Vorbereitungskurs Mathematik
|
|
|
- Georg Hausler
- vor 9 Jahren
- Abrufe
Transkript
1 Vorbereitungskurs Mathematik Grundlagen für das Unterrichtsfach Mathematik für die Fachhochschulreifeprüfung Zweijährige Höhere Berufsfachschule Berufsoberschule I Duale Berufsoberschule
2 Inhalt 0. Vorwort Rechenregeln Bruchrechnung Lineare Gleichungen Bruchgleichungen Lineare Gleichungssysteme Lineare Funktionen Binomische Formeln Quadratische Gleichungen Satz des Pythagoras Lösungen
3 3 0. Vorwort Liebe (zukünftigen) Schülerinnen und Schüler! Auf dem Weg zur Fachhochschulreifeprüfung haben wir in Mathematik die Lernbausteine 3 und 4 zu bearbeiten. Dies bedeutet, dass wir die Lerninhalte der Lernbausteine 1 und 2, die auf dem Weg zum qualifizierten Sekundarabschluss 1 (Mittlere Reife) vermittelt werden, voraussetzen. Aus diesen beiden Lernbausteinen wurden einige grundlegende Themengebiete hier zusammengestellt, um einen möglichst reibungslosen Einstieg im Unterrichtsfach Mathematik an unserer Schule sicherzustellen. Wir setzen voraus, dass dieser Vorbereitungskurs Mathematik (wie dies der Name schon vermuten lässt) vor der ersten Unterrichtsstunde in Mathematik von allen Schülern bearbeitet wurde und ggf. erkannte Lücken und Schwierigkeiten behoben wurden. Bei der Aufarbeitung von Lerninhalten helfen u.u. die Schulbücher und Schulhefte der vergangenen Schuljahre. In diesem Sinne: eine gute Vorbereitung und einen guten Start ins neue Schuljahr! An dieser Stelle vielen Dank an das Mathe-Team der BBS Gerolstein für die Bereitstellung des dort verwendeten Vorbereitungskurses, den wir an unsere Bedürfnisse angepasst haben. Stellvertretend für das Mathe-Team Thomas Keck
4 4 1. Rechenregeln Punkt vor Strich Auflösen von Klammern Steht ein Pluszeichen vor einer Klammer, kann die Klammer einfach weggelassen werden: Steht ein Minuszeichen vor einer Klammer, ändern sich alle Vorzeichen in der Klammer, wenn die Klammer weggelassen wird: Multiplikation mit Summen oder Differenzen Allg.: Bsp.: 1) 2) Ausklammern Allg.: Bsp.: 1) 2) Multiplikation von Summen und Differenzen Allg.: Bsp.:
5 5 Verschachtelte Klammern Ob runde, eckige oder geschweifte Klammern: Klammern werden von innen nach außen aufgelöst. Die unterschiedliche Art der Klammern dient lediglich der Übersicht. Bsp.:, ( * +)-, -, - Übungsaufgaben Kap.1: 1) 6) 2) 7), - 3) 8) ( ) 4) 9) 5) 10) Alle Aufgaben richtig gelöst? Dies ist kein Grund den Vorbereitungskurs auf die Seite zu legen! Es wird noch ein wenig anspruchsvoller Bruchrechnung Erweitern und Kürzen von Brüchen Man erweitert/kürzt einen Bruch, indem man den Zähler und den Nenner mit derselben Zahl multipliziert/dividiert: Bsp.: Addition und Subtraktion von Brüchen Bei der Addition/Subtraktion von Brüchen werden diese durch Erweiterung zunächst auf den Hauptnenner gebracht und anschließend die Zähler addiert/subtrahiert. Der Nenner wird beibehalten: Multiplikation und Division von Brüchen Brüche werden multipliziert, indem man den Zähler miteinander multipliziert und die Nenner miteinander multipliziert:
6 6 Brüche werden dividiert, indem man einen Bruch mit dem Kehrwert des andern Bruchs multipliziert: Übrigens: Eine ganze Zahl lässt sich in einen Bruch umwandeln indem man die Zahl in den Zähler schreibt und der Nenner 1 ist: Übungsaufgaben Kap.2: Die Ergebnisse sind so weit wie möglich zu kürzen. 1) 6) 2) 7). /. / 3) 8). /. / 4). / 9). /. / 5) 10). /. / 3. Lineare Gleichungen Gleichungen löst man, indem man durch Äquivalenzumformungen nach der gesuchten Variablen umstellt. Äquivalenzumformungen tätigt man, indem man auf beiden Seiten der Gleichung o dieselbe Zahl addiert oder o dieselbe Zahl subtrahiert oder o dieselbe Zahl multipliziert (außer Multiplikation mit 0) oder o dieselbe Zahl dividiert (außer Division durch 0). Bsp.:
7 7 Übungsaufgaben Kap.3: Die Ergebnisse sind so weit wie möglich zusammenzufassen. 1) 6) 2) 7) 3) 8) 4) 9) 5) 10) Bsp.1: 4. Bruchgleichungen { } Bsp.2: Falls die Variable im Nenner vorkommt, muss man zuerst die Werte für die Variable berechnen, für die der Nenner Null werden würde. Aufgrund der Division durch Null ist der Bruchterm nicht definiert. Aus diesem Grund muss der Definitionsbereich eingeschränkt werden: * +
8 8 * + Übungsaufgaben Kap.4: 1) 2) 3) 4) 5) 5. Lineare Gleichungssysteme Zwei lineare Gleichungen werden als lineares Gleichungssystem bezeichnet. Als Lösungsverfahren bieten sich das Gleichsetzungsverfahren, das Einsetzungsverfahren und das Additions- bzw. Subtraktionsverfahre an. Die Lösung eines linearen Gleichungssystems wird hier mit dem Gleichsetzungsverfahren aufgezeigt: Bsp.: Lösungsschritte Beide Gleichungen werden nach einer der beiden Variablen (im Bsp. y) aufgelöst. Beide Terme werden gleichgesetzt......und nach der verbliebenen Variablen aufgelöst. Ergebnis: Die nun bekannte Variable wird in einer der beiden Gleichungen eingesetzt. Nach Überprüfung des Ergebnisses (einsetzen in die andere Gleichung) wird das Ergebnis angegeben. Übungsaufgaben Kap.5: 1) 3) 2) 4)
9 9 6. Lineare Funktionen Bei Funktionen wird jedem Element des Definitionsbereichs genau ein Element des Wertebereichs zugeordnet. Funktionen kann man mit Pfeildiagrammen, als Paarmengen, in einer Wertetabelle und in einem Koordinatensystem darstellen. Lineare Funktionen (ganzrationale Funktionen 1. Grades) sind von der Form:. Alternative Schreibweisen für lineare Funktionen: oder. Hierbei ist m die Steigung der Geraden und b der Ordinatenabschnitt (Schnittpunkt mit der y-achse). Das Schaubild einer linearen Funktion ist eine Gerade. Bsp.: Schaubild (Graph) der Funktion: 3 2 Die Steigung kann direkt in der Funktionsgleichung abgelesen werden (m, hier im Bsp. ) oder mit Hilfe eines Steigungsdreiecks zeichnerisch ermittelt werden. Der Punkt, an dem die Gerade die y-achse schneidet kann am Schaubild bzw. an der Funktionsgleichung abgelesen werden (hier im Bsp. 2). Diesen Wert erhält man auch, indem man in die Funktionsgleichung den Wert 0 für x einsetzt: Schnittpunkt mit der y-achse: Der Schnittpunkt mit der x-achse (Nullstelle) errechnet man, indem die Funktionsgleichung Null gesetzt wird und die Gleichung nach x auflöst: Schnittpunkt mit der x-achse:
10 10 Übungsaufgaben Kap.6: Zeichnen Sie die Grafen der nachfolgenden Funktionen und berechnen Sie die Schnittpunkte mit der x- und der y-achse. 1) 3) 2) 4) 7. Binomische Formeln Bei der Anwendung der binomischen Formeln handelt es sich um eine Erleichterung der Multiplikation von Summen und Differenzen. Bei der Multiplikation von Summen und Differenzen wird jeder Summand der ersten Klammer mit jedem Summanden der zweiten Klammer multipliiert: Sonderfälle dieser Multiplikation von Summen und Differenzen: binomische Formeln 1. Binomische Formel Bsp.: 2. Binomische Formel Bsp.: 3. Binomische Formel Bsp.: Übungsaufgaben Kap.7: Berechnen Sie mit Hilfe der binomischen Formeln: 3) 1). / 2) 4) Stellen Sie die Terme unter Verwendung der binomischen Formeln als Produkt dar: 5) 7) 6) 8) Ergänzen Sie die fehlenden Summanden 9) 10) =( - )
11 11 Lösung Reinquadratischer Gleichungen: 8. Quadratische Gleichungen Bsp. 1: Bsp. 2: Lösung Gemischtquadratischer Gleichungen: Bsp. 1: hier existiert keine Zahl ohne x! Lösungsweg: ausklammern: Bsp. 2: Wenn die Gleichung als Produkt vorliegt, kann die Lösung direkt abgelesen werden: Bsp. 3: Lösung durch Anwendung der abc-formel (alternativ kann auch die pq-formel angewandt werden, bei der die quadratische Gleichung zuvor allerdings auf die Normalform gebracht werden muss) Im Bsp.:
12 12 Quadratischen Gleichungen können zwei, eine oder keine Lösung besitzen: Ist der Ausdruck unter der Wurzel (Diskriminante) > 0, dann existieren 2 Lösungen. Ist der Ausdruck unter der Wurzel (Diskriminante) = 0, dann existiert 1 Lösung. Ist der Ausdruck unter der Wurzel (Diskriminante) < 0, dann existiert keine Lösung. Übungsaufgaben Kap.8: 1) 6) 2) 7) 3) 8) 4) 9) 5) 10) 9. Satz des Pythagoras Bei rechtwinkligen Dreiecken gilt: wobei c die Hypotenuse (längste Seite, die gegenüber dem rechten Winkel ist) und a und b die Katheten sind (a und b bilden den rechten Winkel). Anwendungsbeispiel: Berechnen Sie den Abstand der beiden Punkte in einem Koordinatensystem. 3 6 Der gesuchte Abstand ist die Länge der Hypotenuse (c). Die beiden Katheten haben die Längen 3 und 6 (s.o). Übungsaufgaben Kap.9: 1) Wie lang ist die Hypotenuse in einem rechtwinkligen Dreieck, wenn die beiden Katheten 14 und 10 cm lang sind? 2) Ermitteln Sie rechnerisch den Abstand der Punkte in einem Koordinatensystem.
13 Lösungen Kap.1 1) 34 6) -12a+6b+6ab-4 2) -13a 7) 2a-5b 3) 10ab+15ac-20ad-10a 8) 4a-b-ab+1 4) 8a 2-8ab-6b 2 9) 5a 2-2 5) -2a 2 +7a-6 10) a+4 Kap.2 1) 6) 2) 7) 3) 8) 4) 9) 5) 10) Kap.3 1) 6) 2) 7) 3) 8) 4) 9) 5) 10) Kap.4 1) 2) 3) 4) 5) Kap.5 1) x=3 ; y=3 3) x=0 ; y=5 2) x=7 ; y=-12 4) x=-2 ; y=3 Kap.6 Zur Überprüfung der Lösung können Online-Funktionsplotter (z.b. bzw. das kostenlos verfügbare Programm funkyplot ( verwendet werden.
14 14 Kap. 7 1) 3) 2) 4) 5) 7) 6) 8) 9) 10) Kap.8 1) 6) 2) 7) 3) 8) 4) 9) 5) 10) Kap.9 1) 17,20cm 2) 8,06
Vorbereitungskurs. Mathematik. Berufliches Gymnasium für Gesundheit und Soziales
Vorbereitungskurs Mathematik Berufliches Gymnasium für Gesundheit und Soziales Erstellt von: S. Dittmann, F. Scholer Stand: 01.07.2016 Inhaltsverzeichnis 0. Vorwort 1. Termumformung - Klammerregeln 2.
Gleichungsarten. Quadratische Gleichungen
Gleichungsarten Quadratische Gleichungen Normalform: Dividiert man die allgemeine Form einer quadratischen Gleichung durch a, erhält man die Normalform der quadratischen Gleichung. x 2 +px+q=0 Lösungsformel:
Tipps und Tricks für die Abschlussprüfung
Tipps und Tricks für die Abschlussprüfung Rechentipps und Lösungsstrategien mit Beispielen zu allen Prüfungsthemen Mathematik Baden-Württemberg Mathematik-Verlag Vorwort: Sehr geehrte Schülerinnen und
1. Funktionen. 1.3 Steigung von Funktionsgraphen
Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine
( 4-9 ) ( 5x + 16 ) -5x c - d - ( c - d ) 0 4. ( 3b + 4d ) - ( 5b - 3d ) 7d - 2b a - [ 5b - ( 6a + 7b ) ] 3a + 2b
Klammerrechnung Für das Rechnen mit Klammern gilt: Steht vor einer Klammer ein Minus, so drehen sich beim Auflösen der Klammern die Vorzeichen um. Distributivgesetz: Wird eine ganze Zahl mit einer eingeklammerten
Vorbereitungsmappe. Grundlagen vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS
Vorbereitungsmappe Grundlagen vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS Liebe Schülerinnen und Schüler, vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS stellt sich vor allem im Fach
Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch
Mathematikvorkurs Fachbereich I Sommersemester 2017 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Binomische Formeln Dienstag Potenzen, Wurzeln und Logarithmus Summen-
gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind
Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl
Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen
Grundwissensblatt 8. Klasse IV. Lineare Gleichungen mit zwei Variablen. Eigenschaften von linearen Gleichungen mit zwei Variablen Alle linearen Gleichungen der Form a + by = c (oder auch y = m + t) erfüllen:
Themenerläuterung. Die wichtigsten benötigten Formeln
Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene
Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen
Das rechtwinklige (kartesische) Koordinatensystem Funktionen Funktion: Eine Funktion ist eine eindeutige Zuordnung. Jedem x D wird genau eine reelle Zahl zugeordnet. Schreibweise: Funktion: f: x f (x)
1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:
1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen
Fachbereich I Management, Controlling, Health Care. Mathematikvorkurs. Wintersemester 2017/2018. Elizaveta Buch
Fachbereich I Management, Controlling, Health Care Mathematikvorkurs Wintersemester 2017/2018 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Prozentrechnung Dienstag Binomische
Gleichsetzungsverfahren
Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift
UND MOSES SPRACH AUCH DIESE GEBOTE
UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und
Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen
Thema: Quadratische Funktionen quadratische Gleichungen Normalform einer linearen Funktion Normalform einer quadratischen Funktion Handelt es sich um quadratische Funktionen??? Ja, denn a = 3, b = 0, c
2015, MNZ. Jürgen Schmidt. 2.Tag. Vorkurs. Mathematik WS 2015/16
Vorkurs Mathematik WS 2015/16 2.Tag Arten von Gleichungen Lineare Gleichungen (und Funktionen) 0 = ax + b (oft als Funktion: y = mx + n) a,b R Parameter m Anstieg, n Achsenabschnitt Quadratische Gleichungen
1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe
Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem
Grundlagen der Mathematik von Ansgar Schiffler - Seite 1 von 7 -
- Seite von 7 -. Wie lautet die allgemeine Geradengleichung? (Mit Erklärung). Ein Telefontarif kostet 5 Grundgebühr und pro Stunde 8 cent. Wie lautet allgemein die Gleichung für solch einen Tarif? (Mit
BOS - MATHEMATIK. Hilfe vor den Eintritt und zur einfacheren Verständnis im Fach Mathematik der Berufsoberschule.
BOS - MATHEMATIK Eine Zusammenfassung über die Grundlegenden Themen im Fach Mathematik für die Vorbereitung zur Berufsoberschule (Klasse 12). Hilfe vor den Eintritt und zur einfacheren Verständnis im Fach
Lineare Gleichungssysteme mit zwei Variablen
Lineare Gleichungssysteme mit zwei Variablen Anna Heynkes 4.11.2005, Aachen Enthält eine Gleichung mehr als eine Variable, dann gibt es unendlich viele mögliche Lösungen und jede Lösung besteht aus so
Stichwortverzeichnis. Symbole. Stichwortverzeichnis
Stichwortverzeichnis Stichwortverzeichnis Symbole ( ) (Runde Klammern) 32, 66 (Betragszeichen) 32 (Multiplikations-Zeichen) 31 + (Plus-Zeichen) 31, 69 - (Minus-Zeichen) 31, 69 < (Kleiner-als-Zeichen) 33,
Grundwissen Mathematik Klasse 8
Grundwissen Mathematik Klasse 8 1. Funktionen allgemein (Mathehelfer 2: S.47) Erstellen einer Wertetabelle bei gegebener Funktionsgleichung Zeichnen des Funktionsgraphen Ablesen von Wertepaaren ( x / f(x)
Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind.
Funktionen Station 1 Bestimmung der Steigung einer Geraden durch zwei Punkte Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. m = f(x 2 ) f(x 1 )
Über das Rechteck weißt du, dass der Umfang 32 cm beträgt. Die Formel für den Umfang eines Rechtecks lautet 2 2.
Aufgabe 1 Schritt 1: Skizze und Ansatz Über das Rechteck weißt du, dass der Umfang 32 cm beträgt. Die Formel für den Umfang eines Rechtecks lautet 2 2. Da du außerdem das Verhältnis der Seitenlängen kennst,
Formelsammlung Mathematik 9
I Lineare Funktionen... 9.) Funktionen... 9.) Proportionale Funktionen... 9.) Lineare Funktionen... 9.4) Bestimmung von linearen Funktionen:... II) Systeme linearer Gleichungen... 9.5) Lineare Gleichungen
Mathematik. Wiederholungen und Übungen zum leichteren Einstieg in das Fach Mathematik in den Beruflichen Gymnasien
Mathematik Wiederholungen und Übungen zum leichteren Einstieg in das Fach Mathematik in den Beruflichen Gymnasien I. Termumformungen II. Lineare Gleichungen und ihre Lösungsmengen III. Quadratische Gleichungen
Lö sungen zu Wiederhölungsaufgaben Mathematik
Lö sungen zu Wiederhölungsaufgaben Mathematik I) Zahlenbereiche. Zu welchem Zahlenbereich (N, Z, Q, R) gehören die folgenden Zahlen: N, Z, Q, R R Q, R N, Z, Q R -7 Z, Q, R -7, Q, R 0 N, Z, Q, R i) Z, Q,
Skript Mathematik Klasse 10 Realschule
Skript Mathematik Klasse 0 Realschule Das vorliegende Skript wurde erstellt durch: Marco Johannes Türk [email protected] Die aktuellste Version dieses Skriptes ist online auf www.marco-tuerk.de
Themenerläuterung. Die wichtigsten benötigten Formeln 1. Der Umgang mit der Mitternachtsformel
Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene
Definitions- und Formelübersicht Mathematik
Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar
Quadratische Funktion
Quadratische Funktion Wolfgang Kippels 6. Oktober 018 Inhaltsverzeichnis 1 Vorwort Zusammenstellung der Grundlagen 3.1 Nullstellen................................... 3. Scheitelpunkt.................................
Parabeln - quadratische Funktionen
Parabeln - quadratische Funktionen Roland Heynkes 9.11.005, Aachen Das Gleichsetzungsverfahren und die davon abgeleiteten Einsetzungs- und Additionsverfahren kennen wir als Methoden zur Lösung linearer
Übersicht über wichtige und häufig benötigte mathematische Operationen
Bruchrechnung Übersicht über wichtige und häufig benötigte mathematische Operationen Addition/Subtraktion von (ungleichnamigen) Brüchen: Brüche erweitern, sodass die Nenner gleichnamig sind, indem Zähler
Inhaltsverzeichnis. Grundlagen. 1. Grundlagen 13. Algebra I. 2. Das Rechnen mit ganzen Zahlen (Rechnen in ) 25
Inhaltsverzeichnis I Grundlagen 1. Grundlagen 13 1.1 Von Mengen... 13 1.2 Mengenschreibweise... 13 1.3 Zahlenmengen... 14 1.4 Die Grundoperationen... 16 1.5 Rechenhierarchie (1. Teil)... 16 1.6 Reihenfolge
MATHEMATIK Grundkurs 11m3 2010
MATHEMATIK Grundkurs 11m3 2010 Städtisches Gymnasium Leichlingen Zusammenfassende Informationen zum Unterricht ab 29. Oktober 2010 Für jede Doppelstunde ein Kapitel 2 Kapitel 1 Doppelstunde 29.10.2010
Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10
Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-0 Aufgaben Richtig Themengebiet : Terme /. Vereinfache: (9x ) + 3x xy + x ( 3xy) (x + 3) (x ) + (x + 3)² abc 5x 0 3yx x +. Kürze: a) b) c) d) 5a² b 5
Lineare Funktion. Wolfgang Kippels 21. März 2011
Lineare Funktion Wolfgang Kippels. März 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................
Themenbereich 1: Proportionalitätszuordnungen. Proportionale Zuordnungen. y bzw. Umgekehrt proportionale Zuordnungen. 6000g
Themenbereich : Proportionalitätszuordnungen Benzinmenge in Abhängigkeit von dem Preis: Proportionale Zuordnungen Wenn eine Größe verdoppelt wird, führt dies zur Verdoppelung der Anderen Die Zuordnungsvorschrift
Themenerläuterung. Die wichtigsten benötigten Formeln 1. Der Umgang mit der Mitternachtsformel
Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene
Beide Geraden haben die Steigung 2, also sind sie parallel zueinander.
Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene
8.1 Proportionalität. 8.2 Funktionen Proportionale Zuordnungen Funktion. P = x y ist der Vorrat von 6000g.
Gmnasium bei St. Anna, Augsburg Seite Grundwissen 8. Klasse 8. Proportionalität 8.. Proportionale Zuordnungen Gehört bei einer Zuordnung zweier Größen zu einem Vielfachen der einen Größe das gleiche Vielfache
Fit für die E-Phase?
Kapitel Bruchrechnung (mit und ohne Variablen) a) 6 4 i) 6 7 7 8 4 b) 5 5 4 6 7 j) : 7 8 c) 5a a 4 ab y 6 k) : b y d) y l) ( y ) : y y e) a a a m) a 8b 5 6b f) y y n) a 5b 9a 0 b g) a b b y y o) +y y (+y)
Ignaz-Taschner-Gymnasium Dachau Grundwissen Mathematik 8 (G8)
Grundwissen M8 1. Funktionale Zusammenhänge Proportionalität a) Direkte Proportionalität Wird dem Doppelten, Dreifachen,, k-fachen einer Größe x das Doppelte, Dreifache,, k-fache einer Größe y zugeordnet,
Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium
Gruber I Neumann Erfolg in VERA-8 Vergleichsarbeit Mathematik Klasse 8 Gymnasium . Zahlen Zahlen Tipps ab Seite, Lösungen ab Seite 0. Zahlen und Zahlenmengen Es gibt verschiedene Zahlenarten, z.b. ganze
Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos:
FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli 2004 Kontakt und weitere Infos: www.schule.barmetler.de Inhaltsverzeichnis 1 Wiederholung 5 1.1 Bruchrechnen.............................
Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann.
Dreisatz Der Dreisatz ist ein Rechenverfahren, das man bei proportionalen Zuordnungen anwenden kann. 3 Tafeln Schokolade wiegen 5 g. Wie viel Gramm wiegen 5 Tafeln? 1. Satz: 3 Tafeln wiegen 5 g.. Satz:
Mathematik-Aufgabenpool > Lineare Gleichungssysteme I
Michael Buhlmann Mathematik-Aufgabenpool > Lineare Gleichungssysteme I Einleitung: Gleichungen bestehen aus zwei durch ein Gleichheitszeichen verbundene Terme (linke, rechte Seite der Gleichung; Term 1
, 1,52,251,75, 1,5 4, 1,52
Lösung A1 Detaillierte Lösung: Lösungsschritte: 1. An der Parabelgleichung ist ersichtlich, dass es sich um eine nach oben geöffnete Normalparabel handelt, die in positiver -Richtung verschoben ist und
Berufliches Gymnasium Gelnhausen
Berufliches Gymnasium Gelnhausen Fachbereich Mathematik Die inhaltlichen Anforderungen für das Fach Mathematik für Schülerinnen und Schüler, die in die Einführungsphase (E) des Beruflichen Gymnasiums eintreten
Eingangstest im Fach Mathematik Aufgaben zur Wiederholung und Vertiefung
Eingangstest im Fach Mathematik Aufgaben zur Wiederholung und Vertiefung Hinweise: Liebe Schülerinnen und Schüler, der Eingangstest ist überstanden. Wenn Sie alle Aufgaben lösen konnten, so bringen Sie
9. Faktorisieren (ausklammern) Rückführung binomischer Ausdrücke in die binomischen Formeln wie beispielsweise
Themenerläuterung Das Thema Bruchgleichungen verlangt von dir die Bestimmung der Lösungsmenge eines Gleichungsterms in dem die Variable auch im Nenner vorkommt. Als erstes musst du einen Hauptnenner aufstellen.
Vorkurs für das Fach Mathematik am beruflichen Gymnasium, Bildungsgang Technik, der BBS Neustadt
Berufsbildende Schule Neustadt an der Weinstraße Vorkurs für das Fach Mathematik am beruflichen Gymnasium, Bildungsgang Technik, der BBS Neustadt Liebe Schülerinnen und Schüler, wir freuen uns, dass Sie
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Prüfungswissen kompakt - Mathematik 10. Klasse
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Prüfungswissen kompakt - Mathematik 10. Klasse Das komplette Material finden Sie hier: School-Scout.de 2 Vorwort Die Inhalte der 10.
Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis
Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................
Zahlensystem und Grundrechnen Lineare Gleichungssysteme
1. Seite 1 bestehen aus Gleichungen mit jeweils Variablen. Im Koordinatensystem kann man im Schnittpunkt der beiden Graden die Lösung erkennen, die für beide Gleichungen zutrifft. Diese Gleichungssysteme
Kapitel 3. Kapitel 3 Gleichungen
Gleichungen Inhalt 3.1 3.1 Terme, Gleichungen, Lösungen x 2 2 + y 2 2 3.2 3.2 Verfahren zur zur Lösung von von Gleichungen 3x 3x + 5 = 14 14 3.3 3.3 Gleichungssysteme Seite 2 3.1 Terme, Gleichungen, Lösungen
Die Inhalte haben Sie alle in den Klassen 5 10 gelernt.
Schüler Liebe künftige Schülerinnen und des Fachgymnasiums!!! Wir Mathematikkollegen der BBS bieten Ihnen hier auf diesen Seiten alle mathematischen Inhalte, die wir zur aktiven Teilnahme am Mathematikunterricht
Schritt 1: Koordinaten in die allgemeine Funktionsgleichung einsetzen
Aufgabe 1a) Schritt 1: S in die Scheitelpunktform einsetzen 0,5 2 Schritt 2: Koordinaten von P einsetzen und a berechnen 2,25 1,5 0,5 2 0,25 Schritt 3: Funktionsterm aufstellen 0,25 0,5 2 als Scheitelpunktform,
(1) Werte berechnen und Definitionsbereich finden. (2) Kürzen und Erweitern von Bruchtermen
() Werte berechnen und Definitionsbereich finden () Kürzen und Erweitern von Bruchtermen Die Aufgaben dieses Tetes findet man auch als reine Aufgabensammlung mit Lösungen im Tet zum Einsatz im Unterricht
GRUNDKURS MATHEMATIK. Zahlenmengen. Natürliche Zahlen. Ganze Zahlen. Gebrochene Zahlen { } Rationale Zahlen { } Irrationale Zahlen { } Reelle Zahlen
GRUNDKURS MATHEMATIK Zahlenmengen Natürliche Zahlen Ganze Zahlen : 0, 1, 2, 3, Gebrochene Zahlen { } : 0, -1, 1, - Rationale Zahlen { } : 0,,, - Irrationale Zahlen { } : 0, -, Reelle Zahlen Addition und
Punktrechnung geht vor Strichrechnung 3*4 + 5 = = 17. Das Minuszeichen vor einem Produkt ändert nur bei einem Faktor das Vorzeichen.
1.2.0.1. Rechnen mit Termen 1. Terme In der Mathematik bezeichnet ein Term einen sinnvollen Ausdruck, der Zahlen, Variablen, Symbole für mathematische Verknüpfungen und Klammern enthalten kann. In der
Mathematik für die Berufsfachschule II
Didaktische Jahresplanung: Schnittpunkt Mathematik für die Berufsfachschule II Passgenau zum Lehrplan 2019 Schule: Lehrkraft: Klasse : Schuljahr: Bildungsplan für die Berufsfachschule in Rheinland-Pfalz;
Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=%
Basistext Lineare Gleichungssysteme Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Mit zwei Unbekannten gibt es die allgemeine Form:! #+% '=( Gelten mehrere dieser Gleichungen
Lösen linearer Gleichungssysteme
Lösen linearer Gleichungssysteme W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Die beschriebenen Verfahren 2 2 Einsetzungsverfahren 3 3 Additions-/Subtraktionsverfahren 5 4 Gleichsetzungsverfahren 8
Grundlagen für die Mittelstufe 7 1. SYMBOLE UND ZEICHEN DIE NATÜRLICHEN ZAHLEN N...19
Grundlagen für die Mittelstufe 7 Inhaltsverzeichnis 1. SYMBOLE UND ZEICHEN...17 2. DIE NATÜRLICHEN ZAHLEN N...19 2.1. Ziffernsysteme...19 2.1.1. Dekadisches Zehnersystem...19 2.1.1.1. Darstellung am Zahlenstrahl...20
Übungsaufgaben mit Lösungen zu Lineargleichungssystemen
Übungsaufgaben mit Lösungen zu Lineargleichungssystemen Wolfgang Kippels 6. März 2014 Inhaltsverzeichnis 1 Einleitung 3 2 Übungsaufgaben 3 2.1 Aufgabe 1................................... 3 2.2 Aufgabe
Quadratische Funktionen in Anwendung und Erweiterung des Potenzbegriffs
und Erweiterung des Potenzbegriffs Schnittpunkte von Graphen 1. Die Funktionsterme werden gleichgesetzt zur rechnerischen Bestimmung der Koordinaten gemeinsamer Punkte.. Von der entstehenden Gleichung
Die wichtigsten benötigten Formeln 1. Kommutativgesetz (vertauschen von Variablen) und zusätzlich
Themenerläuterung Das Thema Bruchgleichungen verlangt von dir die Bestimmung der Lösungsmenge eines Gleichungsterms, in dem die Variable auch im Nenner vorkommt. Als erstes musst du einen Hauptnenner aufstellen.
Übungen zur Linearen und zur Quadratischen Funktion
Übungen zur Linearen und zur Quadratischen Funktion W. Kippels 24. November 2013 Inhaltsverzeichnis 1 Die Aufgabenstellungen 2 1.1 Aufgabe 1:................................... 2 1.2 Aufgabe 2:...................................
Quadratische Gleichungen
Quadratische Gleichungen Grundlage für das Lösen von Quadratischen Gleichungen ist die Lösungsformel, auch als p-q-formel bekannt. Diese Formel bezieht sich auf die Quadratische Gleichung in Normalform:
Inhaltsverzeichnis. Grundwissen und Übungsaufgaben 4. Vorwort 1
Inhaltsverzeichnis Vorwort 1 Grundwissen und Übungsaufgaben 4 1 Algebra 5 1.1 Wichtige Grundlagen................................ 5 1.1.1 Umgang mit Klammern.......................... 5 1.1.2 Ausmultiplizieren
Quadratische Gleichungen
Quadratische Gleichungen Alle aufgezeigten Lösungswege gelten für Gleichungen, die schon vereinfacht und zusammengefasst wurden. Es darf nur noch + vorhanden sein!!! (Also nicht + und auch nicht 3 ; bitte
MATHEMATIK G9 LÖSEN VON GLEICHUNGEN
MATHEMATIK G9 LÖSEN VON GLEICHUNGEN Viele mathematische (und naturwissenschaftliche) Probleme lassen sich dadurch lösen, dass man eine Gleichung (oder auch mehrere) aufstellt und diese dann löst. Wir werden
ALGEBRA Lineare Gleichungen Teil 1. Klasse 8. Datei Nr Friedrich W. Buckel. Dezember 2005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK
ALGEBRA Lineare Gleichungen Teil Klasse 8 Lineare Gleichungen mit einer Variablen Datei Nr. 40 Friedrich W. Buckel Dezember 005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt DATEI 40 Grundlagen und ein
Bruchterme 3. Sammlung der Aufgaben aus Bruchterme 1 und Bruchterme 2. Dort werden alle Methoden ausführlich an Beispielen besprochen
ALGEBRA Bruchterme Sammlung der Aufgaben aus 0 Bruchterme und Bruchterme Dort werden alle Methoden ausführlich an Beispielen besprochen Zum Einsatz im Unterricht. Datei Nr. Stand. Juni 07 Friedrich W.
Einführung in die linearen Funktionen. Autor: Benedikt Menne
Einführung in die linearen Funktionen Autor: Benedikt Menne Inhaltsverzeichnis Vorwort... 3 Allgemeine Definition... 3 3 Bestimmung der Steigung einer linearen Funktion... 4 3. Bestimmung der Steigung
Quadratische Gleichungen
Quadratische Gleichungen Wolfgang Kippels 3. September 2017 Inhaltsverzeichnis 1 Lösungsverfahren 1.1 Lösung mit Formel.............................. 1.1.1 Beispiel 1:............................... 1.1.2
Inhaltsverzeichnis Mathematik
1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)
Lösung Aufgabe P1: 1. Berechnung der Strecke : Pythagoras im gelben Dreieck. 2. Berechnung des Winkels : Tangensfunktion im gelben Dreieck
Lösung Aufgabe P1: 1. Berechnung der Strecke : Pythagoras im gelben Dreieck 2. Berechnung des Winkels : Tangensfunktion im gelben Dreieck 3. Berechnung des Winkels : 4. Berechnung der Seite : Sinusfunktion
Mathematik - 1. Semester. folgenden Zahlenpaare die gegebene Gleichung erfüllen:
Mathematik -. Semester Wi. Ein Beispiel Lineare Funktionen Gegeben sei die Gleichung y x + 3. Anhand einer Wertetabelle sehen wir; daß die folgenden Zahlenpaare die gegebene Gleichung erfüllen: x 0 6 8
Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240.
I. Funktionen 1. Direkt proportionale Zuordnungen Grundwissen Mathematik Klasse x und y sind direkt proportional, wenn zum n fachen Wert für x der n fache Wert für y gehört, die Wertepaare quotientengleich
Komplexe Gleichungen
Komplexe Gleichungen Wolfgang Kippels 28. April 2018 Inhaltsverzeichnis 1 Vorwort 4 2 Grundlagen mit Beispiel 5 3 Übungsaufgaben 9 3.1 Lineare Gleichungen:............................. 9 3.1.1 Aufgabe
Inhaltsverzeichnis: Lösungswege 5 E-BOOK+
1. Zahlen und Zahlenmengen Inhaltsverzeichnis: Lösungswege 5 E-BOOK+ kommentierte Linksammlung: Videos, Zeitungsartikel, Websites zum Thema Zahlen und S. 6 Zahlenmengen GeoGebra-Anleitung: Rechnen mit
Lösen linearer Gleichungssysteme
Lösen linearer Gleichungssysteme Wolfgang Kippels 26. Oktober 2018 Inhaltsverzeichnis 1 Vorwort 2 2 Einleitung 3 3 Einsetzungsverfahren 4 4 Additions-/Subtraktionsverfahren 6 5 Gleichsetzungsverfahren
1. Schularbeit Stoffgebiete:
1. Schularbeit Stoffgebiete: Terme binomische Formeln lineare Gleichungen mit einer Variablen Maschine A produziert a Werkstücke, davon sind 2 % fehlerhaft, Maschine B produziert b Werkstücke, davon sind
Teil 1: Trainingsheft für Klasse 7 und 8 DEMO. Lineare Gleichungen mit einer Variablen. Datei Nr Friedrich W. Buckel. Stand 5.
ALGEBRA Lineare Gleichungen Teil 1: Trainingsheft für Klasse 7 und 8 Lineare Gleichungen mit einer Variablen Datei Nr. 1140 Friedrich W. Buckel Stand 5. Januar 018 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK
Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.
Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m
Technische Mathematik Ausgabe für gewerblich-technische Berufe
Bildungswerk der Bayerischen Wirtschaft ggmbh Seminar Technische Mathematik Ausgabe für gewerblich-technische Berufe Kursbegleitende Unterlagen Auflage Nr. 1 Technische Fachkurse Köck www.fachkurse-koeck.de
Lineare Funktionen. Die lineare Funktion
1 Die lineare Funktion Für alle m, t, aus der Zahlenmenge Q heißt die Funktion f: x m x + t lineare Funktion. Die Definitionsmenge ist Q (oder je nach Zusammenhang ein Teil davon). Der Graph der linearen
1. Funktionale Zusammenhänge
1. Funktionale Zusammenhänge Proportionalität Grundwissen 8 Eigenschaften direkt proportionaler Größen x und y: zum n-fachen Wert von x gehört der n-fache Wert von y die Wertepaare (x ; y) sind quotientengleich,
Quadratische Gleichungen Teil 1. Nach diesem reichhaltigen Übungsmaterial sollte man fit sein. Wenig Theorie und viel Training. Datei Nr.
ALGEBRA Quadratische Gleichungen Teil Nach diesem reichhaltigen Übungsmaterial sollte man fit sein Wenig Theorie und viel Training Datei Nr. Stand. August 8 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK
Bruchterme. Klasse 8
ALGEBRA Terme Bruchterme Teil Noch ohne Korrekturlesung! Klasse Datei Nr. Friedrich W. Buckel November 00 Geändert: Oktober 00 Internatsgymnasium Schloß Torgelow Inhalt DATEI. Werte berechnen. Definitionsbereiche
Ganzrationale Funktionen
Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade
Lösungen zum Arbeitsblatt: y = mx + b Alles klar???
I. Zeichnen von Funktionen a) Wertetabelle x -4-3 - -1 0 1 3 4 y =,5x -10-7,5-5 -,5 0,5 5 7,5 10 y = - x,7 1,3 0,7 0-0,7-1,3 - -,7 3 y = x 1,5-9,5-7,5-5,5-3,5-1,5 0,5,5 4,5 6,5 y = - 1 x + 4 3,5 3,5 1,5
