehen: N 0 = N [
Fördermappe. Quadratische Funktionen
Fördermappe Quadratische Funktionen Vorwort In dieser Mappe findest du Übungsmaterial zu quadratischen Funktionen. Nach der Bearbeitung dieser Mappe solltest du folgendes können: Graphen (=Parabeln) zu
