cos(kx) sin(nx)dx =?
|
|
|
- Leonard Gärtner
- vor 9 Jahren
- Abrufe
Transkript
1 3.5 Fourierreihen Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π] symmetrisch bezüglich 0, gilt also: cos(kx) sin(nx)dx = 0 k, n Z. cos(kx) cos(nx)dx =? Versuch: partielle Integration: allgemeine Formel: f (x) g(x)dx = f(x) g(x) f(x) g (x)dx. Setze f (x) := cos(kx) f(x) = 1 k sin(kx), g(x) = cos(nx) g (x) = n sin(nx). Dabei k 0! [ 1 k sin(kx) cos(nx)]π + cos(kx) cos(nx)dx = 1 1 k sin(kx) n sin(nx)dx =
2 n sin(kx) sin(nx)dx. k Aus Symmetriegründen gilt: Dabei n 0! k n cos(kx) cos(nx)dx = cos(nx) cos(kx)dx = sin(kx) sin(nx)dx. Folglich ist k n = n k {1, 1}. oder sin(kx) sin(nx)dx = 0. Es gilt also: 0 = cos(kx) cos(nx)dx sin(kx) sin(nx)dx = k, n Z mit k ±n. Für k = 0 oder n = 0 gilt diese Gleichung wie man sich anhand einer Skizze überlegt. cos 2 (kx)dx = cos 2 (kx)dx =? sin 2 (kx)dx. 2
3 Das gilt für k 0. Es gilt: cos 2 (kx)dx + (cos 2 (kx) + sin 2 (kx))dx = Folglich gilt für k Z, k 0: Für k = 0 gilt: cos 2 (kx)dx = cos 2 (kx)dx = sin 2 (kx)dx = sin 2 (kx)dx = 1dx = 2π sin 2 (kx)dx = π Eine Skalarprodukt-Sprechweise 1 dx = 2π, 0 dx = 0. Die Abbildung <, >, die für je zwei auf [, π] stetige reelle Funktionen f, g definiert ist durch < f, g >:= f(x) g(x)dx heißt ein Skalarprodukt auf dem Raum der auf [, π] stetigen reellen Funktionen. heißt die Norm von f. f := < f, f > 3
4 Zwei auf [, π] stetige reelle Funktionen f, g heißen zueinander orthogonal, wenn gilt: < f, g >= 0. Wir haben gesehen: Die Funktionen cos kx, sin nx, k N 0, n N bilden ein Orthogonalsystem. Jede dieser Funktionen (außer cos(0 x)) hat die Norm π. Die Funktion cos(0 x) hat die Norm 2π. Die Funktionen 1 2π, 1 π cos kx, (k N) und 1 π sin nx, n N bilden ein Orthonormalsystem von Funktionen Eine Gleichheitsaussage Sinnvoll sei der folgende Ausdruck: f(x) = a 0 2 +a 1 cos x+b 1 sin x+a 2 cos(2x)+b 2 sin(2x)+... = a (a k cos(kx) + b k sin(kx)) ( ). k=1 Dann ist f eine 2π-periodische Funktion, d.h. f(t + 2π) = f(t) t R, und daraus folgt: f(t + k 2π) = f(t) t R. Wir nehmen an, dass wir gliedweise multiplizieren und gliedweise integrieren dürfen. (Dass diese Annahme sinnvoll ist, beweisen wir nicht.) 4
5 Dann erhalten wir: Also: f(x) cos(0x)dx = 2π a 0 2 = a 0 π. f(x) cos(nx)dx = a n π. f(x) sin(nx)dx = b n π. a k = 1 π b k = 1 π (Stimmt das für b k mit k = 0?) f(x) cos(kx)dx k = 0, 1, 2,... f(x) sin(kx)dx k = 0, 1, 2,... a k und b k heißen Fourier-Koeffizienten. Für gerade Funktionen f (f( x) = f(x) x R) gilt offenbar: b k = 0 und a k = 2 π 0 f(x) cos(kx)dx k N 0. Für ungerade Funktionen f (f( x) = f(x) x R) gilt offenbar: a k = 0 und b k = 2 π 0 f(x) sin(kx)dx k N 0. 5
6 3.5.4 Geschichtlicher Ursprung Bei seinen Untersuchungen zur Wärmeleitung verwendete Joseph Fourier im Jahr 1822 Darstellungen von Funktionen f der Gestalt (*). Daher kommt der Name Fourier-Reihe oder Fourierreihe für eine Darstellung von f in der Gestalt (*) Satz von Dirichlet Man kann zeigen: Voraussetzungen: Sei f :] π, π[ R auf ] π, π[ stetig außer höchstens in den endlich vielen Punkten x 1 < x 2 <... < x m. Sei f monoton (wachsend oder fallend) auf jedem der Intervalle ]x k, x k+1 [ (k = 1,..., m 1). Seien k = 1,..., m die einseitigen Grenzwerte f(x k 0) = lim x xk,x<x k f(x) und f(x k +0) = lim x xk,x>x k f(x) definiert. Dann gilt: Die Fourierreihe (*) konvergiert gegen f in allen Punkten, in denen f stetig ist und gegen 1 2 (f(x k 0)+f(x k +0)) an allen Unstetigkeitsstellen x k. Bemerkung: Das Funktionensystem bestehend aus cos kx, (k N 0 ) und sin nx, (n N) ist in diesem Sinn eine Basis des Raums aller Funktionen, die den Voraussetzungen des Satzes genügen. So eine Basis nennt man eine Schauder-Basis. Sie ist keine 6
7 Basis im Sinn der linearen Algebra, keine sogenannte Hamel-Basis ( weil man unendliche viele Summanden braucht ) Komplexe Schreibweise für Fourierreihen mit = k= f(x) = k= c k e ikx c k (cos(kx) + i sin(kx)) c k = 1 2 (a k ib k ) für k > 0 und c 0 = 1 2 a 0. c k = 1 2 (a k + ib k ) für k < Mittlere Abweichung Man kann zeigen: Ist s n (x) = a n (a k cos(kx) + b k sin(kx)) k=1 ein trigonometrisches Polynom oder eine Fourier-Summe so gilt: Der mittlere quadratische Fehler 7
8 1 (f(x) s n (x)) 2 dx 2π wird minimal, wenn man für a k und b k die Fourierkoeffizienten verwendet Konvergenz im Mittel Man kann zeigen: Mit den Bezeichnungen des vorigen Abschnitts gilt: Ist f :] π, π[ R beschränkt und in ] π, π[ stückweise stetig, so gilt: lim (f(x) s n (x)) 2 dx = 0. n Asymptotisches Verhalten der Fourier-Koeffizienten Bei vernünftigem f gilt: Für n gehen a n, b n 0, und zwar um so schneller, je schöner f ist. Genauer: Man kann zeigen: Ist eine 2π-periodische Funktion k-mal stetig differenzierbar, so gilt: lim n a nn k+1 = 0 und lim n b nn k+1 = Anwendungen Darstellung von Funktionen durch Reihen zur Weiterverwendung in der Mathematik. 8
9 Zerlegung physikalischer Schwingungen in Anteile verschiedener Frequenz. Sprachanalyse Wavelets Seit einigen Jahren verwendet man auch für numerische Berechnungen Wavelets ( kleine lokalisierte Wellen ) anstelle von sin und cos für Reihenentwicklungen von Funktionen als Ersatz für Fourierreihen. Werden Wavelets geschickt gewählt, können sie Vorteile vor sin und cos haben. Algorithmen der numerischen Mathematik werden schneller als beim klassischen Vorgehen. Ein Wavelet ist eine Funktion ψ : R R, so dass gilt: Die Funktionen x 2 n 2 ψ(2 n x k) bilden für k, n Z eine (Schauder-)Basis eines geeigneten Funktionenraumes. 9
Fourier-Reihen. Definition. Eine auf R definierte Funktion f heißt periodisch mit der Periode T 0, wenn f(x + T ) = f(x) x R.
Fourier-Reihen Sehr häufig in der Natur begegnen uns periodische Vorgänge, zb beim Lauf der Gestirne am Nachthimmel In der Physik sind Phänomene wie Schwingungen und Wechselströme periodischer Natur Zumeist
Karteikarten, Analysis 2, Sätze und Definitionen nach der Vorlesung von PD Hanke
Karteikarten, Analysis 2, Sätze und en nach der Vorlesung von PD Hanke Felix Müller, [email protected] Diese Karteikärtchen sollten alle en und Sätze der Vorlesung Analysis 2 bei Herrn PD Hanke
K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung WS 17/18: Woche vom
Übungsaufgaben 3. Übung WS 17/18: Woche vom 3. 10. - 7. 10. 017 Fourierreihen: 16. b,c,e,o), 16.3 a, b), 16.4 a) auch reelle Fourierreihe) Klausureinsicht zu Mathematik II 11.8. 017): 30.10.17, 7.00-8.30
Ferienkurs der TU München- - Analysis 2 Fourierreihen und Taylorreihen. Marcus Jung, Jonas J. Funke
Ferienkurs der U München- - Analysis Fourierreihen und aylorreihen Lösung Marcus Jung, Jonas J. Funke 3.8. FOURIERREIHEN Fourierreihen Aufgabe. Sei f : R R stetig und periodisch mit Fourierkoeffizienten
53 Die Parsevalsche Gleichung
53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 5 53. Skalarprodukte auf Räumen quadratintegrierbarer Funktionen. a) Die Orthogonalitätsrelationen (5.5) legen die Interpretation des Ausdrucks
Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier-
Kapitel 26 Fourier-Reihen 26.1 Einführung (Spektrum; harmonische Analyse; Periode einer Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang;
Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min
Aufgabe (9 Punkte) Es sei die Fläche S R 3 gegeben durch S : { } (x, y, z) R 3 : 4z x + y 4, z. (a) ( Punkte) Geben Sie eine Parametrisierung für S an. (b) (4 Punkte) Berechnen Sie den Flächeninhalt von
Apl. Prof. Dr. N. Knarr Musterlösung , 120min
Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die
Fourierreihen. Definition. Eine Funktion f(x) heißt periodisch mit der Periode T, wenn f(x + T ) = f(x)
Fourierreihen Einer auf dem Intervall [, ] definierten Funtion f(x) ann ein (approximierendes) trigonometrisches Polynom (Fourier-Polynom) der Gestalt S n (x) = a + n a cos x + n b sin x zugeordnet werden.
VIII. Fourier - Reihen
VIII. Fourier - Reihen Dieses Kapitel enthält eine kurze Einführung in die mathematische Beschreibung von Schwingungen. Übersicht über den Inhalt von Kapitel VIII: 5. Der Satz von Fejér 53. Die Parsevalsche
Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min
Aufgabe 1 8 Punkte Es seien eine Kurve K R mit Parametrisierung C : [ π, π] R und ein Vektorfeld g : R R gegeben durch cos t 4y Ct :, gx, y : sin t 1 05 K 05 05 1 15 05 a 3 Punkte Berechnen Sie die Zirkulation
Einführung in die Fourier-Reihen. 1 Fourier-Reihen: Definitionen
Vortrag zum Seminar zur Analysis, 05.07.2010 André Stollenwerk, Eva-Maria Seifert Die Fourieranalysis beschäftigt sich mit dem Problem, inwiefern sich Funktionen mittels Sinus und Cosinus, das heißt periodischen
Teil III. Fourieranalysis
Teil III Fourieranalysis 3 / 3 Fourierreihen Ziel: Zerlegung einer gegebenen Funktion in Schwingungen Konkret: f : (, L) R gegebene Funktion Gesucht: Darstellung der Form ( f (x) = a + a n cos ( n L x)
43 Fourierreihen Motivation Fourierbasis
43 Fourierreihen 43. Motivation Ähnlich wie eine Taylorreihe (vgl. MfI, Kap. 2) eine Funktion durch ein Polynom approximiert, wollen wir eine Funktion durch ein trigonometrisches Polynom annähern. Hierzu
Orthogonalität von Kosinus und Sinus
Orthogonalität von Kosinus und Sinus Die Funktionen 1, cos(kx), sin(kx), k >, bilden ein Orthogonalsystem im Raum der quadratintegrierbaren π-periodischen Funktionen: cos(jx) cos(kx) dx = cos(jx) sin(lx)
Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.
Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung
3 Vektorräume abstrakt
Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare
Probeklausur Höhere Mathematik II für Elektrotechniker
I. Bouw.7.8 U. Hackstein Probeklausur Höhere Mathematik II für Elektrotechniker Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 7 Punkte. Aufgabe. Skizzieren Sie folgenden Bereich: D = {(x, y) R x + y
Fourier-Reihen und Fourier-Transformation
Fourier-Reihen und Fourier-Transformation Matthias Dreÿdoppel, Martin Koch, Bernhard Kreft 25. Juli 23 Einleitung Im Folgenden sollen dir und die Fouriertransformation erläutert und mit Beispielen unterlegt
Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.
Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ
Konvergenz im quadratischen Mittel - Hilberträume
CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften
1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2.
1. Aufgabe 8 Punkte Geben Sie die Bereiche, auf denen die Funktion f : R R mit f (x) = (x + 1) e x monoton wachsend oder fallend ist, an, und untersuchen Sie die Funktion auf lokale und globale Extrema.
10. Periodische Funktionen, Fourier Reihen
H.J. Oberle Analysis II SoSe 212 1. Periodische Funktionen, Fourier Reihen Jean Baptiste Joseph Fourier: Joseph Fourier wurde am 21.3.1768 bei Auxerre (Burgund) geboren und starb am 16.5.183 in Paris.
1.1 Vorbemerkung: Konvergenz von Reihen. g = lim. n=0. n=0 a n sei konvergent und schreibt. a n = g. (2) n=0
1 Taylor-Entwicklung 1.1 Vorbemerkung: Konvergenz von Reihen Gegeben sei eine unendliche Folge a 0,a 1,a,... reeller Zahlen a n R. Hat der Grenzwert g = lim k a n (1) einen endlichen Wert g R, so sagt
11 Fourier-Analysis Grundlegende Begriffe
11 Fourier-Analysis 11.1 Grundlegende Begriffe Definition: Eine Funktion f : R R (oder f : R C) heißt periodisch mit der Periode T (oder T-periodisch), falls f(t + T) = f(t) für alle t R. Ziel: Entwicklung
Brückenkurs Rechentechniken
Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige
ε δ Definition der Stetigkeit.
ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x
Klausur zur Höheren Mathematik IV
Düll Höhere Mathematik IV 8. 1. 1 Klausur zur Höheren Mathematik IV für Fachrichtung: kyb Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 1 Minuten Erlaubte Hilfsmittel: 1 eigenhändig beschriebene
Periodische Funktionen, Fourier Reihen
Kapitel 1: Periodische Funktionen, Fourier Reihen 1.1 Grundlegende Begriffe Periodische Funktionen Definition: Eine Funktion f : R R oder f : R C) heißt periodisch mit der Periode T, falls für alle t R
Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016)
1 Vorlesung Mathematik 2 für Ingenieure (Sommersemester 216) Kapitel 11: Potenzreihen und Fourier-Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.
Klausur Höhere Mathematik I für die Fachrichtung Physik
Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche
Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16
Bildverarbeitung: Fourier-Transformation D. Schlesinger () BV: Fourier-Transformation 1 / 16 Allgemeines Bilder sind keine Vektoren. Bilder sind Funktionen x : D C (Menge der Pixel in die Menge der Farbwerte).
Westfälische Wilhelms-Universität Münster. Seminararbeit. Fourier-Reihen. vorgelegt von. Stefan Marczinzik
Westfälische Wilhelms-Universität Münster Seminararbeit Fourier-Reihen vorgelegt von Stefan Marczinzik Fachbereich Mathematik und Informatik Seminar: Integraltransformationen (WS /3) Seminarleiter: Prof.
Angewandte Mathematik und Programmierung
Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Fourier Reihen Sehen wir in 2 Wochen Lösung der lin. Dgln.
Mathematik III für das MW: WS 15/16 + SS 16. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik
Mathematik III für das MW: WS 15/16 + SS 16 Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik [email protected] http://www.math.tu-dresden.de/ eppler Vorlesungsassistent:
HOCHSCHULBÜCHER FÜR MATHEMATIK H.GRELL, K.MARUHN U N D W.RINOW BAND 14 FOURIERREIHEN VON G.P. TOLSTOW MIT 51 A B B I L D U N G E N
fc HOCHSCHULBÜCHER FÜR MATHEMATIK H E R A U S G E G E B E N VON H.GRELL, K.MARUHN U N D W.RINOW BAND 14 FOURIERREIHEN VON G.P. TOLSTOW MIT 51 A B B I L D U N G E N 1955 VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN
f(x 0 ) = lim f(b k ) 0 0 ) = 0
5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.
10.1 Einleitung: Die Saitenschwingungsgleichung
Kapitel Fourier-Reihen Fourier-Reihen sind seit langer Zeit ein zentrales Thema in der Analysis, das auch immer wieder Anstöße zu neuen Entwicklungen gab. Ursprung des Problems war die Saitenschwingungsgleichung,
2.3 Konvergenzverhalten von Fourierreihen
24 2 Fourierreihen 2.3 Konvergenzverhalten von Fourierreihen Wir diskutieren die folgenden Fragen: Unter welchen Umständen konvergiert eine Fourierreihe einer Funktion? Wann kann man eine stückweise stetige
Höhere Mathematik für Ingenieure , Uhr (1. Termin)
Studiengang: Matrikelnummer: 1 3 4 5 6 Z Punkte Note Prüfungsklausur A zum Modul Höhere Mathematik für Ingenieure 1 17.. 14, 8. - 11. Uhr 1. Termin Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche
Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2016/17. FB Mathematik
Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 016/17 7. Fourier-Methoden 7.1. Periodische Funktionen In der Physik und in der Technik spielen periodische Funktionen eine
Fachbereich Mathematik Hochschule Regensburg. Kurz-Skriptum zu Fourierreihen. Prof. Dr. Michael Fröhlich
Fachbereich Mathematik Hochschule Regensburg Kurz-Skriptum zu Fourierreihen Prof. Dr. Michael Fröhlich Inhaltsverzeichnis p-periodische Funktionen und trigonometrische Reihen 4. p-periodische Funktionen................................
Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: Parseval-Identität. Speziell:
Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: (kühnes Vertauschen von Integral und Summe!) Parseval-Identität Speziell: Anmerkung: beide Seiten kann man als Skalarprodukt
Aufgaben zur Analysis I aus dem Wiederholungskurs
Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden
Kapitel 30. Aufgaben. Verständnisfragen. Aufgabe 30.1 Gegeben ist die Funktion. 0 <x π 2 π 2 <x π. x, π. f(x)=
Kapitel 3 Aufgaben Verständnisfragen Aufgabe 3.1 Gegeben ist die Funktion { fx= x,,
Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018
(Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.
Beispiel: Die Sägezahnfunktion.
Beispiel: Die Sägezahnfunktion. Betrachte die Sägezahnfunktion : für t = oder t = π S(t) := 1 (π t) : für < t < π Die Sägezahnfunktion ist ungerade, also gilt (mit ω = 1) a k = und b k = π π und damit
Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung
Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das
Chebyshev & Fourier Reihen
Chebyshev & Fourier Reihen Pascal Bauer 26. Mai 2015 1 / 75 Inhaltsverzeichnis 1 Fourier-Reihen 2 Chebyshev-Polynome 3 Zusammenhang zwischen Fourier und Chebyshev 4 Konvergenzgeschwindigkeiten 5 Konvergenzuntersuchungen
Die Wärmeleitungsgleichung
Die Wärmeleitungsgleichung In einem Stab der Länge 1 wird die Temperaturverteilung gegeben durch die Funktion u : ([0,1] [0, )) R, u(x,t) ist die Temperatur am Punkt x zum Zeitpunkt t. Die Funktion erfüllt
Nachklausur Analysis 2
Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,
Übungsklausur Höhere Mathematik I für die Fachrichtung Physik
Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 6..3 Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((3++5) Punkte)
Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende
Mathematik 2 (Master Sicherheitstechnik)
Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 4.6.8 Mathematik Master Sicherheitstechnik) Übungsblatt 8 Aufgabe 5. Konvergenz von Fourierreihen) Der Sinus Hyperbolicus ist die Funktion sinhx) = e x e x). Es
Denition eines Orthonormalsystems (ONS) Eine Teilmenge M eines Prähilbertraums V mit dim(m) = n dim(v ) = m heiÿt Orthonormalsystem, wenn gilt:
Hilbertraum Durch Verallgemeinerung der aus der Linearen Algebra bekannten Konzepte wie Basis, Orthogonalität und Projektion lassen sich die Eigenschaften des Hilbertraumes verstehen. Vorweg eine kurze
Höhere Mathematik II. Variante A
Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite
Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)
1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge
Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.
Analysis I, WiSe 2013/14, 04.02.2014 (Iske), Version A 1 Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. a) Welche der folgenden Aussagen über Folgen sind sinnvoll und
Vorlesung Analysis I WS 07/08
Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................
INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies
Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 8. Reihen Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik
= 3 e e x 1 + 2x 2. + x 2. = x. x 1 = 5 x 2 = 2
Lösungsvorschläge zu Blatt 7: ) x ( ) 3 3 e + e ( ) ( ) ( )! x x + x + x x + x x x Wir haben hier also zwei verschiedene Darstellungen für einen Vektor, da zwei verschiedene Basen verwendet werden. b b
Lösungsvorschlag zur Übungsklausur zur Analysis I
Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden
Der Satz von Taylor. Kapitel 7
Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem
D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler. Lösungen Serie 3
D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie 3. Die Norm x x + y wird von einem Skalarprodukt induziert. y a richtig b falsch Diese Norm erfüllt die Parallelogrammregel nicht
2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also
Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx
Lösungsvorschläge zum 14. Übungsblatt.
Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine
Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)
1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,
13. Funktionen in einer Variablen
13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier
Konvergenz im quadratischen Mittel und Parsevalsche Gleichung
Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen
Fourier-Reihen. Thomas Peters Thomas Mathe-Seiten 1. Dezember 2004
Fourier-Reihen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de. Dezember 4 Dieser Artikel gibt eine elementare Einführung in die Theorie der Fourier-Reihen. Er beginnt mit einer kurzen Analyse des
Konvergenz und Stetigkeit
Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2008 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn
Anmerkung: Falls f(x) nicht ganz glatt ist, sondern nur stückweise stetig differenzierbar ist (d.h. Sprünge hat), gilt (Satz v.
Fourier-Reihen für periodische Funktionen Sei periodisch, mit Periode L: Auch für diesen Fall gilt die Fourier- Reihen-Darstellung (b.3), mit : (b.3) (und stückweise stetig differenzierbar) (c.5) Integral
Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen
Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.
Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines
