Mathematikaufgaben zur Vorbereitung auf das Studium

Größe: px
Ab Seite anzeigen:

Download "Mathematikaufgaben zur Vorbereitung auf das Studium"

Transkript

1 Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengang Bauingenieurwesen Dresden 2005

2

3 . Mengen Kenntnisse und Fähigkeiten: Mengenbegriff, Teilmenge, Durchschnitt und Vereinigung von Mengen, Produktmenge, Zahlenmengen, Intervalle. Im folgenden bedeuten: IN = {0,, 2,...} : Menge der natürlichen Zahlen, IR : Menge der reellen Zahlen... Gegeben seien die Mengen A = {x IN x 6}, B = {x IR x 4}, C = {x IN x 4}, Beschreiben Sie (gegebenfalls durch Aufzählung der Elemente oder am Zahlenstrahl) die Mengen: A B, A B, A B C, A B C, (A B) C, A (B C)..2. Gegeben seien in der (x, y)-ebene die folgenden Mengen: K = {(x, y) IR 2 x 2 + y 2 = 4}, K 2 = {(x, y) IR 2 y = x}, K = {(x, y) IR 2 (x 2) 2 + y 2 = 4}, M = {(x, y) IR 2 x 2 + y 2 4}, M 2 = {(x, y) IR 2 y x}, M = {(x, y) IR 2 (x 2) 2 + y 2 < 4}. a) Ermitteln Sie K K 2, K K, K 2 K. b) Stellen Sie grafisch dar: K M K 2 M 2 K M M M 2 M M M 2 M M M 2 M M M (M M ) M 2... Gegeben seien die Intervalle J = {x IR 2 x 2} = [ 2, 2], J 2 = {x IR < x 4} = (, 4], J = {x IR 0 x < } = [0, ), J 4 = {x IR 2 x < 4} = [2, 4). Ermitteln Sie und schreiben Sie - wenn möglich - als Intervall: J J 2 J J J J 4 J J 2 J J J J 4

4 2. Elementare Rechenoperationen, Potenzen, Wurzeln, Logarithmen Kenntnisse und Fähigkeiten: Bruchrechnung, Multiplikation und Division von Polynomen, Binomische Formeln, Ausklammern von Faktoren aus Polynomen, Potenz- und Logarithmengesetze, Summenzeichen. Untersuchen Sie im folgenden zuerst, für welche Werte der vorkommenden Variablen die auftretenden Terme definiert sind. 2.. Kürzen Sie so weit wie möglich. a) 204a2 b c 255ab 2 c b) 5x2 + 5x 2 + a a 2 c) 2a + a2 + 2a Fassen Sie zu einem Bruch zusammen, und kürzen Sie so weit wie möglich. 2 a) x 2 4 2x a 2 b 2 b) 6x 2a(a + b) abc c) a b b a ( b)c a 2.. Vereinfachen Sie. a) (2x2 y ) 4 ( x m y n z r+ ) 2 (4x y 4 ) 2 b) x 2 y 2 n z r 2, m, n, r IN c) x 2 y 2 xy x 4 d) (x y 2 ) 4 x 2 e) a n b n a n b n 2 + a n 2 b n a n b n, n IN 2.4. Vereinfachen Sie. a) a 5 b a b 4 6 (ab ) a 5 b 4 2 n (9a2 ) n b b) c c 2, n IN 2.5. Vereinfachen Sie die folgenden Terme so weit wie möglich. a) 2x + 5 x + x 4 x x2 + 6x + 0 x 2 + 5x + 6 a b) a b + b a + b a a + b b a b 2

5 c) a + b + c d) (2ax + 2ay)m (bx by) n (cx 2 cy 2 ) m+n, m IN, n IN, m, n 0 e) a5x y a4x y : 6n 2 f) b b n, a + b a2 + b 2 a4 b 4 x, y IR, n IN g) ( p + q p q) 2 h) x x 2 y 2 x + x 2 y 2 i) b b 2 5 b 8 4 b 2.6. Geben Sie die folgenden Zahlen exakt und als auf 4 Kommastellen gerundete Dezimalzahl an. Vereinfachen Sie dazu die Terme und rechnen Sie danach mit dem Taschenrechner. a) b) ( 5 ) 2 ( 5+ ) 2 c) d) e) f) (6 ) (8 4 ) g) ( 5) 2 h) 4 ( 2) 6 6 ( ) 2.7. Vereinfachen Sie und berechnen Sie mit dem Taschenrechner. a) 0 2, b) 4, c), 08 0 d) sin(, 5) e) log 25 (25) f) log 20 (00) + log 00 (20) 2.8. Vereinfachen Sie (ohne Benutzung eines Taschenrechners) so weit wie möglich. a) ln(e 2 )+ b) ln(e 2 +) c) lg( 00) d) 2e 2 ln(2) e) ln (ln (ln(e e ))) f) e 2+ln(9) g) (( e) 2 ) ln(8) 2.9. Vereinfachen Sie. a) ln(2a) + 2 ln(b) 2 ln(2c), a, b, c > 0, b) ln(a2 b 2 ) 2 ln(a b) 2 ln(a + b), a + b > 0, a b > 0,

6 c) ln(a 2 2ab + b 2 ) ln(a 2 b 2 ) + ln ( a + b ), a > b > Ermitteln Sie alle x IR mit a) x = 27 b) 0 x = 0, 0 c) log x () = 8 d) log 2 (x) = 5 e) log x ( 5) = f) log8 ( 5 64 ) = x ( g) log x (6) = 5 h) log 27) = x i) log () = x Faktorisieren Sie, d.h. schreiben Sie als Produkt. a) 5a 5 b c 2 5a b 5 c a 4 b 4 c b) (4x + y)(a + 2b) + (y 4x)( 2b a) c) (x + 2y)(x y)( 2x + y) y(6x y)(2y 2x) 2.2. Faktorisieren Sie unter Verwendung binomischer Formeln. a) 6a ab + 9b 2 b) ( a )(a ) (a 2 ) c) - 4 x2 4y 2 2xy 2.. Schreiben Sie mittels quadratischer Ergänzung als Summe bzw. Differenz von Quadraten. a) x 2 4x + b) x 2 + x 6 c) 4x 2 + 4x + 2 d) x 2 + 4ax + 9b 2 e) x 2 2x + y 2 + 6y f) 4x 2 + 8x y 2 + 2y 2.4. Klären Sie, unter welchen Bedingungen die folgenden Quotienten definiert sind und führen Sie die Division aus. a) (2a 2 + ab 7ac 20b bc 5c 2 ) : (a + 4b 5c) b) (x 4 y 4 ) : (x y) c) (q n ) : (q ), n IN \ {0} d) (2x 4 x + 25x 2 2x + 20) : (2x 2 7x + 6) 4

7 2.5. Lösen Sie die folgenden Formeln auf: a) I = nu nr i + R a nach n, R i, R a, b) K = K 0 q n + R qn q nach R, K 0, n, c) f = f + f 2 d f f 2 nach f, f, f 2, d) X = ωl ωc nach L, C, ω Ermitteln Sie die folgenden Summenwerte. 6 i a) i c) 0 i 2 d) 00 2 e) f) i+ b) 00 i= i= 5 nx n für x = 2 n= i= g) 50 (5i + ) i= 2.7. Berechnen ( ) Sie die Binomialkoeffizienten. ( ) ( ) 4 8 a) b) c) d) 2 5 ( ) ( ) ( ) 0, f) g) h) i) 5 2 k= Beweisen Sie die Gültigkeit der Gleichung für n k 0, n IN, k IN. ( ) ( ) ( ) n n n + + = k k + k + ( ) 4, 5 ( ) 2 0, 5 e) j) 5 ( k) k k= ( ) 2, 8 4 ( ) π 0 5

8 . Gleichungen und Ungleichungen für eine reelle Veränderliche Kenntnisse und Fähigkeiten: Umformen von Gleichungen und Ungleichungen.. Bestimmen Sie die Lösungsmengen der folgenden Gleichungen. a) 2x (5 4x) = x (2x + 8) b) (5 x)(x + ) = (x 2)(8 x) c) 2x + x x = 7x + 8 d) a(2x b) + bc = b(2x a) bc.2. Lösen Sie die folgenden Gleichungen. a) x 2 5x + 6 = 0 b) 6x 2 + x = 0 c) x 2 + 4x + = 0 d) x 2 = 2x + 2 e) (x 2 4x 5)(x ) = 0 f) 5x 6 20x 4 = 0 g) x 4x 2 + 4x = 0 h) x 4 + x 2 4 = 0.. Lösen Sie die folgenden Gleichungen. a) x x + = x x 5 c) x x = x + 2 b) x + x + = 5 2x + 2 d) x + x x + x = 2.4. Bestimmen Sie die Lösungsmengen folgender Gleichungen. a) x x 2 4 = b) x x x = x c) x 2 + 2x 2x 2 + 2x 4 = d) x + 6 x 4 x 2 = x 54 2x 8 x + 6 2(x + 6) 6

9 .5. Lösen Sie die folgenden Wurzelgleichungen. a) x = x 2 b) x + 4 = x + 2 c) x x = 2x x 2 d) = x + x e) 2 + x + 2 x = 2 x.6. Geben Sie die Lösungen der folgenden Gleichungen exakt und als Dezimalzahl auf 4 Kommastellen gerundet an. a) ln(x + ) = 2 b) (x + ) (ln(x) + ) = 0 c) ln(x) 2 ln(x ) = 0 d) log 2 (x 2 + x + 6) =.7. Lösen Sie die Gleichungen, und geben Sie die Lösungen exakt und als Dezimalzahl auf 4 Kommastellen gerundet an. a) 2 0 x = b) e 2x+ = 0 c) 2 6x 2 = 4 2x+ d) = 0, 25 + e x.8. Lösen Sie die Gleichungen und geben Sie die Lösungen exakt und als Dezimalzahl auf 4 Kommastellen gerundet an. a) 2 2x 2 x+ = 0 b) x ln(x) = 2 c) (ln(x)) x = d) x lg(x) = 0 9 e) 2 x 5 2x = 0 2x+ f) lg(2 x ) + lg( x ) + lg(4 x ) = 5.9. Lösen Sie die folgenden Ungleichungen. a) 2x 4 < 4x b) x 4 x 5 c) (2 x)( + x) ( x)(4 + x) d) ax < x + a, a IR.0. Lösen Sie die folgenden Ungleichungen. a) x 2 5x + 6 > 0 b) 6x 2 + x c) x 2 + 4x + 0 7

10 4. Gleichungssysteme für zwei reelle Veränderliche Kenntnisse und Fähigkeiten: Gleichungen mit 2 Unbekannten, Einsetzungsverfahren und Gleichsetzungsverfahren. 4.. Lösen Sie die Gleichungssysteme. a) x 2y = 8 2x + y = 4 b) 2x = 9 4y x = 4 2y x c) 5 + y = x + y 2 = 0 e) x + y = 0 xy = 9 d) x + y = x 2 + y 2 = 5. Funktionen Kenntnisse und Fähigkeiten: Funktionsbegriff, lineare und quadratische Funktionen, Potenz-, Exponential- und Logarithmusfunktionen, Nullstelle, Maximum, Minimum, Monotonie, Grenzwerte von Funktionen. 5.. Gegeben seien die Terme: a) f(x) = 0, x, b) f(x) = 2x 0,5 + x, c) f(x) = + e 0,x. Bilden Sie die folgenden Terme und vereinfachen Sie sie, falls möglich. f (x) = f(x + ) f 2 (x) = f(x) + f (x) = f(x) f 4 (x) = f( x) f 5 (x) = f(x) f 6 (x) = f(x 2 ) f 7 (x) = [f(x)] Bilden Sie zu den Funktionen f : IR IR mit a) f(x) = + 0, 5x, x IR, b) f(x) = x 2, x IR, c) f(x) = e x, x IR jeweils die Funktionen f i : IR IR, i =,..., 6, mit f (x) = f(x + ), f 2 (x) = f(x) +, f (x) = f(x), f 4 (x) = f( x), f 5 (x) = 2f(x), f 6 (x) = f(2x), und skizzieren Sie die Graphen der Funktionen. 8

11 5.. Für welche x sind die folgenden Terme definiert? Ermitteln Sie jeweils den größtmöglichen Definitionsbereich. a) f(x) = x 2 4 b) f(x) = ln(x + 5) ln(x + 4) c) f(x) = d) f(x) = (x )(x + 2) e 0,x 5.4. Skizzieren Sie die folgenden Geraden in einem geeigneten Koordinatensystem. a) y = x 4 b) 0x + 5y = 0 c) x 0 + y = d) k = 0, t +, 2 5 e) s = 2 (2 8t)/ 5.5. Skizzieren Sie jeweils den Graphen der Funktion für x IR. a) y = (x + ) 2 4 b) y = x 2 4x + c) y = 6 x x Skizzieren Sie jeweils den Graphen der Funktion. Versuchen Sie, möglichst ohne Wertetabelle auszukommen. a) y = x 2, x [0; ) b) y = x 4, x IR c) y = x, x ( ; 0) d) y = x 2 4x 8, x IR e) y = x + x 2 + 8x 40, x IR f) y = ln(x 2), x (2; ) g) y = x +, x x (; ) h) y = ln x, x IR\{0} i) y = x 4, x [4; ) 0 für < x j) y = (x + ) 2 für < x < 0 2 x + für 0 x < 9

12 5.7. Skizzieren Sie jeweils den Graphen der Funktion für den größtmöglichen Definitionsbereich, und bestimmen Sie den Wertebereich der Funktion. a) y = + x b) y = x 2 c) y = + 4 x Skizzieren Sie jeweils den Graphen der Funktion, und geben Sie den Wertebereich an. a) y = e x, x IR b) y = 2 e x, x IR c) y = e x+, x IR d) y = e x + e x, x IR 5.9. Skizzieren Sie jeweils den Graphen der Funktion für x IR, und bestimmen Sie den Wertebereich der Funktion. a) y = + sin(x) b) y = sin(x ) c) y = sin(2(x )) d) y = + 4 sin(2(x )) 5.0. Skizzieren Sie die Graphen der Funktionen für jeweils eine Teilaufgabe in einem gemeinsamen Koordinatensystem. a) y = e ax für a = 0, ± 2, ±, ±2, x IR b) y = e x + a für a = 0, ±, ±2, x IR c) y = e x+a für a = 0, ±, ±2, x IR 5.. In welchen Intervallen sind folgende Funktionen monoton wachsend? a) y = x + 6, x IR b) y = x 2 2x +, x IR 5.2. Ermitteln Sie (ohne Differentialrechnung) die Maxima/Minima (soweit vorhanden) der Funktionen nach Lage, Art und Größe. a) y = x 2 5, x IR b) y = x 2 4x + 5, x IR c) y = e x2, x IR d) y = x 2 +, x IR e) y = sin 2 (x), x IR f) y = + cos 2 (x), x IR 0

13 6. Differentialrechnung Kenntnisse und Fähigkeiten: Ableitungsregeln (Faktor- und Additionsregel, Produkt-, Quotientenund Kettenregel) für Funktionen y = f(x), Extremwertermittlung,Kurvendiskussion. 6.. Ermitteln Sie jeweils die erste Ableitung f (x). a) f(x) = x x, x > 0 b) f(x) = + x 2 x 4, x 0 c) f(x) = ( x)(x 2 + 6x + 8), x IR d) f(x) = x 2 + 5x 4 x, x > 0 e) f(x) = 2 ln(x) e x + 5 x, x > 0 f) f(x) = 2x 0,5 + x, x > 0 g) f(x) = 2 x lg(x) + x 2, x > Ermitteln Sie jeweils die erste Ableitung. a) f(x) = (x 2 )e x, x IR b) f(x) = xe x + 5x 2, x > 0 c) f(x) = x n ln(x), x > 0 d) f(x) = e x sin(x), x IR e) f(x) = ln(x) x, x > 0 f) f(x) = x x 2, x = 6.. Ermitteln Sie jeweils die erste Ableitung. a) f(x) = ln(2x + ) + e x, x > 2 b) f(x) = x x ( x) 2, x x c) f(x) =, x ( ; ) + x d) f(x) = e x, x 0

14 e) f(x) =, x IR + e 2x f) f(t) = t 2 + t +, t IR u g) f(u) =, (au + bv) 2 au + bv 0 h) f(x) = ln(x), x > 6.4. Führen Sie eine Kurvendiskussion durch. a) y = x x 2 x, x IR b) y = x2 + 5x + 22, x IR\{2} x 2 c) y = e x, x IR\{0} 6.5. Im Dachboden eines Hauses soll ein Zimmer ausgebaut werden. Wie müssen Höhe und Breite des Zimmers gewählt werden (rechtwinkliger Querschnitt), wenn ein Raum maximalen Volumens entstehen soll und a) der Dachboden den Querschnitt eines gleichschenkligen Dreiecks und die Höhe 5,5 m sowie die Breite 6,4 m besitzt, b) der Dachboden halbkreisförmig (r = 0 m) gewölbt ist Aus drei gleichbreiten Brettern soll eine Wasserrinne mit trapezförmigem Querschnitt hergestellt werden. Für welchen Neigungswinkel der Seitenflächen (gemessen gegen die Senkrechte) wird der Querschnitt am größten? 2

15 Lösungen.. {4, 5, 6}, {, 2, } [4; ), {4}, {0,, 2, } [4; ), {0,, 2,, 4, 5, 6}, A.2. a) {(, ), (, )}, {(, ), (, )}, {(0, 0), (, )}.. J J 2 = J J J = [0; 2] J J 4 = {2} J J 2 = J 2 J J = [ 2; ) J J 4 = [ 2; 4) 2.. a) 4ab 5c 2, a, b, c 0 b), a 2 c) a +, a, a 2(a ) 5x + 4x a) 6x 4, x 0 b) a + b, a 0, a b 2a c), a, b, c 0, a b 2.. a) x 2 y 4, x, y 0 b) x 2m 4 y 4n 4 z 6, x, y, z 0 c) xy, x, y 0 d) y8 (b a), x 0 e) x4 a n b n, a, b 0 ( ) n ab 2.4. a) a 4 b, a, b 0 b), a, b 0, c > 0 c 2.5. a) 0x + 2, x IR\{ 2; } (x + )(x + 2) b) a2 + 2ab b 2 a 2 2ab b 2, a2 b 2, a b( ± 2) abc c) ab + ac + bc, abc 0, a + b + c 0 ( ) m ( ) n 2a b d) c c (x + y) n (x y) m, c(x2 y 2 ) 0 e) a x b 5n, a > 0, b > 0 f), a + b > 0, a b > 0 a b g) 2p 2 p 2 q 2, p + q 0, p q 0 h) y, x 0, x 2 y 2 i) b /8, b 0

16 2.6. a) 2 7/8, 840 b) 4 c) = 0, 25 8 d) 4 7 0, 580 e) , f) 8, 960 g) 5 h) 2 2 2, a), 08 b), c) 2, 589 d) 0, 9975 e), 5 f) 2, a) b) - c) ( ) ab a) ln 2c 2 2 d) 8 e) 0 f) e g) 4 b) 6 ln(a2 b 2 ) c) ln ( (a 2 b 2 ) a + b ) 2.0. a) b) 2 c) 8 d) 2 e) 5 2 f) 5 g) / 5 6 h) i) 2.. a) 5a b c 2 ( a 2 9b 2 c 2 + 5abc) b) 8x(a + 2b) c) (x y)(y 2x)(x 4y) 2.2. a) (4a + b) 2 b) 2(a 2 ) c) ( 2 x + 2y)2 2.. a) (x 2) b) (x + 2 ) c) 2 2 (x + 2 )2 + d) (x + 2a) 2 4a 2 + 9b 2 e) (x ) 2 + (y + ) 2 0 f) 4(x + ) 2 (y 2) a) 4a 5b + c, a + 4b 5c 0 b) x + x 2 y + xy 2 + y, x y c) q n + q n q +, q und n IN \ {0} d) x 2 2x + 2, 5 + 2,5x+5 2x 2 7x+6, x 2, x, a) n = R ai U R i I, R i = nu R ai ni, R a = n(u R ii) I b) R = (K K 0 q n q ) q n, K 0 = K q R n q qn ( ) n n = ln q ln K(q )+R K 0 (q )+R c) f = ff2 f +f 2 d, f = f(d f 2) f f 2, f 2 = f(d f ) f f d) L = X ω + ω 2 C, C = ω 2 L ωx, ω = 2L q, ( X ± ) X 2 + 4L C 4

17 2.6. a) b) 5050 c) 85 d) 202 e) 289 f) 29 g) a) 6 b) 56 c) 0 d) 05 6 = 6, 5625 e) -0,06 f) 0,75 6 = 0, 0625 g) -6 h) - i) - j).. a) L = { 5 } b) L = { 8 } c) L = {0} d) L = { bc a b }, falls a b, L = IR, falls (a = b) und (b c = 0), L =, falls a = b und bc 0.2. a) L = {2; } b) L = { 2 ; } c) L = d) L = {2 + 8; 2 8} e) L = { ; ; 5} f) L = {0; 2; 2} g) L = {0; 2} h) L = { ; }.. a) L = {2} b) L = {2} c) L = { 4 } d) L =.4. a) L = { ; 2 2 7} c) L = {2} b) L = { ; 2 2 5} d) L = {4}.5. a) L = {} b) L = {0} c) L = {} d) L = e) L = {2}.6. a) e 2 4, 89 b) e 0, 679 c) , 680 d) L = {; 2}.7. a) 0 log 2 () 8, 450 b) 2 =, 5 c) 4 d) ln(7), a) log 2 (), 5850 b) L = {e ln(2) ; e ln(2) } c) e 2, 78 d) L = {0 ; 0 } 5 e) log 2 (5), 29 f) lg(24), a) ( 2 ; ) b) ( ; 0] c) [5; ) x > a a für a < d) x < a a für a > x IR für a =.0. a) ( ; 2) (; ) b) [ 2 ; ] c) 4.. a) (4; 2) b) - c) ( 45; 0) d) (; 2), ( 2; ) e) (9; ), (; 9) 5

18 5.. a) b) c) f (x) 0, 9 0, x 2(x + ) 0,5 + x+ f 4 (x) + 0, x 2( x) 0,5 x +e 0,(x+) +e 0,x f 6 (x) 0, x 2 2x + x 2 +e 0,x2 5.. a) x 2, b) ( 5; ), c) ( 4; )\{ 2; }, d) IR\{0} 5.. a), b) [; ) 5.2. a) Min(0; 5), b) Min(2; ), c) Max(0; ), d) Max(0; ), e) Max( π 2 + kπ; ), Min(kπ; 0), k ZZ, ZZ = Menge der ganzen Zahlen, f) Max( π 2 + kπ; ), Min(kπ; 2 ), k ZZ. 6.. a) 2x + 7 b) 2 x 2 x + 2 x 5 c) x 2 2 0x 2 d) x x e) 2 x ex 5 x 2 f) x x 2 g) 2 x ln(2) x ln(0) 6 x 6.2. a) (x 2 + 2x )e x b) ( x + 2 x )ex + 0x c) x n (n ln(x) + ) d) e x (sin(x) + cos(x)) e) ln(x) x f) x2 + 2 (x 2 ) a) 2x+ e x b) 6x (x 2 +) + +x 2 ( x) c) (+x) d) ex x 2 (e x ) 2 6e e) 2x 2t+ (+e 2x ) f) 2 2 t 2 +t+ bv au g) (au+bv) h) 2x ln(x) 6.4. a) Nullstellen: 0; 2, 854;, 854 Min.:(2, 277; 8, 426) Max.: (, 60; 0, 945), Wendepunkt.: ( ;, 74) b) Polstelle: x = 2, Min.: (8; 2), Max:. ( 4; ), c) lim f(x) = 0, lim f(x) =, lim x x Polstelle: x = 0. f(x) = ±, x ± a) Breite:,2 m, Höhe: 2,75 m; b) Breite: 4,4 m, Höhe: 7,07 m

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Betriebswirtschaft International Business Dresden 05 . Mengen

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Allgemeiner Maschinenbau Fahrzeugtechnik Dresden 2002

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Kartographie/Geoinformatik Vermessung/Geoinformatik Dresden

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Computertechnik / Automatisierungstechnik Elektrotechnik

Mehr

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius)

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) 1 Grundregeln des Rechnens 1.1 Zahlbereiche......... Zahlen N {1, 2, 3,...}......... Zahlen Z {..., 2, 1, 0, 1, 2,...}......... Zahlen Q { a b a Z, b N}.........

Mehr

Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie

Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Dr. Michael Stiglmayr Teresa Schnepper, M.Sc. WS 014/015 Bergische Universität Wuppertal Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Aufgabe 1

Mehr

Berufliches Gymnasium Gelnhausen

Berufliches Gymnasium Gelnhausen Berufliches Gymnasium Gelnhausen Fachbereich Mathematik Die inhaltlichen Anforderungen für das Fach Mathematik für Schülerinnen und Schüler, die in die Einführungsphase (E) des Beruflichen Gymnasiums eintreten

Mehr

Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben

Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Fachbereich Mathematik Vorkurs Mathematik WS 2012/13 Dies ist eine Sammlung von Aufgaben, die hauptsächlich Mittelstufenstoff wiederholen. Dabei

Mehr

Übungen zum Vorkurs Mathematik

Übungen zum Vorkurs Mathematik Dr. Tatiana Samrowski Institut für Mathematik Universität Zürich Übungen zum Vorkurs Mathematik Mengenlehre Aufgabe : Stellen Sie die folgenden Menge durch Aufzählen ihrer Elemente dar: A = { N : ist Primzahl

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Übungsaufgaben Aufgaben zur Wiederholung Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 06/07 a) Stellen Sie die Gleichung a b 3+c = a +c, a, b > 0, nach

Mehr

Vorkurs Mathematik Übungsaufgaben. Dozent Dr. Arne Johannssen

Vorkurs Mathematik Übungsaufgaben. Dozent Dr. Arne Johannssen Vorkurs Mathematik Übungsaufgaben 2 Dozent Dr. Arne Johannssen Lehrstuhl für Betriebswirtschaftslehre, insbesondere Mathematik und Statistik in den Wirtschaftswissenschaften Neues Logo: ie gesamte Universität

Mehr

Übungen zu Mathematik für ET

Übungen zu Mathematik für ET Wintersemester 2017/18 Prof. Dr. Henning Kempka Übungen zu Mathematik für ET Übungsblatt 0 zum Thema Elementaraufgaben. Aufgabe 1 Vereinfachen Sie folgende Ausdrücke so weit wie möglich: a) 100 [(b + 20)

Mehr

Aufgaben zum Vorbereitungskurs Mathematik

Aufgaben zum Vorbereitungskurs Mathematik Aufgaben zum Vorbereitungskurs Mathematik Verwendete Symbole aus Mengenlehre und Logik A... Klammer umfasst die Elemente einer Menge. x Ü A xist Element der Menge A. A ä B Aist Teilmenge von B. A Þ B Durchschnittsmenge

Mehr

Mathematik-Vorkurs. Übungsaufgaben. im Sommersemester 2012

Mathematik-Vorkurs. Übungsaufgaben. im Sommersemester 2012 Mathematik-Vorkurs Übungsaufgaben im Sommersemester 2012 Goethe Universität-Frankfurt am Main Prof. Dr. Heinz D. Mathes Professur für Produktionswirtschaft 1 Aufgaben zu Thema 1 Aufgabe 1.1: Lesen Sie

Mehr

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch Mathematikvorkurs Fachbereich I Sommersemester 2017 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Binomische Formeln Dienstag Potenzen, Wurzeln und Logarithmus Summen-

Mehr

Fit für die E-Phase?

Fit für die E-Phase? Kapitel Bruchrechnung (mit und ohne Variablen) a) 6 4 i) 6 7 7 8 4 b) 5 5 4 6 7 j) : 7 8 c) 5a a 4 ab y 6 k) : b y d) y l) ( y ) : y y e) a a a m) a 8b 5 6b f) y y n) a 5b 9a 0 b g) a b b y y o) +y y (+y)

Mehr

Vorkurs Mathematik Wirtschaftsingenieurwesen und Informatik DHBW Stuttgart Campus Horb Dozent Dipl. Math. (FH) Roland Geiger

Vorkurs Mathematik Wirtschaftsingenieurwesen und Informatik DHBW Stuttgart Campus Horb Dozent Dipl. Math. (FH) Roland Geiger Vorkurs Mathematik Wirtschaftsingenieurwesen und Informatik DHBW Stuttgart Campus Horb Dozent Dipl. Math. (FH) Roland Geiger Internet Vorkurs Mathematik Wirtschaftsingenieurwesen und Informatik DHBW Stuttgart

Mehr

Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University

Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University Priv. Doz. Dr. A. Wagner Aachen, 9. September 6 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 6, RWTH Aachen University Intervalle, Supremum und Infimum Für a, b R, a < b nennen wir eine

Mehr

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Institut für Mathematik Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Ausführliches Inhaltsverzeichnis mit thematischen Links Prof. Dr. Konrad Engel Prof. Dr. Roger Labahn {konrad.engel,roger.labahn}@uni-rostock.de

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University Dr. O. Wittich Aachen,. September 7 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 7, RWTH Aachen University Intervalle, Beschränktheit, Maxima, Minima Aufgabe Bestimmen Sie jeweils, ob

Mehr

Kapitel 1:»Rechnen« c 3 c 4 c) b 5 c 4. c 2 ) d) (2x + 3) 2 e) (2x + 0,01)(2x 0,01) f) (19,87) 2

Kapitel 1:»Rechnen« c 3 c 4 c) b 5 c 4. c 2 ) d) (2x + 3) 2 e) (2x + 0,01)(2x 0,01) f) (19,87) 2 Kapitel :»Rechnen«Übung.: Multiplizieren Sie die Terme so weit wie möglich aus. a /5 a 5 Versuchen Sie, vorteilhaft zu rechnen. Übung.2: Berechnen Sie 9% von 2573. c 3 c 4 b 5 c 4 ( b 2 c 2 ) (2x + 3)

Mehr

Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM

Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM 1. Siehe: Einstiegsvoraussetzungen für das 1. Semester 2. Bereich: Zahlen und Maße 2.1. Fehlerrechnung (Begriffe absoluter und relativer

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen Mathematik für Studierende der Biologie Wintersemester 207/8 Grundlagentutorium 4 Lösungen Sebastian Groß Termin Mittwochs 5:45 7:45 Großer Hörsaal Biozentrum (B00.09) E-Mail gross@bio.lmu.de Sprechzeiten

Mehr

Übungen zu dem Mathe-Fit Kurs

Übungen zu dem Mathe-Fit Kurs Hochschule Darmstadt Fachbereich Mathematik und Naturwissenschaften WS 00/ Übungen zu dem Mathe-Fit Kurs Thema : Mengen A.. Durch welche charakterisierenden Eigenschaften können die folgenden Mengen beschrieben

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Von Dr. Karl Bosch Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim 10., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

Analysis Leistungskurs

Analysis Leistungskurs Universität Hannover September 2007 Unikik Dr. Gerhard Merziger Analysis Leistungskurs Themen Grundlagen, Beweistechniken Abbildungen (surjektiv, injektiv, bijektiv) Vollständige Induktion Wichtige Ungleichungen

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

Fachbereich I Management, Controlling, Health Care. Mathematikvorkurs. Wintersemester 2017/2018. Elizaveta Buch

Fachbereich I Management, Controlling, Health Care. Mathematikvorkurs. Wintersemester 2017/2018. Elizaveta Buch Fachbereich I Management, Controlling, Health Care Mathematikvorkurs Wintersemester 2017/2018 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Prozentrechnung Dienstag Binomische

Mehr

LÖSUNGSSCHABLONE Basiswissen Mathematik für Ingenieurstudiengänge

LÖSUNGSSCHABLONE Basiswissen Mathematik für Ingenieurstudiengänge LÖSUNGSSCHABLONE Basiswissen Mathematik für Ingenieurstudiengänge Zweite Fassung Mai 04 Duale Hochschule Baden-Württemberg Stuttgart Campus Horb Testfragen Schreiben Sie das Ergebnis in das dafür vorgesehene

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Eine Einführung mit Beispielen und Übungsaufgaben von Prof. Dr. Karl Bosch 14., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Grundlagen der Mengenlehre 1 1.1

Mehr

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Übungsheft

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Übungsheft Vorkurs Mathematik Vorbereitung auf das Studium der Mathematik Übungsheft Dr. Johanna Dettweiler Institut für Analysis 0. Oktober 009 Aufgaben zu Kapitel Die Nummerierung der Aufgaben bezieht sich auf

Mehr

Brückenkurs Mathematik ( )

Brückenkurs Mathematik ( ) Fachhochschule Hannover Fachbereich Elektrotechnik Dr. Gerhard Merziger Brückenkurs Mathematik 4.9. 5.9.006) Montag 4.9.06 Zahlen: IN, Z, Q, IR 0) Bruchrechnung:... Rechnen mit rationalen Zahlen Bruchrechnung)

Mehr

Schulstoff. Übungen zur Einführung in die Analysis. (Einführung in das mathematische Arbeiten) Sommersemester 2010

Schulstoff. Übungen zur Einführung in die Analysis. (Einführung in das mathematische Arbeiten) Sommersemester 2010 Übungen zur Einführung in die Analysis (Einführung in das mathematische Arbeiten) Sommersemester 010 Schulstoff 1. Rechnen mit Potenzen und Logarithmen 1. Wiederholen Sie die Definiton des Logarithmus

Mehr

UND MOSES SPRACH AUCH DIESE GEBOTE

UND MOSES SPRACH AUCH DIESE GEBOTE UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel

Mehr

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos:

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos: FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli 2004 Kontakt und weitere Infos: www.schule.barmetler.de Inhaltsverzeichnis 1 Wiederholung 5 1.1 Bruchrechnen.............................

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

Definitions- und Formelübersicht Mathematik

Definitions- und Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar

Mehr

Musteraufgaben zu den Mathematikmodulen Ein Selbsttest

Musteraufgaben zu den Mathematikmodulen Ein Selbsttest Musteraufgaben zu den Mathematikmodulen Ein Selbsttest I. Grundlagen der Mathematik I Terme und Gleichungen, elementare Funktionen (bis zu 5 h) Grundsätzliches zum Vereinfachen von Termen und Lösen von

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft

Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Bei Studienbeginn am 15. September 2014 wird im Fach Mathematik die Beherrschung des Stoffes der kaufmännischen Berufsmatura vorausgesetzt.

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar

Mehr

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs.

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Exponentialfunktionen und Logarithmen Inhaltsverzeichnis 1 Einführung 2 2

Mehr

Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften. 1 Übungsblatt Mengen. Dr. Jörg Horst WS 2014/2015

Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften. 1 Übungsblatt Mengen. Dr. Jörg Horst WS 2014/2015 Dr. Jörg Horst WS 04/05 Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften Übungsblatt Mengen Aufgabe : Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 0 < x

Mehr

Bestimmen Sie jeweils die Lösungsmenge der Gleichung: 1. Bestimmen Sie jeweils die Lösungsmenge der Gleichung:

Bestimmen Sie jeweils die Lösungsmenge der Gleichung: 1. Bestimmen Sie jeweils die Lösungsmenge der Gleichung: Baden-Württemberg Übungsaufgaben für den Pflichtteil Gleichungslehre Stichworte: lineare Gleichungen; quadratische Gleichungen; Gleichungen höherer Ordnung; Substitution; Exponentialgleichungen; trigonometrische

Mehr

Skript zur Verwendung von Übungszwecken. Aufgabensammlung zum Propädeutikum Mathematik. WiSe 2017/18

Skript zur Verwendung von Übungszwecken. Aufgabensammlung zum Propädeutikum Mathematik. WiSe 2017/18 Skript zur Verwendung von Übungszwecken Aufgabensammlung zum Propädeutikum Mathematik für die Studiengänge Maschinenbau (-MB), Ingenieurwissenschaften (-IngWiss), Wirtschaftsingenieurwesen (-WiIng) und

Mehr

Übungsaufgaben zur Analysis

Übungsaufgaben zur Analysis Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)

Mehr

Potenzen, Wurzeln, Logarithmen

Potenzen, Wurzeln, Logarithmen KAPITEL 3 Potenzen, Wurzeln, Logarithmen 3.1 Funktionen und Umkehrfunktionen.............. 70 3.2 Wurzeln............................ 72 3.3 Warum ist a 2 + b 2 a + b?................. 73 3.4 Potenzfunktion........................

Mehr

TEST Basiswissen Mathematik für Ingenieurstudiengänge

TEST Basiswissen Mathematik für Ingenieurstudiengänge TEST Basiswissen Mathematik für Ingenieurstudiengänge Zweite Fassung Mai 04 Dieser Test beinhaltet Aufgaben zu den wesentlichen Themen im Bereich Mathematik, die Basiswissen für ein Ingenieurstudium sind.

Mehr

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y 5. Die natürliche Exponentialfunktion und natürliche Logarithmusfunktion ================================================================== 5.1 Die natürliche Exponentialfunktion f : x 2 x f : x 1 2 x

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1 Studiengang: Matrikelnummer: 3 4 5 6 Z Punkte Note Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 8. 7. 6, 8. -. Uhr Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche Ausarbeitungen

Mehr

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort 1 I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation............. 7 Division mit Rest........................... 7 Teiler und Primzahlen........................

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Übungsblatt 1 zum Propädeutikum 1. Gegeben seien die Mengen A = {,, 6, 7}, B = {,, 6} und C = {,,, 1}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geben Sie diese in aufzählender Form an.. Geben

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 10

Technische Universität München Zentrum Mathematik. Übungsblatt 10 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt Hausaufgaben Aufgabe. Sei f : R 2 R gegeben durch x 2 y für (x, y)

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Übungsblatt 1 zum Propädeutikum 1. Gegeben seien die Mengen A = {,, 6, 7}, B = {,, 6} und C = {,,, 1}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geben Sie diese in aufzählender Form an.. Geben

Mehr

Mathematischer Vorbereitungskurs für Ökonomen. Exponentialfunktionen und Logarithmen

Mathematischer Vorbereitungskurs für Ökonomen. Exponentialfunktionen und Logarithmen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Exponentialfunktionen und Logarithmen Inhalt:. Zinsrechnung. Exponential- und Logaritmusfunktionen

Mehr

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele Grundkurs Höhere Mathematik I (für naturwissenschaftliche Studiengänge) Beispiele Prof. Dr. Udo Hebisch Diese Beispielsammlung ergänzt das Vorlesungsskript und wird ständig erweitert. 1 DETERMINANTEN 1

Mehr

Analysis 5.

Analysis 5. Analysis 5 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch f(x) = 2 e 2 x 2 (x D f ) a) Geben Sie den größtmöglichen Definitionsbereich der Funktion f an und führen Sie für die Funktion

Mehr

Mathematik 1 Bachelorstudiengang Maschinenbau

Mathematik 1 Bachelorstudiengang Maschinenbau Mathematik 1 Bachelorstudiengang Maschinenbau Prof. Dr. Stefan Etschberger Hochschule Augsburg Sommersemester 2012 7. Differentialrechnung einer Veränderlichen 7.2. Differentialquotient und Ableitung

Mehr

Einstiegsvoraussetzungen 1. Semester

Einstiegsvoraussetzungen 1. Semester Einstiegsvoraussetzungen 1. Semester Bereich: Zahlen und Maße Mengen können Mengen angeben. verstehen die Begriffe Element von und Teilmenge und können sie anwenden. kennen die Mengenoperationen Vereinigung,

Mehr

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B. SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1 SBP Mathe Grundkurs 1 # 0 by Clifford Wolf SBP Mathe Grundkurs 1 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation 7 Division mit Rest 7 Teiler und Primzahlen 9 Der ggt und das kgv 11 2. Rechnen mit Brüchen

Mehr

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Institut für Mathematik Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Ausführliches Inhaltsverzeichnis mit thematischen Links Prof. Dr. Konrad Engel Prof. Dr. Roger Labahn {konrad.engel, roger.labahn}@uni-rostock.de.09.

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

M Mathematikvorkurs SoSe 18

M Mathematikvorkurs SoSe 18 Fachbereich I Management, Controlling, Health Care M Mathematikvorkurs SoSe 18 Oliver Krieger Ablauf 08:45 10:15 Vorlesung 10:15 10:30 Pause 10:30 12:00 Vorlesung 12:00 13:00 Mittagspause 13:00 16:15 Tutorium

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 9. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 4 M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 6. Gegeben ist

Mehr

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11.

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11. Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version.0. September 05) E. Cramer, U. Kamps, M. Kateri, M. Burkschat 05 Cramer, Kamps, Kateri, Burkschat

Mehr

( 4-9 ) ( 5x + 16 ) -5x c - d - ( c - d ) 0 4. ( 3b + 4d ) - ( 5b - 3d ) 7d - 2b a - [ 5b - ( 6a + 7b ) ] 3a + 2b

( 4-9 ) ( 5x + 16 ) -5x c - d - ( c - d ) 0 4. ( 3b + 4d ) - ( 5b - 3d ) 7d - 2b a - [ 5b - ( 6a + 7b ) ] 3a + 2b Klammerrechnung Für das Rechnen mit Klammern gilt: Steht vor einer Klammer ein Minus, so drehen sich beim Auflösen der Klammern die Vorzeichen um. Distributivgesetz: Wird eine ganze Zahl mit einer eingeklammerten

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Vereinfachen Sie folgende Brüche auf einen ganzzahligen, teilerfremden Bruch oder eine endliche Dezimalzahl. 0,033 = 6 14 = 8 0,3 : 4

Vereinfachen Sie folgende Brüche auf einen ganzzahligen, teilerfremden Bruch oder eine endliche Dezimalzahl. 0,033 = 6 14 = 8 0,3 : 4 Aufgabe : Probe Vereinfachen Sie folgende Brüche auf einen ganzzahligen, teilerfremden Bruch oder eine endliche Dezimalzahl. 0,9 0, = 0, 0, =, 0,0 =,, = : 0,7 = 8 0, : 0, = 7 0, 0, = 0, = 0,7 0,8 0 =,

Mehr

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen 4.1. Grundlegende Definitionen Elemente der Analysis I Kapitel 4: Funktionen einer Variablen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 22./29. November 2010 http://www.mathematik.uni-trier.de/

Mehr

Übungsaufgaben mit Lösungen

Übungsaufgaben mit Lösungen Dr. O. Wittich Aachen,. September 7 S. Bleß, M. Sc. Analysis Übungsaufgaben mit Lösungen im Vorkurs Mathematik 7, RWTH Aachen University Intervalle, Beschränktheit, Maxima, Minima Aufgabe Bestimmen Sie

Mehr

Brüche, Polynome, Terme

Brüche, Polynome, Terme KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................

Mehr

6 Übungsaufgaben. 6.1 Übungsaufgaben zu Kapitel ÜBUNGSAUFGABEN

6 Übungsaufgaben. 6.1 Übungsaufgaben zu Kapitel ÜBUNGSAUFGABEN 0 6 ÜBUNGSAUFGABEN 6 Übungsaufgaben In diesem Kapitel sind Übungsaufgaben zusammengestellt, die den Stoff der Vorlesung vertiefen und die für Prüfungen erforderliche Praxis und Schnelligkeit vermitteln

Mehr

Kapitel 6. Funktionen. Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49

Kapitel 6. Funktionen. Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49 Kapitel 6 Funktionen Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49 Reelle Funktion Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge als auch die Wertemenge Teilmengen

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Einstiegsvoraussetzungen 3. Semester

Einstiegsvoraussetzungen 3. Semester Einstiegsvoraussetzungen 3. Semester Wiederholung vom VL Bereich: Zahlen und Maße Fehlerrechnung kennen Fehler in der Darstellung von Zahlen und können Ergebnisse auf sinnvolle Art runden. verstehen die

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK Sommersemester 006 Zahl der Blätter: 5 Blatt 1 s. unten Hilfsmittel: Literatur, Manuskript, keine Taschenrechner und sonstige elektronische Rechner Zeit:

Mehr

(Unvollständige) Zusammenfassung Analysis Grundkurs

(Unvollständige) Zusammenfassung Analysis Grundkurs (Unvollständige) Zusammenfassung Analysis Grundkurs. Ableitungs und Integrationsregeln (Folgende 0 Funktionen sind alles Funktionen aus dem Zentralabitur Grundkurs.) a) f(t) = 0,0t e 0,t b) f(t) = t 3

Mehr

Klausur zur Mathematik für Maschinentechniker

Klausur zur Mathematik für Maschinentechniker SS 04. 09. 004 Klausur zur Mathematik für Maschinentechniker Apl. Prof. Dr. G. Herbort Aufgabe. Es sei f die folgende Funktion f(x) = 4x 4x 9x 6 x (i) Was ist der Definitionsbereich von f? Woistf differenzierbar,

Mehr

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung LMU MÜNCHEN Mathematik für Studierende der Biologie Wintersemester 2016/17 GRUNDLAGENTUTORIUM 5 - Lösungen Anmerkung Es handelt sich hierbei um eine Musterlösung so wie es von Ihnen in einer Klausur erwartet

Mehr

Rationales Rechnen. Punktrechnung geht vor Strichrechnung

Rationales Rechnen. Punktrechnung geht vor Strichrechnung Rationales Rechnen Au ösung von Klammern Die Reihenfolge von Rechenoperationen wird durch Klammersetzung 1 festgelegt. Um Klammern zu sparen, vereinbart man: Multiplikation bzw. Division werden vor der

Mehr

Ü B U N G S A U F G A B E N. zum Brückenkurs Mathematik 2017

Ü B U N G S A U F G A B E N. zum Brückenkurs Mathematik 2017 Technische Universität Dresden, Fachrichtung Mathematik Prof. Dr. F. Schuricht, Dr. M. Herrich Ü B U N G S A U F G A B E N zum Brückenkurs Mathematik 07 Allgemeine Hinweise Die Übungen zum Brückenkurs

Mehr

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts 1. Stetigkeit und Grenzwerte: (a) Aus der folgenden grafischen Darstellung von y 1 (x) = x 2/3 /(1 + x 2 ) ist

Mehr

Zahlen und Funktionen

Zahlen und Funktionen Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen

Mehr

Übungsaufgaben Mathematik I Bachelor Informatik. a) Geben Sie eine rekursive Definition der Multiplikation der natürlichen Zahlen an.

Übungsaufgaben Mathematik I Bachelor Informatik. a) Geben Sie eine rekursive Definition der Multiplikation der natürlichen Zahlen an. Fachhochschule Stralsund Fachbereich Elektrotechnik und Informatik Prof. Dr. W. Kampowsky Wintersemester 206/207 Übungsaufgaben Mathematik I Bachelor Informatik Aufgabe -0 a) Geben Sie eine rekursive Definition

Mehr

Wurzelfunktionen Aufgaben

Wurzelfunktionen Aufgaben Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Der Graph einer Funktion

Mehr

Übungsaufgaben zur Kurvendiskussion

Übungsaufgaben zur Kurvendiskussion SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen

Mehr