Realschule Abschlussprüfung
|
|
|
- Julius Pohl
- vor 9 Jahren
- Abrufe
Transkript
1 Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) Skizze Berechnen aller Dreiecke, die jetzt gehen Eintragen der berechneten Werte in Skizze Noch einmal Skizze anschauen Auch, wenn noch nicht klar ist wozu: alles ausrechnen, was geht Immer wieder alles, was jetzt ausgerechnet ist, in Skizze eintragen Je mehr an der Figur bekannt ist, desto eher können die gesuchten Strecken/Winkel berechnet werden Oberflächenberechnungen an zusammengesetzten/veränderten Körpen Aufschreiben aller Formeln aus Formelsammlung Welche Flächen fallen weg welche kommen hinzu? Aufstellen der Gesamtformel Ausrechnen fehlender Größen Einsetzen in Formel und Berechnen des Körpers Berechnung der Seitenhalbierenden eines gleichschenkligen Dreiecks Berechnung der Strecke MB Berechnung der Seitenhalbierenden eines beliebigen Dreiecks Aufgabenstellung Anwenden des Kosinussatzes Berechnen der Höhe Berechnen der Seitenhalbierenden mit Pythagoras Parabelaufgaben Normalparabel y = x 2 + px + q Bestimmen einer Normalparabel Scheitelform bestimmen Nullstellen bestimmen gestreckte oder gestauchte Parabel y = ax 2 + c Geraden y = mx + b Schnittpunkte Verschiedenes
2 6 Pyramide Rechtwinklige Dreiecke an der quadratischen Pyramide Aufgaben Nachtermin Aufgabe P 1: Aufgabe P 2: Aufgaben Nachtermin Aufgabe P 1: Aufgabe P 2: Aufgaben Nachtermin Aufgabe P 2:
3 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 1.1 Skizze Markieren von allen angegebenen Größen Berechnung aller Winkel aus den Angaben und Eintragen in Skizze Rechtwinklige Dreiecke suchen, bei denen ein Winkel und eine Seite bekannt sind 30 /60 und 45 rechtwinklige Dreiecke suchen 1.2 Berechnen aller Dreiecke, die jetzt gehen Bei 30 /60 Dreiecken ist die kleinste Seite halb so groß wie die Hypotenuse. Ist die größere Kathete gegeben, muss man sie durch 3 teilen,um die andere Kathete zu erhalten. Bei 45 Dreiecken sind die Katheten gleich groß und die Hypotenuse berechnet sich aus der Kathete durch Multiplikation mit Eintragen der berechneten Werte in Skizze 1.4 Noch einmal Skizze anschauen Noch einmal Frage anschauen Was wäre schön, wenn ich es berechnen könnte Kann man z.b. Höhen an Dreiecken einzeichnen, die nicht rechtwinklig sind 1.5 Auch, wenn noch nicht klar ist wozu: alles ausrechnen, was geht 1.6 Immer wieder alles, was jetzt ausgerechnet ist, in Skizze eintragen 1.7 Je mehr an der Figur bekannt ist, desto eher können die gesuchten Strecken/Winkel berechnet werden 3
4 2 Oberflächenberechnungen an zusammengesetzten/veränderten Körpen 2.1 Aufschreiben aller Formeln aus Formelsammlung Auswählen der Formeln, die in der Aufgabe gebraucht werden Quader : O = 2(ab + ac + bc) Würfel: O = 6a 2 P risma : O = 2G + M = 2G + U h QuadratischeP yramide : O = G + M = a 2 + 2a h s Zylinder : O = 2G + M = 2πr 2 + 2πrs Kegel : O = G + M = 2πr 2 + πrs Kugel : O = 4πr Welche Flächen fallen weg welche kommen hinzu? Vergleichen der Grundkörper mit den in der Aufgabe vorkommenden veränderten Körpern. 2.3 Aufstellen der Gesamtformel Aufstellen einer grundsätzlichen Formel für die gesuchte Oberfläche also welche Grundflächen welche Mäntel braucht man bzw. welche Teile davon. Es ist leichter nur G und M der enthaltenen Körper zu verwenden. Einsetzen der Grundformeln für die verschiedenen Grund- und Mantelflächen. 2.4 Ausrechnen fehlender Größen Welche Variablen der Formel fehlen? Wie können diese berechnet werden? Die Aufgabenstellung kann auch zweistufig sein, wenn z.b. ein Schnitt gegeben ist, und zunächst bestimmte Werte aus der Fläche dieses Schnitts zu berechnen sind. Dann muss evtl. auch die Formel für die Fläche des Schnitts verwendet werden. 2.5 Einsetzen in Formel und Berechnen des Körpers 4
5 3 Berechnung der Seitenhalbierenden eines gleichschenkligen Dreiecks Abbildung 1: gleichschenkliges Dreieck gegeben sei ein gleichschenkliges Dreieck mit den Seiten a und c berechnet werden soll die Seitenhalbierende M B 3.1 Berechnung der Strecke M B nach Strahlensatz ist MD = 1 2 h und AD = 1 4 c h 2 = a 2 ( c 2 )2 also kann MB mit Pythagoras berechnet werden (MB) 2 = ( h 2 )2 + ( 3c 4 )2 5
6 4 Berechnung der Seitenhalbierenden eines beliebigen Dreiecks 4.1 Aufgabenstellung Abbildung 2: beliebiges Dreieck gegeben seien die Seiten a,b,c berechnet werden soll die Seitenhalbierende SC AS = SB 4.2 Anwenden des Kosinussatzes a 2 = b 2 + c 2 2bc cos α b 2 = a 2 + c 2 2ac cos β c 2 = a 2 + b 2 2ab cos γ Durch Umstellen wie cos α = b2 +c 2 a 2 2bc kann jeder Winkel im Dreieck berechnet werden 6
7 4.3 Berechnen der Höhe sowohl die Höhe h als auch die Strecke AH kann so berechnet werden, wenn der Winkel CAHbekannt ist Beachtet werden muss ob S links oder rechts neben H liegt. 4.4 Berechnen der Seitenhalbierenden mit Pythagoras SH 2 + h 2 c = SC 2 5 Parabelaufgaben 5.1 Normalparabel y = x 2 + px + q Bestimmen einer Normalparabel Ist der Scheitel S(d c) gegeben, stellt man die Scheitelform auf: y = (x d) 2 + c und multipliziert gegebenenfalls aus Merkspruch: Den Parabelscheitel setzen wir sofort in die Scheitelform am richt gen Ort. Dabei drehn wir gar nicht dumm nur dem x sein Zeichen um. Sind 2 Punkte gegeben, setzt man die Punke in die Grundformel ein und erhält so zwei Gleichungen für p und q Merkspruch: Zwei Punkte der Parabel setzt man ein in die p-q-form das ist fein. Es kann auch ein Punkt gegeben sein und entweder p oder q steht schon als Zahl in der Gleichung. Dann diesen Punkt einsetzen und die fehlende Variable (p oder q) ausrechnen Scheitelform bestimmen Grundformel quadratisch ergänzen: y = (x + ( p 2 ))2 ( p 2 )2 + q Zahlen hinter der binomischen Formel verrechnen und Scheitel ablesen Beispiel: y = x 2 5x + 3 also ist p = 5 und q = 3. Quadratisch ergänzt ergibt das y = (x 5 2 )2 2, also y = (x 2, 5) 2 3, 25 7
8 5.1.3 Nullstellen bestimmen Nullstellen sind die Punkte der Parabel auf der x-achse, also y = 0. Sie werden auch als Schnittpunkte mit der x-achse bezeichnet. Grundformel gleich 0 setzen. x 2 + px + q = 0 Mit Mitternachtsformel x-werte der Nullstellen bestimmen. Der x-wert des Scheitels liegt übrigens genau in der Mitte zwischen den x-werten der Nullstellen. 5.2 gestreckte oder gestauchte Parabel y = ax 2 + c Diese Parabeln haben den Scheitel immer auf der y-achse nur für a = 1 oder a = 1 kann man sie mit der Schablone zeichnen. Sonst muss man eine Wertetabelle anlegen. Auch hier können wieder zwei Punkte gegeben sein, um a und c zu bestimmen. Es ist aber auch möglich, dass man a und c aus einem Schaubild ablesen muss. c ist dann der y- Achsenabschnitt und a muss aus dem Punkt (1 a + c) bestimmt werden. 5.3 Geraden y = mx + b Immer wieder müssen Geraden bestimmt werden. Gegeben sind dabei entweder zwei Punkte oder die Steigung und ein Punkt. Also auch hier Punkte einsetzen und m und/oder b bestimmen. Geraden, die parallel sind, haben die gleiche Steigung. Der Steigungswinkel der Geraden kann aus der Steigung berechnet werden: tan α = m also ist tan 1 (m) = α 5.4 Schnittpunkte Schnittpunkte muss man entweder zwischen zwei Parabeln oder zwischen einer Gerade und einer Parabel bestimmen. Schnittpunkte zwischen zwei Kurven erhält man immer, indem man sie gleichsetzt und die Gleichung löst. Die x-werte muss man dann in eine der beiden Gleichungen einsetzen, um den y-wert der Punkte zu berechnen. 5.5 Verschiedenes Bei Angabe eines Punktes kann eine Koordinate auch variabel sein z.b. P (1, 5 y p ) oder P (x p 4). Dann muss die jeweilige variable Koordinate aus der Gleichung der Kurve berechnet werden. Wenn man prüfen muss, ob ein Punkt auf einer Parabel oder Geraden liegt, einfach x-wert in die Gleichung einsetzen und nachrechnen, ob der y-wert rauskommt. Berechnung von Strecken zwischen zwei Punkten werden mit Pythagoras berechnet. Die folgende Abstandsformel steht in der Formelsammlung (meistens bei Geraden): d = (x 1 x 2 ) 2 + (y 1 y 2 ) 2, wobei x 1,x 2,y 1,y 2 die Koordinaten der Punkte sind. Vorsicht bei negativen Koordinaten: 3 ( 5) = 3+5 8
9 6 Pyramide 6.1 Rechtwinklige Dreiecke an der quadratischen Pyramide Abbildung 3: quadratische Pyramide 9
10 7 Aufgaben Nachtermin Aufgabe P 1: Im Rechteck ABCD gilt: AD = 3, 9cm AF = 6, 3cm ɛ = 64, 0 ϕ = 84, 8 Berechnen Sie die Länge AB. 7.2 Aufgabe P 2: Im Dreieck ABC sind gegeben: AB = 8, 4cm BE = DE = 4, 4cm β = 48 Berechnen Sie den Winkel α. Abbildung 4: Aufgabe P1 und P2 10
11 8 Aufgaben Nachtermin Aufgabe P 1: Das Viereck ABCD ist ein rechtwinkliges Trapez. Es gilt: BD = 7, 4cm β 1 = 40, 0 Berechnen Sie den Flächeninhalt des Vierecks ABCD. 8.2 Aufgabe P 2: Im rechtwinkligen Dreieck ABC sind gegeben: AB = 4, 4cm AC = 8, 3cm α 1 = 16, 5 Berechnen Sie die Länge DE. Abbildung 5: Aufgabe P1 Abbildung 6: Aufgabe P2 11
12 9 Aufgaben Nachtermin Aufgabe P 2: Auf dem Würfel liegt der Streckenzug DPQR. Es gilt: α = 21, 8 a = 8, 0cm DP = 8, 6cm P Q = 5, 5cm QR = 8, 9cm Berechnen Sie die Länge von RF Abbildung 7: Aufgabe P1 12
4 x
Quadratwurzeln und reelle Zahlen. Bestimme die Definitionsmenge des Wurzelterms in G = R a) T(x) = x b) x c) x d) x e) x +. Vereinfache a) 0 + 90 b) 6 7 + 08 7 7 c) 0 0 + d) 6. Mache den Nenner rational
Lösungsvorschlag RAP HT 2005
Lösungsvorschlag RAP HT 2005 Inhalt: Pflichtaufgabe 1:... 2 Pflichtaufgabe 2:... 2 Pflichtaufgabe 3:... 2 Pflichtaufgabe 4:... 3 Pflichtaufgabe 5 :... 3 Pflichtaufgabe 6 :... 4 Pflichtaufgabe 7 :... 4
Muster für den Schultest. Muster Nr. 1
GRUNDELEMENTE DER MATHEMATIK Boris Girnat Wintersemester 2005/06 Technische Universität Braunschweig Institut für Elementarmathematik und Didaktik der Mathematik Muster für den Schultest Dieser Blatt enthält
m und schneidet die y-achse im Punkt P(0/3).
Aufgabe (Pflichtbereich 999) Eine Parabel hat die Gleichung y x 6x, 75. Bestimme rechnerisch die Koordinaten ihres Scheitelpunktes. Berechne die Entfernung des Scheitelpunktes vom Ursprung des Koordinatensystems.
Themenerläuterung. Die wichtigsten benötigten Formeln 1. Der Umgang mit der Mitternachtsformel
Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene
Beide Geraden haben die Steigung 2, also sind sie parallel zueinander.
Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene
Die y Koordinate des Scheitelpunktes ist 0, der Scheitelpunkt liegt auf der x Achse, es gibt also genau eine Nullstelle.
Aufgabe 1 Schritt 1: Auswertung der Funktionsgleichung Die Parabel ist in der Scheitelpunktform angegeben. Öffnung a ist negativ, das heißt, die Parabel ist nach unten geöffnet. Scheitelpunkt Die Koordinaten
Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000
Grundwissen Jahrgangsstufe 9 Berechne ohne Taschenrechner: a),5 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) -x² = -5 c) x² + 50 = 0 Sind folgende
1. die ganzen Zahlen, denn 7= 1. a ist diejenige nicht negative Zahl, die quadriert a ergibt: 16 = 4; 0 = = 36 = 25 = e) Grundwissen 9.
Grundwissen 9. Klasse Quadratwurzel a ist diejenige nicht negative Zahl, die quadriert a ergibt: ( a ) a Die Zahl a unter der Wurzel heißt Radikand. Es gibt keine Quadratwurzel aus einer negativen Zahl.
Schritt 1: Skizze anfertigen. Schritt 2: Volumenformel für das Prisma anwenden. M GYM K09 BY 3.KA ML Var1. Aufgabe 1
Aufgabe 1 Schritt 1: Skizze anfertigen Um dir besser vorstellen zu können, wie der Getränkekarton aussehen soll und wie die Abmessungen zusammenhängen, solltest du dir als allererstes eine saubere Skizze
Themenerläuterung. Die wichtigsten benötigten Formeln
Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene
Teil 4. Aufgaben Nr. 14 bis 18 Hier nur Lösung von Nr. 14. Auf der Mathematik-CD befinden sich alle Lösungen
Teil 4 Aufgaben Nr. 4 bis 8 Hier nur Lösung von Nr. 4. Auf der Mathematik-CD befinden sich alle Lösungen Parabelfunktionen mit vielen Zusatzaufgaben (Keine Integration) Datei Nr. 405 S Januar 00 Friedrich
I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE
I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen
Mathematik Name: Klassenarbeit Nr. 2 Klasse 9a Punkte: /30 Note: Schnitt:
Aufgabe 1: [4P] Erkläre mit zwei Skizzen, vier Formeln und ein paar Worten die jeweils zwei Varianten der beiden Strahlensätze. Lösung 1: Es gibt viele Arten, die beiden Strahlensätze zu erklären, etwa:
Informationen für Lehrpersonen und Lernende GLF-Prüfung Mathematik TALS Juli 2017 (inkl. Nachtermin)
Informationen für Lehrpersonen und Lernende GLF-Prüfung Mathematik TALS Juli 017 (inkl. Nachtermin) Für die Note 6 müssen nicht alle Aufgaben gelöst werden. Der Notenschlüssel wird nach der Prüfung festgelegt.
Merkhilfe Grundwissen
Merkhilfe Grundwissen 1. Umkreis eines Dreiecks Inkreis 2. gleichschenkliges Dreieck gleichseitiges Dreieck Parallelogramm Trapez Raute Drachenviereck 3. x 2 + px + q = 0 pq-formel x 1/2 =? x 4 7x 2 +
PARABELN. 10. Klasse
PARABELN 0. Klasse Jens Möller Owingen Tel. 0755-9 [email protected] INHALTSVERZEICHNIS NORMALPARABEL PARABELN MIT FORMFAKTOR VERSCHIEBUNG IN Y-RICHTUNG VERSCHIEBUNG IN X-RICHTUNG 5 ALLGEMEINE
Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.
Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Geraden & Parabeln - Was mache ich, wenn?
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: - Was mache ich, wenn? Das komplette Material finden Sie hier: School-Scout.de Inhalt Seite Vorwort 5 Spickzettel 6-7 MindMap Geraden
Becker I Brugger. Erfolg in Mathe Realschulabschluss Baden-Württemberg Wahlteil. Übungsbuch mit Tipps und Lösungen
Becker I Brugger Erfolg in Mathe 0 Realschulabschluss Baden-Württemberg Wahlteil Übungsbuch mit Tipps und Lösungen Inhaltsverzeichnis Vorwort Aufgaben 5 Algebra....................................... 5
Trigonometrische Berechnungen
Trigonometrische Berechnungen Aufgabe 1 Berechnen Sie im rechtwinkligen Dreieck die fehlenden Seiten und Winkel: a) p = 4,93, β = 70,3 b) p = 28, q = 63 c) a = 12,5, p = 4,4 d) h = 9,1, q = 6,0 e) a =
Schritt 1: Koordinaten in die allgemeine Funktionsgleichung einsetzen
Aufgabe 1a) Schritt 1: S in die Scheitelpunktform einsetzen 0,5 2 Schritt 2: Koordinaten von P einsetzen und a berechnen 2,25 1,5 0,5 2 0,25 Schritt 3: Funktionsterm aufstellen 0,25 0,5 2 als Scheitelpunktform,
Aufgabe W1b/2017. Aufgabe W2a/ ,5. Lösung: Abstand von 5,2. Gegeben sind ein rechtwinkliges Trapez ABCD und ein regelmäßiges Sechseck.
Aufgabe W1a/2017 Das rechtwinklige Dreieck ABD und das gleichschenklige Dreieck ABC haben die Seite gemeinsam. Es gilt: 7,2 3,0 42. Berechnen Sie den Abstand des Punktes von sowie den Winkel. Lösung: Abstand
Parabeln - quadratische Funktionen
Parabeln - quadratische Funktionen Roland Heynkes 9.11.005, Aachen Das Gleichsetzungsverfahren und die davon abgeleiteten Einsetzungs- und Additionsverfahren kennen wir als Methoden zur Lösung linearer
Algebra: (ab Seite 2) Quadratische Gleichungen, Bruchgleichungen, lineare und quadratische Funktionen, Gleichungssysteme
Vorwort: Sehr geehrte Schülerinnen und Schüler, anhand der folgenden 11 Fragen können Sie sich schnell und nachhaltig alle Kenntnisse aneignen, die Sie für eine erfolgreiche Mathematik-Prüfung benötigen
Grundwissen Mathematik 9. Klasse
Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 9. Klasse Wissen Aufgaben/Beispiele Lösungen Quadratwurzeln: a, a 0 ist diejenige nichtnegative Zahl, deren Quadrat a ergibt. D.h.: a ist die nichtnegative
MATHEMATIK K1 EINSTIEGSARBEIT (OHNE GTR)
MATHEMATIK K EINSTIEGSARBEIT (OHNE GTR Einige Stichworte: Bruchrechnen: bei Addition und Subtraktion beide Brüche auf den Hauptnenner bringen Man teilt durch einen Bruch, indem man mit dessen Kehrwert
Algebra Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale
Algebra 1 www.schulmathe.npage.de Aufgaben 1. Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale Lösung? x + y + mz = 0 mx y + z = 0 x + y + z = 0. Welche Punkte P z der z-achse
Übungsaufgabe z. Th. lineare Funktionen und Parabeln
Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen
Aufgabe W2a/2005 Eine Parabel hat die Gleichung 4 1. Durch den Scheitelpunkt der Parabel und durch den Punkt %6 5 geht die Gerade. Berechnen Sie die G
Dokument mit 10 Aufgaben Aufgabe W3a/2003 Die Normalparabel hat die Gleichung 4 6. Die Normalparabel ist nach unten geöffnet und hat den Scheitel 0 6. Durch die Schnittpunkte beider Parabeln verläuft die
Lösung Aufgabe P1: 1. Bestimmung der Strecke : Kongruenz (Deckungsgleichheit) der Rechtecke ABCD und BEFG. 2. Bestimmung der Strecke :
Lösung Aufgabe P1: 1. Bestimmung der Strecke : Kongruenz (Deckungsgleichheit) der Rechtecke ABCD und BEFG 2. Bestimmung der Strecke : 3. Berechnung der Strecke : Tangensfunktion im gelben rechtwinkligen
Themenerläuterung. Die wichtigsten benötigten Formeln 1. Der Umgang mit der Mitternachtsformel
Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene
Repetition Begriffe Geometrie. 14. Juni 2012
Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte
Grundwissen 9. Klasse
Grundwissen 9. Klasse ) Rationale und irrationale Zahlen Quadratwurzel b ist diejenige nichtnegative Zahl, die quadriert b ergibt: b b ( 5 ) 5 Die Zahl b heißt Radikand; b 0 : es gibt keine Quadratwurzel
Abschlussprüfung 150 Minuten an den Realschulen in Bayern
Prüfungsdauer: Abschlussprüfung 150 Minuten an den Realschulen in Bayern 009 Mathematik II Nachtermin Aufgabe A 1 Name: Vorname: Klasse: Platzziffer: Punkte: A 1 Die nebenstehende Skizze zeigt den Axialschnitt
Quadratische Funktionen
Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,
Lösungen zum Arbeitsblatt: y = mx + b Alles klar???
I. Zeichnen von Funktionen a) Wertetabelle x -4-3 - -1 0 1 3 4 y =,5x -10-7,5-5 -,5 0,5 5 7,5 10 y = - x,7 1,3 0,7 0-0,7-1,3 - -,7 3 y = x 1,5-9,5-7,5-5,5-3,5-1,5 0,5,5 4,5 6,5 y = - 1 x + 4 3,5 3,5 1,5
Lösungen zur Prüfung 2005: Pflichtbereich
005 Pflichtbereich Lösungen zur Prüfung 005: Pflichtbereich Aufgabe P1: erechnung des Pyramidenvolumens: ür das Volumen V p einer Pyramide gilt: V P = 1 3 a h Dabei ist a die Kantenlänge der quadratischen
an den Realschulen in Baden Württemberg
Abschlussprüfung 04 Wahlaufgaben Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Kultus, Jugend und Sport Baden-Württemberg. Aufgabe Wa) D δ
Die Oberfläche der Verpackung besteht aus sechs Teilen: 2 Trapeze (vorne und hinten), und 4 Rechtecke.
Aufgabe 1a) Schritt 1: Oberflächenformel aufstellen Gesucht ist die Oberfläche des Prismas. Das heißt, 2, mit G als Grundfläche und M als Mantel. Die Oberfläche der Verpackung besteht aus sechs Teilen:
Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn!
Berechnungen in Dreiecken Allgemeines zu Dreiecken Innenwinkelsatz α + β + γ = 180 Besondere Dreiecke Gleichschenkliges Dreieck Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher
Übungsaufgaben zu quadratischen Gleichungen und Parabeln
Übungsaufgaben zu quadratischen Gleichungen und Parabeln Binomische Formeln:. binomische Formel: ( a + b) = a + ab + b. binomische Formel:. binomische Formel: ( a b) = a ab + b ( a + b)(a b) = a b Lösungsformel
Aufgabe 1: Anordnung ohne Wiederholung; jedes Element darf nur einmal verwendet werden. Gegeben: 5 Buchstaben: A, b, C, d, E
Übungen Klasse 9 Aufgabe 1: Anordnung ohne Wiederholung; jedes Element darf nur einmal verwendet werden. Gegeben: 5 Buchstaben: A, b, C, d, E Gesucht: a) Wörter aus 3 Buchstaben b) Wörter aus 5 Buchstaben
Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9
Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9 Wissen und Können. Zahlenmengen Aufgaen, Beispiele, Erläuterungen N Z Q R natürliche ganze rationale reelle Zahlen Zahlen Zahlen
Grundwissen Jahrgangsstufe 9. Lösungen. 144c 6 + = ( d)² 144c6 + = ( d)². Berechne ohne Taschenrechner: a) 2,
Grundwissen Jahrgangsstufe 9 Lösungen Berechne ohne Taschenrechner: a) 2,25 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) x² = 5 c) 2x² + 50 = 0 Sind
Grundwissen Mathematik 9. Klasse
Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 9. Klasse Wissen Aufgaben/Beispiele Lösungen Quadratwurzeln: a, a 0 ist diejenige nichtnegative Zahl, deren Quadrat a ergibt. D.h.: a ist die nichtnegative
Kroemer
Kroemer - 02011-1- Normalparabel 13 y 2.0 2.1 3.0 3.1 4.0 4.1 5.1 5.2 6.1 6.2 12 11 10 9 8 7 6 5 4 3 2 1 0-7 -6-5 -4-3 -2-1 0 1 2 3 4 5 6 7 8 9-1 -2 Aufgabe: a) Zeichne eine Normalparabel p: y= x² - erstelle
=329 (Volumen der Pyramide) =7,0
Aufgabe W1a/2011 Im Dreieck gilt: =10,8 =40,0 =58,0 = Berechnen Sie den Flächeninhalt des Dreiecks. Lösung: =19,3. Tipp: Zweimal Sinussatz für und dann trigonometrischen Flächeninhalt. Aufgabe W1b/2011
1 Pyramide, Kegel und Kugel
1 Pyramide, Kegel und Kugel Pyramide und Kegel sind beides Körper, die - anders als Prismen und Zylinder - spitz zulaufen. Während das Volumen von Prismen mit V = G h k berechnet wird, wobei G die Grundfläche
Aufgabe P3/2017 Ein Körper setzt sich aus einem halben Zylinder und einer quadratischen Pyramide zusammen. Es gilt: 16 58
Aufgabe P1/2017 Gegeben ist das rechtwinklige Dreieck ABC. Es gilt: 5,8 6,6 halbiert den Winkel. Berechnen Sie den Umfang des Dreiecks. Lösung: 23 Aufgabe P2/2017 Im Quadrat ABCD liegen das rechtwinklige
Ausführliche Lösungen
Ausführliche Lösungen 11.1 Die Aussage gilt für a) Rechteck, Quadrat b) Raute, Quadrat, Drachen c) Parallelogramm, Raute, Rechteck, Quadrat d) Rechteck, Quadrat e) Parallelogramm 11.2 Bei einem Parallelogramm
Aufgaben Ähnlichkeit:
Aufgaben Ähnlichkeit: 1. Berechne die gesuchten Zahlwerte, beziehungsweise z. a) 8 21 14 α 18 β α β b) 40 α 16 12 α 22 β β c) d) e) Geometrie-Dossier 3-2 Ähnlichkeit.doc A.Räz Seite 23 2. Berechne die
Aufgabe W1b/2013. Aufgabe W2a/2013 =3 (3+ 3) =3,4
Aufgabe W1a/2013 Im rechtwinkligen Dreieck liegt das gleichschenklige Dreieck. Es gilt =6,5 =51,2 = =3,5 Berechnen Sie den Winkel. Berechnen Sie den Umfang des Dreiecks. Tipp Sinussatz für Lösung =32,4
3. Mathematikschulaufgabe
1. Bestimme m so, dass die quadratische Gleichung nur 1 Lösung hat: 4x² - mx + 5m = 0 2.0 Von einer zentrischen Streckung sind A (-3/3), A (2/-2), B (-5/-1), B (2,5/-1) und C(-5/3) bekannt. 2.1 Konstruiere
Tipps und Tricks für die Abschlussprüfung
Tipps und Tricks für die Abschlussprüfung Rechentipps und Lösungsstrategien mit Beispielen zu allen Prüfungsthemen Mathematik Baden-Württemberg Mathematik-Verlag Vorwort: Sehr geehrte Schülerinnen und
und schneidet die -Achse im Punkt 0 3. Berechnen Sie die Koordinaten der Schnittpunkte von und. Lösung: 4 1;2 4
7 Aufgaben im Dokument Aufgabe P5/2010 Die nach unten geöffnete Parabel hat die Gleichung 5. Zeichnen Sie die Parabel in ein Koordinatensystem. Die Gerade hat die Steigung und schneidet die -Achse im Punkt
c) Die Parabel ist nach oben geöffnet, der Scheitelpunkt liegt auf der x Achse und ist somit auch die einzige Nullstelle.
Aufgabe 1 Schritt 1: Koordinaten der Scheitelpunkte Die Funktionsgleichungen sind schon in der Scheitelform angegeben. Du musst die Scheitelpunkte eigentlich nur noch ablesen. a) 0,75; 3 b) 3; 1,5 c) ;
Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:
Prüfungsdauer: Abschlussprüfung 2006 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Pflichtteil - Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben sind der
Minimalziele Mathematik
Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen
Klasse 9+ (Mittelstufe Plus) Hinweise und Lösungen
Klasse 9+ (Mittelstufe Plus) Hinweise und Lösungen. a) (x + y) (x y) = x + xy + y [x xy + y ] = = x + xy + y x + xy y = 4xy b) z 3 z ) = z + z z z(z ) z (z ) (z 0; ) c) (8a 3 b) = ( 3²a3 b) = 3 4 a 6 b
Grundwissen Mathematik Klasse 9
Grundwissen Mathematik Klasse 9. Wurzeldefinition und irrationale Zahlen (MH S. f. / MH S. f.) Wurzel als nichtnegative Lösung der reinquadratischen Gleichung (z:b: 0, ( > 0) 0, 0, ) Begriffe Wurzel, Radikand,
Kursarbeit Nr.1 LK Mathematik NAME :
Kursarbeit Nr.1 LK Mathematik 7. 10. 2004 1. Bestimmen Sie eine Stammfunktion F zur angegebenen Funktion f! a) f :R R, f x =1 1 x 100 b) f :R R, f x =sin 2 x 5 x c) f :R R, f x = x 5 x 3 2 2 x 2 2. Berechnen
Algebra: (ab Seite 2) Quadratische Gleichungen, Bruchgleichungen, Parabeln und Geraden, Gleichungssysteme
Vorwort: Sehr geehrte Schülerinnen und Schüler, anhand der folgenden 11 Fragen können Sie sich schnell und nachhaltig alle Kenntnisse aneignen, die Sie für eine erfolgreiche Mathematik-Prüfung benötigen
Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2)
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 2815 Bremen Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Name: Ich 1. 2. 3. So schätze ich meinen Lernzuwachs ein. kann die
Fit für die E-Phase?
Kapitel Bruchrechnung (mit und ohne Variablen) a) 6 4 i) 6 7 7 8 4 b) 5 5 4 6 7 j) : 7 8 c) 5a a 4 ab y 6 k) : b y d) y l) ( y ) : y y e) a a a m) a 8b 5 6b f) y y n) a 5b 9a 0 b g) a b b y y o) +y y (+y)
, 1,52,251,75, 1,5 4, 1,52
Lösung A1 Detaillierte Lösung: Lösungsschritte: 1. An der Parabelgleichung ist ersichtlich, dass es sich um eine nach oben geöffnete Normalparabel handelt, die in positiver -Richtung verschoben ist und
Quadratische Funktionen Arbeitsblatt 1
Quadratische Funktionen Arbeitsblatt 1 Spezielle quadratische Funktion Die Funktionsgleichung einer speziellen quadratischen Funktion hat die Form y = 3 x 2. Der dazugehörige Graph heißt Parabel. Bei einer
Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS
Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Stoff für den Einstufungstest Mathematik in das 1. Jahr AHS: Mit und ohne Taschenrechner incl. Vorrangregeln ( Punkt vor Strich, Klammern, ):
Lösungen zu den Übungsaufgaben Übergang 10/ /2010 0hne Gewähr!
Lösungen zu den Übungsaufgaben Übergang 0/ 009/00 0hne Gewähr!. Lineare Funktionen und lineare Gleichungen; Terme a. Das Schaubild einer linearen Funktion ist immer eine Gerade. Setzt man in der Geradengleichung
1. Selbsttest Heron-Verfahren Gleichungen
1. Selbsttest 1.1. Heron-Verfahren Mit dem Heron-Verfahren soll ein Näherungswert für 15 gefunden werden. Führe die ersten drei Schritte des Heron- Verfahrens durch. Gib dann unter Verwendung der Werte
Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.
Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten
Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras
Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Aufgabe 1 Berechne die fehlenden Grössen (a, b, c, h, p, q, A) der rechtwinkligen Dreiecke: a) p = 36, q = 64 b) b = 13, q = 5 c) b = 70, A =
Inhalt der Lösungen zur Prüfung 2005:
Inhalt der Lösungen zur Prüfung 005: Pflichtteil Wahlteil ufgabe W1 10 Wahlteil ufgabe W 14 Wahlteil ufgabe W3 18 Wahlteil ufgabe W4 3 Wichtige Hinweise zum opyright: Das Werk und seine Teile sind urheberrechtlich
Curriculum Mathematik
Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von
Wiederholung Quadratische Funktionen (Parabeln)
SEITE 1 VON 7 Wiederholung Quadratische Funktionen (Parabeln) VON HEINZ BÖER 1. Regeln a) Funktionsvorschriften Normalform f(x) = a x² + b x + c Normalparabel: f(x) = x 2 Graf der Normalparabel Die einfachste
Raumgeometrie - gerade Pyramide
1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne
Wiederholungsaufgaben Klasse 10
Wiederholungsaufgaben Klasse 10 (Lineare und quadratische Funktionen / Sinus, Kosinus, Tangens und Anwendungen) 1. In welchem Punkt schneiden sich zwei Geraden, wenn eine Gerade g durch die Punkte A(1
Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK
Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,
1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw.
Themenerläuterung Bei diesem Thema werden die unterschiedlichsten Körper vorgegeben wie Würfel, Prisma, Zylinder, Kegel und Pyramide. Auf den Außenflächen bzw. in den Körpern befinden sich Strecken, deren
Bestimmen Sie die Definitions- und Lösungsmenge der Gleichung: 1 = R\4 ; 5; 6 = { 3}
Aufgabe W1a/007 Gegeben ist das gleichschenklige Dreieck und das rechtwinklige Dreieck. Es gilt: = = 10,0 = 3,6 = 58,0 Berechnen Sie den Flächeninhalt des Dreiecks. Lösung: = 5,3. Tipp: Trigonometrischer
Quadratwurzeln. Reelle Zahlen
M 9. Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: = Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 = 5; 8 = 9; 0,25 = =
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe
a) Wie hoch ist die Leiter? b) Wie weit stehen die beiden Fußpunkte auseinander? Abbildung 1: Eine Stehleiter
1. Berechnen Sie die jeweils fehlenden Größen (Winkel α, β und γ, Seiten a, b und c) in den folgenden Dreiecken: a) a = 5 cm, b = 9 cm, γ = 90 b) c = 9 cm, a = 6 cm, γ = 56, 3 (Überlegen Sie zuerst, wo
Berechnung der Schnittpunkte durch Gleichsetzung. Bestimmung der Scheitelpunkte von und. Verdeutlichung der Situation durch ein Schaubild.
Lösung W3a/2010 Aufstellung der Geradengleichungen und. Schnittpunktberechnung von durch Gleichsetzung. Aufstellung der Parabelgleichung durch die Punkte und. Umstellung der allgemeinen Parabelgleichung
Einfache quadratische Funktionen und Gleichungen. x y Wertetabelle. y-achse
Einfache quadratische Funktionen und Gleichungen Eine quadratische Funktion hat allgemein die Funktion: y = ax 2 + bx + c Dabei gilt: a, b und c R und a 0 Der Graph, der hierbei entsteht ist eine Parabel.
Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand:
M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 5; 81 9; 0,25 0,5; 0,0081
Abschlussprüfung 2011 an den Realschulen in Bayern
Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das
Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:
M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen
2 063,4,. % 7. : ,4 26,6 Die Innenwinkel des Dreiecks *) betragen 63,4, 26,6 und :90.
Lösung W3a/2003 Aufstellung der Funktionsgleichung. Bestimmung der Schnittpunkte von mit durch Gleichsetzung. Bestimmung der Funktionsgleichung von über die beiden Schnittpunkte. Erstellung einer Graphik,
Lösung Aufgabe P1: 1. Berechnung der Strecke : Kosinusfunktion im gelben rechtwinkligen Teildreieck ADE
Lösung Aufgabe P1: 1. Berechnung der Strecke : Kosinusfunktion im gelben rechtwinkligen Teildreieck ADE 2. Berechnung des Winkels : Tangensfunktion im hellblauen rechtwinkligen Teildreieck CDE 1 von 61
Berechnung der Länge einer Quadratseite a:
2006 Pflichtbereich erechnung der Länge einer Quadratseite a: Zur erechnung der Quadratseite a benötigt man die ilfslinie ür die Quadratseite a gilt dann: a = + 57 erechnung der Strecke : Im reieck kann
