Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts

Größe: px
Ab Seite anzeigen:

Download "Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts"

Transkript

1 Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts 1. Stetigkeit und Grenzwerte: (a) Aus der folgenden grafischen Darstellung von y 1 (x) = x 2/3 /(1 + x 2 ) ist ersichtlich, dass y 1 (x) für jedes x R stetig ist. Die Stetigkeit wird bezüglich der Eigenschaften auf Seite 61 im Skriptum folgendermaßen begründet. Erstens kann die Funktion so geschrieben werden, y 1 (x) = f(g(x)) p(x) mit f(x) = 3 x, g(x) = x 2, p(x) = 1 + x 2 Diese Funktionen haben folgende Eigenschaften: f(x), Potenzfunktion, Wurzel ungerade, stetig auf D f = R. g(x), Polynom, stetig auf D g = R. p(x), Polynom, stetig auf D p = R. f(g(x)), Komposition, stetig auf D f g = {x D g : g(x) D f ) = {x R : x 2 R) = R. f(g(x))/p(x), Quotient mit p(x) = 1 + x 2 1 > 0, stetig auf {x D f g D p : p(x) 0} = {x R : p(x) 0} = R. und daher ist y 1 (x) = f(g(x))/p(x) stetig für jedes x R. (b) Aus der folgenden grafischen Darstellung von y 2 (x) = x ln x ist ersichtlich, dass y 2 (x) für jedes x 0 stetig ist. Die Stetigkeit wird bezüglich der Eigenschaften auf Seite 61 im Skriptum folgendermaßen begründet. Erstens kann die Funktion so geschrieben werden, y 2 (x) = b(x)f(b(x)) mit b(x) = x, f(x) = ln(x) Diese Funktionen haben folgende Eigenschaften: b(x), Betragsfunktion, stetig auf D b = R. f(x), Logarithmusfunktion, stetig auf R +. f(b(x)), Komposition, stetig auf D f b = {x D b : b(x) D f } = {x R : x R + } = R\{0}. b(x)f(b(x)), Produkt, stetig auf D b D f b = R (R\{0}) = R\{0}. und daher ist y 2 (x) = b(x)f(b(x)) stetig für jedes x R\{0}. Mit der zusätzlichen Zuweisung y 2 (0) = 0 wird y 2 (x) an der Stelle x 0 = 0 stetig ergänzt. (c) Aus der folgenden grafischen Darstellung von y 3 (x) = (x 7) π ist ersichtlich, dass y 3 (x) für jedes x 7 stetig ist. Die Stetigkeit wird bezüglich der Eigenschaften auf Seite 61 im Skriptum folgendermaßen begründet. Erstens kann die Funktion so geschrieben werden, y 3 (x) = f(g(x)) mit f(x) = x π, g(x) = x 7 1

2 Diese Funktionen haben folgende Eigenschaften: f(x), Potenzfunktion, Potenz > 0, stetig auf D f = [0, ). g(x), Polynom, stetig auf D g = R. f(g(x)), Komposition, stetig auf D f g = {x D g : g(x) D f } = {x R : x 7 [0, )} = [7, ). und daher ist y 3 (x) = f(g(x)) stetig für jedes x [7, ). (d) Aus der folgenden grafischen Darstellung von y 4 (x) = (3x 2 x 2 )/(x 2 + x 2) ist ersichtlich, dass y 4 (x) für jedes x ( 2, 2]\{+1} stetig ist. Die Stetigkeit wird bezüglich der Eigenschaften auf Seite 61 im Skriptum folgendermaßen begründet. Erstens kann die Funktion so geschrieben werden, y 4 (x) = f(r(x)) mit f(x) = x, r(x) = p(x) q(x) p(x) = 3x 2 x 2 = (x 1)(2 x), q(x) = x 2 + x 2 = (x 1)(x + 2) r(x) = (x 1)(2 x) x 1 = 2 x (x 1)(x + 2) x + 2 Diese Funktionen haben folgende Eigenschaften: f(x), Potenzfunktion, Wurzel gerade, stetig auf D f = [0, ). r(x), rationale Funktion, stetig auf D r = {x R : q(x) 0} = R\{ 2, +1}. f(r(x)), Komposition, stetig auf D f r = {x D r : r(x) D f } = {x R\{ 2, +1} : r(x) > 0} = ( 2, +2]\{+1}. und daher ist y 4 (x) = f(r(x)) stetig für jedes x ( 2, +2]\{+1}. Mit der zusätzlichen Zuweisung y 4 (1) = 1/ 3 wird y 4 (x) an der Stelle x 0 = 1 stetig ergänzt. (e) Aus der folgenden grafischen Darstellung von y 5 (x) = 1/(1 + e x ) ist ersichtlich, dass y 5 (x) für jedes x R stetig ist. Die Stetigkeit wird bezüglich der Eigenschaften auf Seite 61 im Skriptum folgendermaßen begründet. Erstens kann die Funktion so geschrieben werden, y 5 (x) = r(e(x)) mit r(x) = 1, q(x) = 1 + x, e(x) = exp( x) q(x) 2

3 Diese Funktionen haben folgende Eigenschaften: r(x), rationale Funktion, stetig auf D r = {x R : q(x) 0} = R\{ 1}. e(x), Exponentialfunktion, stetig auf D e = R. r(e(x)), Komposition, stetig auf D r e = {x D e : e(x) D r } = {x R : e x 1} = R. und daher ist y 5 (x) = r(e(x)) stetig für jedes x R. Für jedes der obigen Beispiele bestimmt man den Grenzwert x x0 y i (x) an einer Stelle x 0, in der die Funktion stetig ist, einfach durch die Auswertung y i (x) = y i (x 0 ), i = 1,..., 5. x x 0 Wie oben hingewiesen gibt es zwei Funktionen, die sich stetig ergänzen lassen. Wegen der Eigenschaft x p log a (x) + 0 (p > 0) folgen y 2(x) = x ln(x) = 0 und y 2(x) x = x = x ln( x) = x ln(x) = und daher ist die zusätzliche Zuweisung y 2 (0) = 0 eine stetige Ergänzung. Mit einer algebraischen Vereinfachung folgt 3x 2 x y 2 2 x 4(x) = x 1 x 1 x 2 + x 2 = x 1 x + 2 = 1 3 und daher ist die zusätzliche Zuweisung y 4 (1) = 1/ 3 eine stetige Ergänzung. 2. Methoden zur Bestimmung eines Grenzwerts: (a) Durch algebraische Vereinfachung ergibt sich x 4 1 x 1 + x 2 1 = (x 2 1)(x 2 + 1) x 1 + x 2 = x = 2 1 x 1 und x x 1 + x 2 1 = x 1 + >0,x 1 + {}}{ (x 4 + 1) (x 1) (x + 1) }{{}}{{} >0,x 1 + >0,x 1 + (b) Durch Eigenschaften der Winkelfunktion bekommt man = + tan(πx/2) = x 1 tan(x) = + und tan(πx/2) = x π x tan(x) = x π + 2 3

4 (c) Die Komposition f(g(x)) = 3 x mit f(x) = x, D f = R, g(x) = x x und D g = R, ist stetig auf D f g = {x D g : g(x) D f } = {x R : 3 x R} = R. Aus der Eigenschaft 1 sin(x) 1 ( x R) und der Stetigkeit der Komposition 3 x auf R folgt 3 x sin(1/x) 0 mit dem Sandwich 0 = 3 0 = 3 x 3 x sin(1/x) 3 x = 3 0 = 0 Aus der Stetigkeit der Winkelfunktion sin(x), des Polynoms x 2, der Komposition sin(x 2 ), der rationalen Funktion 1/x 2 (x 0) und des Quotienten sin(x 2 )/x 2 folgt x 1 sin(x2 )/x 2 = sin(1 2 )/1 2 = sin(1) Aus den Eigenschaften 1 sin(x) 1 ( x R) und 1/ x = 1/x sin(x)/ x x 0 mit dem Sandwich 0 folgt 0 = 1/x (d) Aus der Eigenschaft log a (x)/x p sin(x)/ x 0 (p > 0) folgt log 2(x)/ x = 0 Aus der Eigenschaft x p log a (x) + 0 (p > 0) folgt + x ln(x) = 0 (e) Aus der Eigenschaft x p a x x 0 (a > 1) folgt (1 + x)4 x = 0 1/x = 0 Aus den Eigenschaften x n x 0 (n N) und x n a x x 0 (a > 1) folgt x 5 x 1 + x + x 2 ( ) x 2 x 2 Aus der Eigenschaft a x x 0 (a > 1) folgt 3. Bisektionsverfahren: x e x + 3 x = (a) Für die überall stetige Funktion x e x + 3 x = x ( ) e x e x x 2 5 x (1 + 1/x + 1/x 2 ) = 0 e x + (e/2) x = 1 + (3e) x = 0 f(x) = 1 2x tan 1 (x) (1 + x 2 ) 2 gelten f(0) = , f(1) =

5 Daher wendet man das Bisektionsverfahren im Intervall [0, 1] an. Mit den Anfangswerten a = 0 und b = 1 und immer c = (a+b)/2 liefert das Bisektionsverfahren folgende Ergebnisse: d.h. eine Nullstelle für f(x) ist x (b) Für die überall stetige Funktion c f(c) a b g(x) = (6x2 2) tan 1 (x) 6x (1 + x 2 ) 3 gelten g(1) = , g(2) = Daher wendet man das Bisektionsverfahren im Intervall [1, 2] an. Mit den Anfangswerten a = 1 und b = 2 und immer c = (a+b)/2 liefert das Bisektionsverfahren folgende Ergebnisse: d.h. eine Nullstelle für g(x) ist x c g(c) a b

6 4. Zwischenwertsatz: (a) Die rationale Funktion r(x) = (x 1)(x 3)(x 5) (x 2)(x 4)(x 6) besitzt die Nullstellen {1, 3, 5} und die Polstellen {2, 4, 6}. (b) Anhand der Stetigkeit der rationalen Funktion zwischen Nullstellen und Polstellen bedeuten die Werte r(0.5) r(x) > 0, x (, 1) r(1.5) r(x) < 0, x (1, 2) r(2.5) r(x) > 0, x (2, 3) r(3.5) dass r(x) < 0, x (3, 4) r(4.5) r(x) > 0, x (4, 5) r(5.5) r(x) < 0, x (5, 6) r(6.5) r(x) > 0, x (6, + ) (c) Die grafische Darstellung von r(x) ist: 5. Geometrische Reihen: (a) Nach n Minuten geht der Student so viele Meter, ( ) n 1 = 100 Man überzeugt sich davon durch eine Kontrolle mit bestimmten kleinen Werten von n. Diese Summe lässt sich durch eine geometrische Reihe vereinfachen: ( n 1 n ( ) ) 1 i i = = 100 [ ( )] (1/2)n+1 2 = 100(1 2 n ) 2 1 (1/2) 2 i=1 i=0 Insbesondere nach 10 Minuten geht er 100( ) = Meter n i=1 1 2 i 6

7 (b) Die Anzahl der Minuten n, nach der der Student 90% des Weges zum Ziel kommt, d.h. 90 Meter geht, erfüllt: 100(1 2 n ) = n = n = = 2 n log 2 ( ) log 2 (0.1) = log 2 (2 n ) = n log 2 (10) = n d.h. es dauert Minuten. Grober beschrieben ist er nach 3 Minuten 87.5% des Weges und nach 4 Minuten 93.75% des Weges gegangen. 7

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

Elementare Funktionen. Analysis I November 28, / 101

Elementare Funktionen. Analysis I November 28, / 101 Elementare Funktionen Analysis I November 28, 2017 76 / 101 Exponentialfunktion Buch Kap. 2.3 Exponentialfunktionen f(x) = a x, a > 0, D = R. Ist a = e (Eulerzahl e = 2, 71828...), sprechen wir von der

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88 4. Funktionen Buchholz / Rudolph: MafI 2 88 Kapitelgliederung 4.1 Grundlegende Denitionen 4.2 Polynome und rationale Funktionen 4.3 Beschränkte und monotone Funktionen 4.4 Grenzwerte von Funktionen 4.5

Mehr

Grenzwerte von Funktionen, Stetigkeit

Grenzwerte von Funktionen, Stetigkeit Grenzwerte von Funktionen, Stetigkeit (Lösungshinweise). Lösungshinweise: a) x 0 x 3 (4 3x) x 3 (5 3x ) = 4 5 b) x (x )(x 3) (x )(x 5) = 3 d) x x n x = x (xn + x n +... + x + ) = n 3x x + x f) x x = +

Mehr

Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 9. Übungsblatts

Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 9. Übungsblatts Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 9. Übungsblatts. Bestimmtes Integral durch Grenzwert: (a) Das bestimmte Integral ist gegeben durch den Grenzwert der Riemannschen

Mehr

Reelle Funktionen. Als reelle Funktion bezeichnen wir jede Abbildung

Reelle Funktionen. Als reelle Funktion bezeichnen wir jede Abbildung Mathematik I für Billiginformatiker Reelle Funktionen p. 1 Reelle Funktionen Als reelle Funktion bezeichnen wir jede Abbildung f : D(f) R, D(f) R. Der Einfachheit halber setzen wir meist voraus, dass der

Mehr

Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 10. Übungsblatts

Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 10. Übungsblatts Integral- und Differentialrechnungen für USW Lösungen der Beispiele des. Übungsblatts. Flächeninhalt unter einer Kurve: (a) Das bestimmte Integral von y(x) x zwischen x und x ist x dx x + + x ( ) x / (b)

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

Funktion. Eine Funktion. x f (x) ordnet jedem Argument x aus dem Definitionsbereich D R einen Wert f (x) aus dem Wertebereich W R zu.

Funktion. Eine Funktion. x f (x) ordnet jedem Argument x aus dem Definitionsbereich D R einen Wert f (x) aus dem Wertebereich W R zu. Funktion Eine Funktion f : D R, x f (x) ordnet jedem Argument x aus dem Definitionsbereich D R einen Wert f (x) aus dem Wertebereich W R zu. Funktion 1-1 Der Graph von f besteht aus den Paaren (x, y) mit

Mehr

Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker

Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker REELLE FUNKTIONEN 1 Was muss aufgeführt werden, wenn man eine reelle Funktion angibt? a) Ihre Funktionsvorschrift und ihren Wertebereich. Ihre Funktionsvorschrift und ihren Definitionsbereich. c) Den Wertebereich

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 22 3. Funktionen. Grenzwerte.

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius)

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) 1 Grundregeln des Rechnens 1.1 Zahlbereiche......... Zahlen N {1, 2, 3,...}......... Zahlen Z {..., 2, 1, 0, 1, 2,...}......... Zahlen Q { a b a Z, b N}.........

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 2.0. - Freitag 2.0. Vorlesung 5 Elementare Funktionen Kai Rothe Technische Universität Hamburg Dienstag 9.0. 0 Brückenkurs Mathematik, c K.Rothe, Vorlesung 5 Umkehrfunktion........................

Mehr

Kapitel 6. Funktionen. Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49

Kapitel 6. Funktionen. Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49 Kapitel 6 Funktionen Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49 Reelle Funktion Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge als auch die Wertemenge Teilmengen

Mehr

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1.

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1. 8. GRENZWERTE UND STETIGKEIT VON FUNKTIONEN 51 e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme cos(x+y) = cos(x) cos(y) sin(x) sin(y) und sin(x+y) = cos(x) sin(y)+sin(x) cos(y). f. Für eine

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

c < 1, (1) c k x k0 c k = x k0

c < 1, (1) c k x k0 c k = x k0 4.14 Satz (Quotientenkriterium). Es sei (x k ) Folge in K. Falls ein k 0 existiert, so dass für k k 0 gilt x k 0 und x k+1 x k c < 1, (1) so ist x k absolut konvergent. Beweis. Aus (1) folgt mit vollständiger

Mehr

ANALYSIS 2 VERSION 26. Juni 2018

ANALYSIS 2 VERSION 26. Juni 2018 ANALYSIS VERSION 6 Juni 018 LISIBACH ANDRÉ 6 Potenzreihenentwicklung 61 Einleitung Die Linearisierung einer Funktion f(x an der Stelle x ist die Funktion L(x f( + df dx ((x Die Linearisierung ist ein Polynom

Mehr

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Funktionen, Stetigkeit Dierentialrechnung Funktionen mit mehreren Variablen Integralrechnung Dierentialgleichungen Teil 2: Wahrscheinlichkeitsrechnung

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Übungen zur Vorlesung Mathematik für Chemiker 1

Übungen zur Vorlesung Mathematik für Chemiker 1 Prof. Dr. D. Egorova Prof. Dr. B. Hartke Lösungen Aufgabe Übungen zur Vorlesung Mathematik für Chemiker WiSe 204/5 Blatt 2 0.-2..204 f( x) = f(x) = gerade f( x) = f(x) = ungerade 8 6 4 2. f ( x) = ( x

Mehr

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit Kapitel 6 Grenzwerte von Funktionen und Stetigkeit 225 Relle Funktionen Im Folgenden betrachten wir reelle Funktionen f : D R, mit D R. Wir suchen eine formale Definition für den folgenden Sachverhalt.

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie

Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Dr. Michael Stiglmayr Teresa Schnepper, M.Sc. WS 014/015 Bergische Universität Wuppertal Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Aufgabe 1

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 2

Technische Universität München Zentrum Mathematik. Übungsblatt 2 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 2 Hausaufgaben Aufgabe 2.1 Sei [a, b] R ein Intervall und ( ) n N [a,

Mehr

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. Analysis I, WiSe 2013/14, 04.02.2014 (Iske), Version A 1 Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. a) Welche der folgenden Aussagen über Folgen sind sinnvoll und

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (0.09.03 0.09.03) Dr. Jörg Horst WS 03-04 Mathematischer Vorkurs TU Dortmund Seite / 5 Mathematischer Vorkurs TU Dortmund Seite 6 / 5 Schenkel Winkelbereich Scheitel S

Mehr

Kapitel 5 Trigonometrie

Kapitel 5 Trigonometrie Mathematischer Vorkurs TU Dortmund Seite / 7 Schenkel Winkelbereich Scheitel S α Winkel werden in Grad oder im Bogenmaß (auch Rad) angegeben: 360 =. y cot α r = sin α α cos α tan α x Durch diese Betrachtungen

Mehr

FK03 Mathematik I: Übungsblatt 9 Lösungen

FK03 Mathematik I: Übungsblatt 9 Lösungen FK03 Mathematik I: Übungsblatt 9 Lösungen Verständnisfragen. Welche zwei Beispiele sind in der Vorlesung für die Anwendung von transzendenten Funktionen behandelt worden? Schnittpunktsbestimmung zwischen

Mehr

Mathematik IT 3 (Analysis) Probeklausur

Mathematik IT 3 (Analysis) Probeklausur Mathematik IT (Analysis) Probeklausur Datum: 08..0, Zeit: :5 5:5 Name: Matrikelnummer: Vorname: Geburtsdatum: Studiengang: Aufgabe Nr. 5 Σ Punkte Soll 5 9 7 Punkte Ist Lösungen ohne begründeten Lösungsweg

Mehr

Funktionen. Kapitel Der Funktionsbegriff

Funktionen. Kapitel Der Funktionsbegriff Kapitel 6 Funktionen 6. Der Funktionsbegriff Eine Funktion f(x) ist durch eine Vorschrift f definiert, die jedem Element x D (Definitionsbereich) ein Element f(x) W (Wertebereich) zuordnet. Für reelle

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 27 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

Mathematik für Sicherheitsingenieure I A

Mathematik für Sicherheitsingenieure I A Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I A Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie Ferienkurs Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit, Konvergenz, Topologie Lösung 2.03.202. Gleichmäßige Konvergenz Entscheiden Sie, ob die folgenden auf (0,

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 3. Reelle Funktionen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de SS 08 Vorlesung MINT Mathekurs SS 08 / 49 Vorlesung 5 (Lecture 5) Reelle Funktionen einer reellen Veränderlichen

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 3

Technische Universität München Zentrum Mathematik. Übungsblatt 3 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 3 Hausaufgaben Aufgabe 3. Zeigen Sie mit Hilfe der ɛ-δ-formulierung vgl.

Mehr

von Intervallen, wie sie als Definitionsmengen von Funktionen auftreten können. 1 x Q f : R R ; x

von Intervallen, wie sie als Definitionsmengen von Funktionen auftreten können. 1 x Q f : R R ; x 18 Stetigkeit Den Begriff der Funktion oder Abbildung haben wir bereits im ersten Semester kennengelernt und er hat uns stets begleitet. In der Analysis untersucht man reelle Funktionen f : D R mit Definitionsbereich

Mehr

Thema 5 Differentiation

Thema 5 Differentiation Thema 5 Differentiation Definition 1 Sei f : D R. Dann ist f im Punkt x 0 differenzierbar, falls f(x) f(x 0 ) x x 0 x x 0 auf der Menge D \ {x 0 } existiert. Der Limes ist dann die Ableitung von f im Punkt

Mehr

Mathematik n 1

Mathematik n 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 0 Mathematik + Übung 6 Besprechung der Aufgaben ) - ) des Übungsblatts am jeweils ersten Übungstermin zwischen Montag, 7..0 und Donnerstag,

Mehr

Eigenschaften stetiger Funktionen Buch Kap. 2.5

Eigenschaften stetiger Funktionen Buch Kap. 2.5 Eigenschaften stetiger Funktionen Buch Kap. 2.5 Satz 2.6: (Nullstellensatz) Ist f : [a, b] R stetig und haben f (a) und f (b) unterschiedliche Vorzeichen, so besitzt f in (a, b) mindestens eine Nullstelle.

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengang Bauingenieurwesen Dresden 2005 . Mengen Kenntnisse

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 26 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

2 Polynome und rationale Funktionen

2 Polynome und rationale Funktionen Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine

Mehr

Einführung und Überblick

Einführung und Überblick Einführung und Überblick Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Thomas Zehrt (Universität Basel) Einführung und Überblick 1 / 33 Outline 1

Mehr

Kapitel 5. Reelle Funktionen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 5 Reelle Funktionen 1 / 81

Kapitel 5. Reelle Funktionen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 5 Reelle Funktionen 1 / 81 Kapitel 5 Reelle Funktionen Josef Leydold Auffrischungskurs Mathematik WS 207/8 5 Reelle Funktionen / 8 Reelle Funktion Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge als auch

Mehr

Kapitel 5 GRENZWERTE

Kapitel 5 GRENZWERTE Kapitel 5 GRENZWERTE Fassung vom 3. Februar 2006 Mathematik für Humanbiologen und Biologen 69 5. Der Begri des Grenzwertes 5. Der Begri des Grenzwertes An den Messungen der Hefevermehrung (vgl. Beispiel

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de WS 2016/2017 Vorlesung 7 MINT Mathkurs WS 2016/2017 1 / 20 Stetigkeit einer Funktion (continuity of a

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Technische Universität Hamburg Harburg WiSe 016/17 Kai Rothe Brückenkurs Mathematik Beispielaufgaben 5 Aufgabe 1: Für folgende Funktionen gebe man den Definitionsbereich D und Wertebereich W an und berechne,

Mehr

Ableitungen von Funktionen

Ableitungen von Funktionen Kapitel 8 Ableitungen von Funktionen 8. Der Begriff der Ableitung Aufgabe 8. : Prüfen Sie mit Hilfe des Differenzenquotienten, ob folgende Funktionen an den gegebenen Stellen x 0 differenzierbar sind.

Mehr

Differentialrechnung

Differentialrechnung Katharina Brazda 5. März 007 Inhaltsverzeichnis Motivation. Das Tangentenproblem................................... Das Problem der Momentangeschwindigkeit.......................3 Differenzenquotient und

Mehr

11 Spezielle Funktionen und ihre Eigenschaften

11 Spezielle Funktionen und ihre Eigenschaften 78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen

Mehr

Vortragsübung am 25. April 2014

Vortragsübung am 25. April 2014 Seite von 6 Termin: 5. April 04 Vortragsübung am 5. April 04.. Berechnen Sie den Grenzwert lim n ( n + + n + + + ), n indem Sie ihn als Riemann-Summe eines Integrals auffassen... Bestimmen Sie folgende

Mehr

2. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 L := 2. sin(2x) + 1 sin(x)

2. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 L := 2. sin(2x) + 1 sin(x) O. Alaya, R. Bauer M. Fetzer, K. Sanei Kashani B. Krinn, J. Schmid. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 03 Lösungshinweise zu den Hausaufgaben: Aufgabe H 5. Stetigkeit Gegeben ist

Mehr

Potenz- / Wurzel- / Trigonom. / Arkus- / Exponential- / Log.-Funktionen

Potenz- / Wurzel- / Trigonom. / Arkus- / Exponential- / Log.-Funktionen Übung 6 Funktionen Potenz- / Wurzel- / Trigonom. / Arkus- / Exponential- / Log.-Funktionen PUZZLE Themen 1 Potenz- / Wurzelfunktionen 2 Trigonometrische Funktionen / Arkusfunktionen 3 Exponential- / Logarithmusfunktionen

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Übungen zu Funktionen Blatt 1

Übungen zu Funktionen Blatt 1 Übungen zu Funktionen Blatt 1 In den Aufgaben 1 und 2 seien A 1, A 2, B 1, B 2 Teilmengen von Z. 1. Man zeige: Es gilt (A 1 A 2 ) (B 1 B 2 ) (A 1 B 1 ) (A 2 B 2 ). 2. Man zeige: Ist A 1 A 2 =, A 1 A 2,

Mehr

{, wenn n gerade ist,, wenn n ungerade ist.

{, wenn n gerade ist,, wenn n ungerade ist. 11 GRENZWERTE VON FUNKTIONEN UND STETIGKEIT 60 Mit anderen Worten, es ist lim f(x) = b lim f (, a)(x) = b, x a x a wobei f (, a) die Einschränkung von f auf (, a) ist. Entsprechendes gilt für lim x a.

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11.

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11. Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version.0. September 05) E. Cramer, U. Kamps, M. Kateri, M. Burkschat 05 Cramer, Kamps, Kateri, Burkschat

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Universität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übungen Aufgaben zu Kapitel 4 (aus: K. Hefft, Mathematischer Vorkurs zum Studium der Physik, sowie Ergänzungen) Aufgabe 4.1: Graphen,

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Einführung in die Mathematik für Wirtschaftswissenschaften.

Einführung in die Mathematik für Wirtschaftswissenschaften. Einführung in die Mathematik für Wirtschaftswissenschaften. Mathias Sawall Institut für Mathematik, Universität Rostock WS 2018/2019 Mathias Sawall Einführung in die Mathematik für Wirtschaftswissenschaften

Mehr

Die Ableitung einer Funktion

Die Ableitung einer Funktion Die Ableitung einer Funktion I. Definition der Ableitung Definition. Sei I R ein Intervall und f : I R. 1) f eißt differenzierbar an x 0 I, wenn der Grenzwert f(x) f(x 0 ) lim = f (x 0 ) x x 0 x x 0 existiert.

Mehr

Kurve in der Ebene. Mit seiner Hilfe kann man sich. ein Bild von f machen.

Kurve in der Ebene. Mit seiner Hilfe kann man sich. ein Bild von f machen. Kapitel Elementare Funktionen (Prof. Michael Eiermann) In diesem Abschnitt werden wir einfache Funktionen untersuchen, die Ihnen wahrscheinlich schon bekannt sind. Uns interessieren Polynome, rationale

Mehr

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007 Workshops zur VO Einführung in das mathematische Arbeiten im SS 007 Inhaltsverzeichnis Funktionen Evelina Erlacher 7. März 007 Der Funktionsbegriff Darstellungsmöglichkeiten von Funktionen 3 Einige Typen

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Analysis 1. Einführung. 22. März Mathe-Squad GbR. Einführung 1

Analysis 1. Einführung. 22. März Mathe-Squad GbR. Einführung 1 Analysis 1 Einführung Mathe-Squad GbR 22. März 2017 Einführung 1 y 10 9 8 7 6 5 4 3 2 1 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 910 2 x /* */ Einführung Allgemeines 2 Allgemeines Funktion f(x) bildet jeden

Mehr

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Lösung - Serie 3 MC-Aufgaben (Online-Abgabe) 1. Es sei die Funktion f : [0, ) [0, ) definiert durch f(x) = ln(x + 1), wobei der Logarithmus ln zur Basis

Mehr

Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen

Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen Das hast du schon gelernt: Aufgabe : a) Definitionsbereich TIPP: Definitionsbereich Nenner darf nicht Null werden x 0 x

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 2008/09) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 9. November 2008) Die

Mehr

Kapitel 3. Funktionen. Grundbegriffe. Grenzwerte bei Funktionen. Stetigkeit. Die elementaren Funktionen. Anwendungen

Kapitel 3. Funktionen. Grundbegriffe. Grenzwerte bei Funktionen. Stetigkeit. Die elementaren Funktionen. Anwendungen Kapitel 3 Funktionen Grundbegriffe Grenzwerte bei Funktionen Stetigkeit Die elementaren Funktionen Anwendungen Funktionen Grundbegriffe Funktionen und ihre Darstellung Unter einer Abbildung von einer Menge

Mehr

Mathematik für Studierende der Geowissenschaften

Mathematik für Studierende der Geowissenschaften Mathematik für Studierende der Geowissenschaften a.o.univ.prof. Mag.Dr. Stephen Keeling http://imsc.uni-graz.at/keeling/ Dokumentation und Literatur: http://imsc.uni-graz.at/keeling/teaching.html 1 Inhaltsverzeichnis

Mehr

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen Mathematik für Studierende der Biologie Wintersemester 207/8 Grundlagentutorium 4 Lösungen Sebastian Groß Termin Mittwochs 5:45 7:45 Großer Hörsaal Biozentrum (B00.09) E-Mail gross@bio.lmu.de Sprechzeiten

Mehr

Übungsblatt 2: Lösungen

Übungsblatt 2: Lösungen Übungsblatt 2: Lösungen 3..206 ) Bei Teilaufgabe (c) liegt eine unecht gebrochen rationale Funktionen vor, daher ist hier eine einleitende Polynomdivision zur ufspaltung in einen polynomialen nteil (symptote)

Mehr

Mathematik für Studierende der Geowissenschaften

Mathematik für Studierende der Geowissenschaften Mathematik für Studierende der Geowissenschaften a.o.univ.prof. Mag.Dr. Stephen Keeling http://imsc.uni-graz.at/keeling/ Dokumentation und Literatur: http://imsc.uni-graz.at/keeling/teaching.html 1 Inhaltsverzeichnis

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Betriebswirtschaft International Business Dresden 05 . Mengen

Mehr

5 Differenzialrechnung für Funktionen einer Variablen

5 Differenzialrechnung für Funktionen einer Variablen 5 Differenzialrechnung für Funktionen einer Variablen Ist f eine ökonomische Funktion, so ist oft wichtig zu wissen, wie sich die Funktion bei kleinen Änderungen verhält. Beschreibt etwa f einen Wachstumsprozess,

Mehr

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele Grundkurs Höhere Mathematik I (für naturwissenschaftliche Studiengänge) Beispiele Prof. Dr. Udo Hebisch Diese Beispielsammlung ergänzt das Vorlesungsskript und wird ständig erweitert. 1 DETERMINANTEN 1

Mehr

Sommersemester < 2 2 < 1+π = g,

Sommersemester < 2 2 < 1+π = g, D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 7. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 04 M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 53. Gleichheitsproblem

Mehr

Ableitungen höherer Ordnung: Sei f : D R eine differenzierbare Funktion. Ist die Ableitung f : D R ihrerseits in jedem Punkt x D differenzierbar, dann

Ableitungen höherer Ordnung: Sei f : D R eine differenzierbare Funktion. Ist die Ableitung f : D R ihrerseits in jedem Punkt x D differenzierbar, dann Ableitungen höherer Ordnung: Sei f : D R eine differenzierbare Funktion. Ist die Ableitung f : D R ihrerseits in jedem Punkt x D differenzierbar, dann heißt f (x) = (f ) (x) die zweite Ableitung von f

Mehr

Polynome, Stetigkeit, Dierenzierbarkeit

Polynome, Stetigkeit, Dierenzierbarkeit Polynome, Stetigkeit, Dierenzierbarkeit Inhaltsverzeichnis 1 Polynome 1 1.1 Denitionen...................................................... 1 1.2 Nullstellen.......................................................

Mehr

Serie 1: Repetition von elementaren Funktionen

Serie 1: Repetition von elementaren Funktionen D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 1: Repetition von elementaren Funktionen Bemerkung: Die Aufgaben der Serie 1 bilden den Fokus der Übungsgruppen in der zweiten Semesterwoche

Mehr

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr