Multiplikation und Division in Polarform

Größe: px
Ab Seite anzeigen:

Download "Multiplikation und Division in Polarform"

Transkript

1 Multiplikation und Division in Polarform 1-E1

2 1-E

3 Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin 1 sin sin 1 = sin 1 cos cos 1 sin 1-E3

4 Trigonometrische Form: Multiplikation Bei der Multiplikation und Division komplexer Zahlen erweist sich die trigonometrische bzw. exponentielle Darstellungsweise als besonders vorteilhaft. z1 = r 1 cos 1 i sin 1 z = r cos i sin z1 z = r1 r [ cos 1 cos sin 1 sin i sin 1 cos cos 1 sin ] Additionstheoreme: cos 1 = cos 1 cos sin 1 sin sin 1 = sin 1 cos cos 1 sin z1 z = r 1 r [ cos 1 i sin 1 ] 1-1

5 Polarform: Multiplikation z1 = r1 e i 1 z = r e i Definition 1: Zwei komplexe Zahlen werden multipliziert indem man ihre Beträge multipliziert und ihre Argumente (Winkel) addiert. z 1 z = r 1 e i φ1 r e i φ = r1 r e i (φ1 + φ ) = = r 1 r [ cos 1 i sin 1 ] 1-

6 Multiplikation und Division in Polarform: Aufgabe 1 Geben Sie eine geometrische Interpretation der Multiplikation einer komplexen Zahl mit i - i und A

7 Multiplikation und Division in Polarform: Lösung 1 Abb. 1-1: Graphische Darstellung der Aufgabe am Beispiel einer komplexen Zahl 3 + i und ihrer Multiplikation mit i -i und a

8 Multiplikation und Division in Polarform: Lösung 1 Abb. 1-: Die Multiplikation einer komplexen Zahl z mit i entspricht einer Drehung des Zeigers z um den Winkel π/ 1-3b

9 Multiplikation und Division in Polarform: Lösung 1 Abb. 1-3: Die Multiplikation einer komplexen Zahl z mit - i entspricht einer Drehung des Zeigers z um den Winkel - π/ 1-3c

10 Multiplikation und Division in Polarform: Lösung 1 Abb. 1-4: Die Multiplikation einer komplexen Zahl z mit - 1 entspricht einer Drehung des Zeigers z um den Winkel π 1-3d

11 Multiplikation und Division in Polarform: Lösung 1 z = 3 + i = e iπ i=e iπ i z = i ( 3 + i) = 1 + i 3 = e i = e iπ i z = i ( 3 + i) = 1 i 3 = e z = ( 3 + i ) = e 1-3e iπ = e iπ e iπ = e e 1 = e + = e e iπ = e iπ iπ +iπ

12 Multiplikation in Polarform: Geometrische Deutung Aufgabe : Bestimmen Sie den Betrag und den Argument der komplexen Zahl z 3 z3 = z1 z a ) z1 = r1 e b ) z1 = r1 e c ) z1 = r1 e -A i φ1 i φ1 i φ1 z = z = 1 z = 1

13 Multiplikation: Geometrische Deutung Abb. -1: Multiplikation einer komplexen Zahl mit einer positiven reellen Zahl Die Multiplikation einer komplexen Zahl z mit einer positiven reellen Zahl a bedeutet eine Streckung des Zeigers z um das a-fache wobei der Winkel erhalten bleibt. z1 = r1 e i φ1 z = = ei 0 z 3 = r 1-1 z3 = z1 z = z 1 = r1 e i φ1+ i 0 arg ( z 3 ) = φ1

14 Multiplikation: Geometrische Deutung Abb. -: Multiplikation einer komplexen Zahl mit der reellen Zahl -1 -a

15 Multiplikation: Geometrische Deutung Die Multiplikation einer komplexen Zahl z mit -1 bedeutet eine Drehung des Zeigers z um 180. z1 = r1 e i φ1 z = 1 = e z 3 = z1 z = r 1 e z3 = r1 -b i φ1 = r1 e i φ1 e = r1 e i ( φ1+ π ) arg ( z 3 ) = φ1 + π

16 Multiplikation: Geometrische Deutung Abb. -3: Multiplikation einer komplexen Zahl mit der reellen Zahl -1/ -3a

17 Multiplikation: Geometrische Deutung Die Multiplikation der komplexen Zahl z mit der negativen reellen Zahl a (a < 0) bedeutet eine Streckung des Zeigers z um das a -fache eine Drehung des Zeigers a z um 180 z. B. a = z1 = r1 e -3b i 1 1 : z1 i 1 i z = = r e = r e 1 1

18 Multiplikation: Geometrische Deutung Abb. -4: Zur Multiplikation der komplexen Zahlen. Darstellung von zwei komplexen Zahlen wobei eine den Betrag 1 hat. -4a z1 = r e i φ1 z = e i φ z = 1

19 Multiplikation: Geometrische Deutung Abb. -5: Multiplikation der komplexen Zahl z mit der komplexen Zahl mit Betrag 1-4b

20 Multiplikation: Geometrische Deutung Die Multiplikation der komplexen Zahl z mit der komplexen Zahl exp (i α) entspricht der Drehung des Zeigers um den Winkel α. z1 = r e i φ1 z = e i φ z 3 = z 1 z = r e z = 1-4c i φ3 φ3 = φ1 + φ z1 = z3

21 Multiplikation: Beispiel 1 Abb. 3-1: Zur Multiplikation der komplexen Zahlen z1 = r 1 e i 3-1 z = r ei r3 = r 1 r z3 = z 1 z = r 3 ei =

22 Multiplikation: Beispiel 1 Zur Abbildung 3-1: z1 = r 1 e i z = r ei r3 = r 1 r z1 = r 1 e i z = r e i z 3 = z1 z = r3 e 3- = = i =.4 e = 1. i = 1. e i z3 = z 1 z = r 3 ei i.57 i 90 =.8 e r 1 =.4 r = 1. =.57 = 90 i 11.57

23 Multiplikation: Beispiel Abb. 3-: Zur Multiplikation der komplexen Zahlen z1 = 1 i = 3-3 e i 45 z = i = e i 90 z3 = i = e i 135

24 Multiplikation: Beispiel 3 Abb. 3-3: Zur Multiplikation der komplexen Zahlen 3-4 z1 = 1 i = ei 45 z = 1 i = e i 5 z 3 = i = e i 70

25 Polarform: Division Definition : Zwei komplexe Zahlen werden dividiert indem man ihre Beträge dividiert und ihre Argumente (Winkel) subtrahiert. z1 z = = 4-1 r1 r r1 r e i 1 = [ cos 1 i sin 1 ]

26 Division: Beispiel 4 Abb. B4: Division zweier komplexen Zahlen 4-a

27 Division: Beispiel 4 z1 = r 1 e i z = r e r3 = r1 r i z3 = z1 z = r3 ei = Zur Abbildung B4: z1 = i =.4 e z3 = z1 z = i.57 z = 1. i = 1. e.4 i e = 1.8 e i 3.43 = 1. = 1.8 e 4-b i 90 i 9.57

28 Division: Beispiel 5 Abb. B5: Division zweier komplexen Zahlen 5-1

29 Division: Beispiel 5 Zur Abbildung B5: z1 = 1 i = z3 = 5- z1 z e i 45 1 i 1 i 135 z = = e = i = e i 90 = e i 70

30 Multiplikation und Division in Polarform: Aufgaben 3 4 z Berechnen Sie das Produkt z 1 z und den Quotienten 1 mit z den folgenden Zahlen: Aufgabe 3: z = cos 40 i sin 40 a ) z 1 = cos 0 i sin 0 b ) z 1 = 3 cos 5 i sin 5 c ) z 1 = cos 50 i sin 50 z = 5 cos 10 i sin 10 z = cos 300 i sin 300 d ) z 1 = 3 cos 190 i sin 190 z = 4 cos 00 i sin 00 Aufgabe 4: a ) z1 = e b ) z1 = 4 e i 70 i 0 c ) z 1 = 15 e -1a i 3 z = 4 e z = 4 e i 40 i 50 i 1 z = e

31 Multiplikation und Division in Polarform: Lösungen 3 4 Lösung 3: a ) z 1 z = cos 0 i sin 0 b ) z 1 z = 15 cos 345 i sin 345 c ) z 1 z = cos 190 i sin 190 z1 1 = z cos 340 i z1 3 = z 5 cos 5 i sin 340 sin 5 z1 = cos 310 i sin 310 z d ) z 1 z = 1 cos 30 i sin 30 z1 z = 3 cos 350 i sin Lösung 4: z1 z : z1 z -1b : a) a) 8e i i 30 e b) b) 1 e e i 330 i 70 c) c) 30 e 7.5 e i 351 i 15

32 Multiplikation und Division in Polarform: Aufgabe 5 Berechnen Sie den Betrag und das Argument folgender Zahlen: z1 z 3 = z1 z z4 = z a ) z 1 = 4 e b ) z1 = 3 e c ) z1 = e -A 3 z = e z = e 3 z = 4 e

33 Multiplikation und Division in Polarform: Lösung 5a a ) z1 = 4 e 3 z = e z 3 = z 1 z = ( 4) e z4 = z1 z = z 3 = 8 4 e e 3 3 e = e arg ( z3 ) = 3π = 8 e π 3 ( +π 3 ( ) = e z 4 = ) = 8 e =e =8 e +π arg ( z 4) = ( +π ( )= e i )=8 e i 3π 7π 7π 1 = e -a

34 Multiplikation und Division in Polarform: Lösung 5b b ) z1 = 3 e z = e z 3 = z 1 z = 3 e =3 e z4 = z1 z i = z 3 = 3 -b 11 π 3 =3e 3e e 3 e 3 = 3 e +π 3 ( ) = 3 e i 5π i =3 e ( 5π +π )= = 3 e π 3 ( arg ( z 3 ) = π ) = 3 e z 4 = 3 =3 e +π ( arg ( z 4 ) = )=3 e i 7π 7π

35 Multiplikation und Division in Polarform: Lösung 5c c ) z1 = e z = 4 e z 3 = z 1 z = ( ) ( 4) e z4 = z1 z = z 3 = 8 -c e 4 e i π+π + π =8 e ( )= 1 π 3 z4 = 1 = e arg ( z 3 ) = e e ( )=8 e i π arg ( z 4 ) = π 3

36 -3

Multiplizieren und Dividieren komplexer Zahlen in Polardarstellung

Multiplizieren und Dividieren komplexer Zahlen in Polardarstellung Multiplizieren und Dividieren komplexer Zahlen in Polardarstellung Arbeitsblatt Im folgenden Arbeitsblatt lernst du das Rechnen mit komplexen Zahlen in Polardarstellung kennen. Multiplizieren und Dividieren

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

Mathematik I Herbstsemester 2018 Kapitel 7: Komplexe Zahlen

Mathematik I Herbstsemester 2018 Kapitel 7: Komplexe Zahlen Mathematik I Herbstsemester 2018 Kapitel 7: Komplexe Zahlen Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1/62 Prof. Dr. Erich Walter Farkas Mathematik I 7. Komplexe Zahlen Definition einer

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z.

02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z. 0. Komplexe Zahlen Da für alle x R gilt dass x 0, hat die Gleichung x +1 = 0 offenbar keine reellen Lösungen. Rein formal würden wir x = ± 1 erhalten, aber dies sind keine reellen Zahlen. Um das Problem

Mehr

KOMPLEXE ZAHLEN UND FUNKTIONEN

KOMPLEXE ZAHLEN UND FUNKTIONEN Übungen zu Theoretische Physik L2 KOMPLEXE ZAHLEN UND FUNKTIONEN E I N R E F E R A T M I T A N N E T T E Z L A T A R I T S U N D F L O R I A N G R A B N E R. 2 1. 1 0. 2 0 1 3 INHALT Geschichte Definition

Mehr

Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen

Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1/60

Mehr

Crash-Kurs Komplexe Zahlen

Crash-Kurs Komplexe Zahlen 1 Definitionen: j, C, z Im Körper R der reellen Zahlen besitzt die lineare Gleichung ax + b = 0 (a, bεr; a 0) stets eine Lösung. Die quadratische Gleichung ax 2 + bx + c = 0 führt zu der Lösungsformel

Mehr

Einführung Im Bereich der komplexen Zahlen ist es möglich die Wurzel aus negativen Zahlen zu ziehen.

Einführung Im Bereich der komplexen Zahlen ist es möglich die Wurzel aus negativen Zahlen zu ziehen. Komplexe Zahlen Einführung Im Bereich der komplexen Zahlen ist es möglich die Wurzel aus negativen Zahlen zu ziehen. Komplexe Zahl Unter dem Zahlenkörper der komplexe Zahlen C versteht man die Elemente

Mehr

Körper sind nullteilerfrei

Körper sind nullteilerfrei Mathematik I für Informatiker Komplexe Zahlen p. 1 Körper sind nullteilerfrei Für Elemente a, b eines Körpers gilt stets: Aus a b = 0 folgt a = 0 oder b = 0. Beweis: Aus a b = 0 und a 0 folgt also b =

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 4

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 4 D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Lösung - Serie 4 MC-Aufgaben (Online-Abgabe) 1. Sei z := exp ( π 6 i) (5 + b i). Für welches b R ist z eine reelle Zahl? (a) 1 (b) (c) 1 5 (d) 5 (e)

Mehr

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN Fakultät Mathematik Institut für Numerische Mathematik LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2017/18 G. Matthies Lineare

Mehr

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 =

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 = 2. Februar 2009 66 0 Komplexe Zahlen 0. Komplexe Multiplikation: Für zwei Vektoren [ [ a a2 z =, z 2 = in R 2 wird neben der üblichen Addition die komplexe Multiplikation [ a a z z 2 := 2 b b 2 a b 2 +

Mehr

Die komplexen Zahlen. 1. Einführung. A) Erweiterung des Zahlenkörpers. Def. 1 (imaginäre Einheit)

Die komplexen Zahlen. 1. Einführung. A) Erweiterung des Zahlenkörpers. Def. 1 (imaginäre Einheit) Die komplexen Zahlen 1. Einführung A) Erweiterung des Zahlenkörpers Def. 1 (imaginäre Einheit) Die Gl. x 2 + 1 = 0 hat zwei Lösungen, nämlich i und - i. Es soll also gelten: i 2 = -1 und ( - i ) 2 = -1.

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

Demo: Mathe-CD KOMPLEXE ZAHLEN

Demo: Mathe-CD KOMPLEXE ZAHLEN KMPLEXE ZAHLEN Diese Datei gibt einige Seiten Einblick in die Serie Komplexe Zahlen, und, die gegen Zusatbestellung auf der CD u haben ist. Abonnenten erhalten sie automatisch. Datei Nr. 50000 Januar 00

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Komplexe Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Komplexe Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Komplexe Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] Körper sind nullteilerfrei Für Elemente a, b eines Körpers gilt stets: Aus a b = 0 folgt a

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Komplexe Zahlen. Darstellung

Komplexe Zahlen. Darstellung Komplexe Zahlen Die Zahlenmengen, mit denen wir bis jetzt gearbeitet haben lassen sich zusammenfassen als N Z Q R Die natürlichen Zahlen sind abgeschlossen bezüglich der Operation des Addierens. Das heisst

Mehr

A Die Menge C der komplexen Zahlen

A Die Menge C der komplexen Zahlen A Die Menge C der komplexen Zahlen (Vgl. auch Abschnitt C) A.1 Definition Wir erweitern R um eine Zahl i / R (genannt imaginäre Einheit) mit der Eigenschaft i 2 i i = 1. (653) Unter einer komplexen Zahl

Mehr

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018 Propädeutikum 2018 24. September 2018 Darstellung Rechengesetze Erweiterung der reellen Zahlen um eine imaginäre Einheit. Ursprung: Lösung der Gleichung x 2 + 1 = 0 Komplexe Zahlen C := {a + i b a, b R}

Mehr

Inhaltsübersicht. Definition und erste Eigenschaften komplexer Zahlen

Inhaltsübersicht. Definition und erste Eigenschaften komplexer Zahlen Inhaltsübersicht Kapitel 4: Die Macht des Imaginären: Komplexe Zahlen Definition und erste Eigenschaften komplexer Zahlen Die Polardarstellung komplexer Zahlen Polynome im Komplexen Exponentialfunktion

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 2

Zusatzmaterial zur Mathematik I für E-Techniker Übung 2 Mathematik I für E-Techniker C. Erdmann WS 011/1, Universität Rostock,. Vorlesungswoche Zusatzmaterial zur Mathematik I für E-Techniker Übung Wiederholung - Theorie: Komplexe Zahlen (a Wir definieren mit

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

Komplexe Funktionen. Freitag Vorlesung 1. Kai Rothe. Sommersemester Technische Universität Hamburg-Harburg

Komplexe Funktionen. Freitag Vorlesung 1. Kai Rothe. Sommersemester Technische Universität Hamburg-Harburg Komplexe Funktionen Freitag 13.04.018 Vorlesung 1 Kai Rothe Sommersemester 018 Technische Universität Hamburg-Harburg K.Rothe, komplexe Funktionen, Vorlesung 1 Nullstellen quadratischer Gleichungen Beispiel

Mehr

Komplexe Zahlen. Wir beginnen mit Beispielen.

Komplexe Zahlen.   Wir beginnen mit Beispielen. Komplexe Zahlen Wir beginnen mit Beispielen. Wenn man nur ganze Zahlen kennen würde, dann hätte die Gleichung 2x = 5 keine Lösung. Wenn die Grundmenge G = R (= reelle Zahlen) ist, dann hat auch die Gleichung

Mehr

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich)

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich) Technische Universität München Andreas Wörfel Ferienkurs Analysis 1 für Physiker Lösung Montag WS 01/1 Aufgabe 1 Zum warm werden: Komplexe Zahlen - Lehrling Bestimmen Sie das komplex Konjugierte, den Betrag

Mehr

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +

Mehr

3.2. Polarkoordinaten

3.2. Polarkoordinaten 3.2. Polarkoordinaten Die geometrische Bedeutung der komplexen Multiplikation versteht man besser durch die Einführung von Polarkoordinaten. Der Betrag einer komplexen Zahl z x + i y ist r: z x 2 + y 2.

Mehr

Serie 3 - Komplexe Zahlen II

Serie 3 - Komplexe Zahlen II Analysis D-BAUG Dr. Meike Akveld HS 2015 Serie - Komplexe Zahlen II 1. Wir betrachten die komplexe Gleichung z 6 = 4 4i. a) Bestimmen Sie alle en z C dieser Gleichung. b) Zeichnen Sie die en in die komplexe

Mehr

Vektorprodukt. 1-E1 Ma 1 Lubov Vassilevskaya

Vektorprodukt. 1-E1 Ma 1 Lubov Vassilevskaya Vektorprodukt 1-E1 Ma 1 Lubov Vassilevskaya Vektorprodukt Unter dem Vektorprodukt zweier Vektoren a und b versteht man den im Raum durch die folgenden Bedingungen charakterisierten Vektor: c = a b 1. c

Mehr

Mathematik-1, Wintersemester Vorlesungsplan, Übungen, Hausaufgaben

Mathematik-1, Wintersemester Vorlesungsplan, Übungen, Hausaufgaben Mathematik-1, Wintersemester 2014-15 Vorlesungsplan, Übungen, Hausaufgaben Vorlesungen: Lubov Vassilevskaya Übungen: Dr. Wilhelm Mons, Lubov Vassilevskaya http://www.math-grain.de/ Inhaltsverzeichnis 1.

Mehr

Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003

Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003 Komplexe Zahlen Axel Schüler, Leipzig schueler@mathematikuni-leipzigde Juli 2003 Da die komplexen Zahlen nicht mehr im Lehrplan stehen, sollen hier die Grundlagen gelegt werden Eine sehr schöne Einführung

Mehr

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 1/37 0. Organisatorisches 2/37 Übung Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 Dr. Udo Lorz TU Bergakademie Freiberg Fakultät für Mathematik und Informatik Links zur Vorlesung Website

Mehr

Kosinusfunktion: graphische Darstellung und Interpretation. 1-E Vorkurs, Mathematik

Kosinusfunktion: graphische Darstellung und Interpretation. 1-E Vorkurs, Mathematik Kosinusfunktion: graphische Darstellung und Interpretation 1-E Vorkurs, Mathematik Kosinusfunktion: Erklärung der Aufgabe 1 Aufgabe 1: Zeichnen Sie die trigonometrische Kosinusfunktion g (x) = a cos x.

Mehr

Serie 6: Komplexe Zahlen

Serie 6: Komplexe Zahlen D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 6: Komplexe Zahlen Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 26. und 28. Oktober. Es gibt zwei Darstellungsformen

Mehr

Tutorium Mathematik I, M Lösungen

Tutorium Mathematik I, M Lösungen Tutorium Mathematik I, M Lösungen 9. Oktober 202 *Aufgabe. Ein Fischauge ist ein Objektiv in der Photographie, welches einen sehr großen Bildwinkel (gewöhnlich 80 ) abbilden kann. Hierfür muss das Bild

Mehr

Übung 4 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 15. Oktober 2018 in den Übungsstunden

Übung 4 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 15. Oktober 2018 in den Übungsstunden Mathematik I für Naturwissenschaften Dr. Christine Zehrt 11.10.18 Übung 4 (für Pharma/Geo/Bio Uni Basel Besprechung der Lösungen: 15. Oktober 018 in den Übungsstunden Aufgabe 1 (a Sei f(x = cosx. Der Graph

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr

3. Erweiterung der trigonometrischen Funktionen

3. Erweiterung der trigonometrischen Funktionen 3. Erweiterung der trigonometrischen Funktionen 3.1. Polarkoordinaten 1) Rechtwinklige und Polarkoordinaten Üblicherweise gibt man die Koordinaten eines Punktes in der Ebene durch ein Zahlenpaar vor: P(x

Mehr

2.6 Der komplexe Logarithmus und allgemeine Potenzen

2.6 Der komplexe Logarithmus und allgemeine Potenzen 2.6 Der komplexe Logarithmus und allgemeine Potenzen Ziel: Umkehrung der komplexen Exponentialfunktion fz) = expz). Beachte: Die Exponentialfunktion expz) ist für alle z C erklärt, und es gilt Dexp) =

Mehr

INHALTSVERZEICHNIS: DEFINITION UND EIGENSCHAFTEN VON KOMPLEXEN ZAHLEN 2 GESCHICHTE DER KOMPLEXEN ZAHLEN 4 DARSTELLUNG DER KOMPLEXEN ZAHLEN 5

INHALTSVERZEICHNIS: DEFINITION UND EIGENSCHAFTEN VON KOMPLEXEN ZAHLEN 2 GESCHICHTE DER KOMPLEXEN ZAHLEN 4 DARSTELLUNG DER KOMPLEXEN ZAHLEN 5 INHALTSVERZEICHNIS: ZAHLENBEREICHSERWEITERUNG 1 DEFINITION UND EIGENSCHAFTEN VON KOMPLEXEN ZAHLEN 2 GESCHICHTE DER KOMPLEXEN ZAHLEN 4 DARSTELLUNG DER KOMPLEXEN ZAHLEN 5 RECHNEN MIT KOMPLEXEN ZAHLEN 7 DIE

Mehr

Division komplexer Zahlen

Division komplexer Zahlen Division komplexer Zahlen Der Quotient z /z 2 zweier komplexer Zahlen z k = x k + iy k = r k exp(iϕ k ) ist Speziell ist x x 2 + y y 2 x 2 2 + y 2 2 + x 2y x y 2 x 2 2 + y 2 2 i = r r 2 exp(i(ϕ ϕ 2 )).

Mehr

6.Umrechnung Normalform in Polarform

6.Umrechnung Normalform in Polarform 6.1 Standardmethode: Arkustangens benutzen 6.Umrechnung Normalform in Polarform 6.1 Standardmethode: Arkustangens benutzen Überblick Gegeben sei die algebraische Normalform z=a+bi, gesucht ist die Polarform,

Mehr

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x = 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass

Mehr

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Komplexe Zahlen Lösungshinweise. Sei z = + i und z = i. Berechnen Sie z + z, z z, z z, z z, z /z, z + z, z z, z z, z

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

Komplexe Analysis D-ITET. Serie 1

Komplexe Analysis D-ITET. Serie 1 Prof. Dr. P. S. Jossen M. Wellershoff Frühlingssemester 08 Komplexe Analysis D-ITET Serie ETH Zürich D-MATH Aufgabe. echnen mit komplexen Zahlen (.a) Berechnen Sie die folgenden Terme: i) ( 4 + 7i) + (8

Mehr

= 2 i 2= 2 2 i, z 4. = 1.5, z 8

= 2 i 2= 2 2 i, z 4. = 1.5, z 8 Mathematik 1 - Übungsblatt 11 Aufgabe 1 (komplexe Zahlen) Gegeben sind folgende komplexe Zahlen in der Darstellung als Normalform mit Real- und Imaginärteil z=x i y - oder wegen der Vertauschbarkeit von

Mehr

Analysis 1, Woche 3. Komplexe Zahlen I. 3.1 Etwas Imaginäres

Analysis 1, Woche 3. Komplexe Zahlen I. 3.1 Etwas Imaginäres Analysis, Woche 3 Komplexe Zahlen I A 3. Etwas Imaginäres Zusätzlich zu den reellen Zahlen führen wir das Symbol i ein und wir vereinbaren: i. Wir möchten die reellen Zahlen erweitern mit i. Das heißt,

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 8

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 8 D-MAVT/D-MATL Analysis I HS 017 Dr. Andreas Steiger Lösung - Serie 8 1. MC-Aufgaben Online-Abgabe) 1. Sei z := exp π 6 i) 5 + b i). Für welches b R ist z eine reelle Zahl? a) 1 b) c) 1 5 d) 5 e) Keines

Mehr

(a) Motivation zur Definition komplexer Zahlen

(a) Motivation zur Definition komplexer Zahlen 1 Anhang B (a) Motivation zur Definition komplexer Zahlen Neue Zahlen wurden stets dann definiert, wenn die Anwendung von Rechenoperationen auf bekannte Zahlen innerhalb der Menge letzterer keine Lösung

Mehr

2D-Visualisierung komplexer Funktionen

2D-Visualisierung komplexer Funktionen 2D-Visualisierung komplexer Funktionen 1 Komplexe Zahlen Die komplexen Zahlen C stellen eine Erweiterung der reellen Zahlen dar, in der das Polynom z 2 + 1 eine Nullstelle besitzt. Man kann sie als Paare

Mehr

KOMPETENZHEFT ZU KOMPLEXEN ZAHLEN N Z Q R C

KOMPETENZHEFT ZU KOMPLEXEN ZAHLEN N Z Q R C KOMPETENZHEFT ZU KOMPLEXEN ZAHLEN 1. Aufgabenstellungen Aufgabe 1.1. Kreuze alle Zahlenbereiche an, in denen die gegebene Zahl bestimmt enthalten ist. 42 5 8,2 2, 5 4 i 5 + 2 i 21/4 9/3 2 16 5,014 = 5,014

Mehr

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen Lineare Algebra I 4 Tutorium Lineare Abbildungen und Matrizen Fachbereich Mathematik WS / Prof Dr Kollross 7 Februar Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Bewegungen im ) Als Bewegung

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, 25. Oktober 2016 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung Aufgabe

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, WS 2017/18 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung Aufgabe

Mehr

I /" z = a + jb. (8.1)

I / z = a + jb. (8.1) 7 Kurven in der Ebene 8. Kap. aus J.Weinzirl, K. Bauer: Mathematik - Repetitorium für Studienanfänger, 2. Auflage, Lehrstuhl für Hochfrequenztechnik Universität Erlangen - Nürnberg Aufgabe 7.11 n den Sc~nittpunkten

Mehr

3 Der Körper der komplexen Zahlen

3 Der Körper der komplexen Zahlen 3 Der Körper der kompleen Zahlen Nicht jede quadratische Gleichung hat eine reelle Lösung + p + q = (p, q R) Beispiel: Für alle R ist und daher + 1 Abhilfe: Man erweitert R zu einem größerem Körper C,

Mehr

A. Rechenregeln für Zeiger

A. Rechenregeln für Zeiger 257 A. Rechenregeln für Zeiger Nachdem man festgelegt hat, wie Sinusgrößen durch Zeiger dargestellt werden können, soll untersucht werden, welche Rechenregeln für Zeiger gebraucht werden. Diese sind: Addition,

Mehr

1 Einleitung. 2 Sinus. Trigonometrie

1 Einleitung. 2 Sinus. Trigonometrie 1 Einleitung Die Trigonometrie (trigonon - griechisch für Dreieck) und die trigonometrischen Funktionen sind wichtige mathematische Werkzeuge zur Beschreibung der Natur. In der Physik werden trigonometrische

Mehr

Goniometrische Gleichungen

Goniometrische Gleichungen EL / GS - 3.8.5 - e_triggl.mcd Goniometrische Gleichungen Definition: Gleichungen, in denen die Variable als Argument von Winkelfunktionen vorkommen, nennt man "goniometrische Gleichungen". sweg: Mit Hilfe

Mehr

7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion

7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion 7. KOMPLEXE ZAHLEN und die KOMPLEXE e-funktion 1 Wir gehen aus von der Ebene, versehen mit einem Koordinatensystem und x, y-koordinaten. Dann entsprechen Punkte z in der Ebene Zahlenpaaren: z = (x, y)

Mehr

Vorlesung Mathematik 1 für Ingenieure (A)

Vorlesung Mathematik 1 für Ingenieure (A) 1 Vorlesung Mathematik 1 für Ingenieure (A) Wintersemester 2016/17 Kapitel 1: Zahlen Prof. Dr. Gerald Warnecke Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg http://fma2.math.uni-magdeburg.de:8001

Mehr

Brückenkurs Mathematik. Freitag Freitag

Brückenkurs Mathematik. Freitag Freitag Brückenkurs Mathematik Freitag 9.09. - Freitag 13.10.017 Vorlesung 10 Komplexe Zahlen Kai Rothe Technische Universität Hamburg-Harburg Freitag 13.10.017 0 Brückenkurs Mathematik, K.Rothe, Vorlesung 10

Mehr

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra 11 Komplexe Zahlen Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra Addition ebener Vektoren Sei Ê 2 = {(x, y) : x, y Ê}. Ê 2 können wir als Punkte in der Ebene

Mehr

Trigonometrie. 3. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter

Trigonometrie. 3. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter Trigonometrie 3. Kapitel aus meinem Lehrgang Geometrie Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 17. August 2008 Inhaltsverzeichnis 3 Trigonometrie 46 3.1 Warum Trigonometrie........................

Mehr

Dieses Kapitel widmet sich den komplexen Zahlen. Die in den folgenden Kapiteln dargestellten Themen können damit

Dieses Kapitel widmet sich den komplexen Zahlen. Die in den folgenden Kapiteln dargestellten Themen können damit Komplexe Zahlen Dieses Kapitel widmet sich den komplexen Zahlen. Die in den folgenden Kapiteln dargestellten Themen können damit komplex gelesen werden. Allerdings ist diese Sichtweise nicht unbedingt

Mehr

Komplexe Zahlen. Rainer Hauser. Januar 2015

Komplexe Zahlen. Rainer Hauser. Januar 2015 Komplexe Zahlen Rainer Hauser Januar 015 1 Einleitung 1.1 Zahlen und Operationen auf Zahlen Addiert man mit Eins als erster gegebener Zahl beginnend sukzessive Eins zu einer bereits gefundenen Zahl, so

Mehr

KAPITEL 1. Komplexe Zahlen

KAPITEL 1. Komplexe Zahlen KAPITEL Komplexe Zahlen. Lernziele im Abschnitt: Komplexe Zahlen............... Was sind komplexe Zahlen?......................3 Komplexe Zahlenebene....................... 3.4 Grundrechenarten in C.......................

Mehr

12 3 Komplexe Zahlen. P(x y) z = x + jy

12 3 Komplexe Zahlen. P(x y) z = x + jy 2 3 Komplexe Zahlen 3 Komplexe Zahlen 3. Grundrechenoperationen Definition Die Menge C = {z = a + jb a, b IR; j 2 = } heißt Menge der komplexen Zahlen; j heißt imaginäre Einheit. (andere Bezeichnung: i)

Mehr

19.2 Eulersche Formel und Folgerungen

19.2 Eulersche Formel und Folgerungen 38 R Plato Teil II Analysis 1 Definition 191 (Sinus, Cosinus) Die Funktionen Sinus und Cosinus sind definiert durch sin D 1/ n 2nC1 2n C 1/Š D 3 3Š C 5 5Š ; (191) cos D 1/ n 2n 2n/Š D 1 2 2Š C 4 4Š ; (192)

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

Trigonometrie - die Grundlagen in einem Tag

Trigonometrie - die Grundlagen in einem Tag Trigonometrie - die Grundlagen in einem Tag Fachtage Dezember 2012 an der Kantonsschule Zürich Nord Klasse W3n R. Balestra Name: Vorname: 6. Dezember 2012 Inhaltsverzeichnis 1 Zielsetzung & Ablauf 1 2

Mehr

Vektorprodukt. Der Vektor. ist zu a und b orthogonal, gemäß der. Rechten-Hand-Regel orientiert und hat die Länge c = a b

Vektorprodukt. Der Vektor. ist zu a und b orthogonal, gemäß der. Rechten-Hand-Regel orientiert und hat die Länge c = a b Vektorprodukt Der Vektor c = a b ist zu a und b orthogonal, gemäß der Rechten-Hand-Regel orientiert und hat die Länge c = a b sin( ( a, b)), die dem Flächeninhalt des von den Vektoren a und b aufgespannten

Mehr

Die komplexen Zahlen

Die komplexen Zahlen Die komplexen Zahlen Wir haben gesehen, dass die Menge R der reellen Zahlen einen angeordneten Körper bildet und dass für die Menge Q der rationalen Zahlen entsprechendes gilt. In beiden Körpern sind Gleichungen

Mehr

Trigonometrie und die Moivresche Formel

Trigonometrie und die Moivresche Formel Trigonometrie und die Moivresche Formel Ja, es gibt sie wirklich, die komplexen Zahlen. Sie enthalten die bisherigen Zahlen, die sie erweitern, wobei.alle Rechengesetzte dieselben bleiben, d. h. die Addition

Mehr

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c) Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser

Mehr