Analysis Leistungskurs
|
|
|
- Christel Kalb
- vor 9 Jahren
- Abrufe
Transkript
1 Universität Hannover September 2007 Unikik Dr. Gerhard Merziger Analysis Leistungskurs Themen Grundlagen, Beweistechniken Abbildungen (surjektiv, injektiv, bijektiv) Vollständige Induktion Wichtige Ungleichungen Folgen und Reihen Polynome, rationale Funktionen Trigonometrische, Exponential, Logarithmus Funktionen Differentiation, Integration Mehrfache Integration
2 Aufgaben: Grundlagen, Potenzen, Wurzeln, Logarithmen () Beweise Bildungsgesetz und Symmetrie des Pascalschen Dreiecks: ( nk ) ( + n ) ( k + = n + ) k + und ( n) ( k = n n k). (2) Berechne x aus 2 x = 4, x 2 3 = 2, 2 2 = x, log = x, log x 2 = 2 3, log 3 x = 2. (3) Zeige: log a x = log b x log b a. (4) Berechne x aus 2 x ln x = 3 ln x. Abbildungen (surjektiv, injektiv, bijektiv) (5) Sind A, B IR und ist f : A B streng monoton wachsend, so ist f injektiv. (6) Sind folgende Funktionen surjektiv, injektiv, bijektiv? { { IR IR IR IR>0 f : x e x f 2 : x e x f 3 : { IR IR x x 3 x f 4 : { ] π 2, π 2 [ IR x tan x Aussagen, Quantoren, direkter Beweis, indirekter Beweis (7) Sind A, B Aussagen, so gilt A B = A B (de Morgan sche Regel) (A = B) = (A B) = (B = A) (Ersetzen der Implikation) A = B = A B (Verneinung der Implikation) (8) Man negiere folgende Aussagen: n n 0 = a n < ɛ. Für alle ɛ > 0 gibt es ein n 0 IN, so daß für alle n IN A(n, n 0 ) gilt. Für alle ɛ > 0 gibt es ein n 0 IN, so daß für alle n IN gilt: n n 0 = a n < ɛ. (Bedeutung?) (9) Indirekter Beweis: Die Aussage A = B ist gleichbedeutend zu A B = A A B = B A B = F (also #, Widerspruch zur Voraussetzung A), (also #, Widerspruch zur Annahme B), (also #, F steht für eine offensichtl. falsche Aussage).
3 (0) Beweise direkt: log a x = log b x, 0 < a, b. log b a () Beweise indirekt: x 3 < 0 = x < 0 (Widerspruch zur Voraussetzung) 2 / Q (Widerspruch zur Annahme) ab a+b, a, b 0 (führt auf eine offensichtlich falsche Aussage) 2 (2) Man negiere folgende Aussage: x 0 D ɛ > 0 δ > 0 x D x x 0 < δ = f(x) f(x 0 ) < ɛ. ɛ > 0 δ > 0 x D x 2 D, x x 2 < δ = f(x ) f(x 2 ) < ɛ. Was bedeuten diese Aussagen, falls f : D IR eine reelle Funktion ist? Vollständige Induktion (3) Für jede natürliche Zahl n gilt: n k= k = n = n(n+) 2. Die Summe der ersten n ungeraden natürlichen Zahlen ist n 2. (4) Ist n 3, so gilt n 2 2n + für alle n IN. (5) Ist n 5, so ist 2 n > n 2 für alle n IN. (6) Für jede natürliche Zahl n 0 gilt 2 n > n 3. (7) n q k = qn+, q (endliche geometrische Reihe) q Wichtige Ungleichungen (8) ab a+b für a, b 0. Geometrisches-, arithmetisches Mittel Ungleichung 2 (9) x y x y für x, y IR n. Cauchy Schwarzsche Ungleichung (20) x + y x + y für x, y IR n. Dreiecksungleichung (2) Wichtige Ungleichungen für Exponential bzw. Logarithmusfunktion: x + e x x, für x <, x x ln x x, für x > 0. (22) Ist x, so gilt ( + x) n + nx für alle n IN (Bernoulli Ungleichung).
4 Folgen und Reihen (23) Untersuche die Folgen (bechränkt, monoton, alternierend, Bildungsgesetz, Häufungswert, Grenzwert):, 2, 3, 4,... 4, 4, 4, 4,..., 2, 3, 4,... (d) 2, 2 3, 2 9, 2 27,... (e) 3, 2 5, 3 7, 4 9,... (f), 2, 4, 8, 6,... (g), 2 + 2,, 2 + 3,, 2 + 4,,... (24) Die Folgen a n = ( + n )n und b n = ( + n )(n+) sind monoton und beschränkt und konvergieren gegen den gleichen Grenzwert (e= ). (25) Die Fibonacci Folge (a n ) ist rekursiv def. durch a 0 = a =, a n+2 = a n + a n+. Man bestimme eine explizite Darstellung der Fibonacci Folge. Man zeige: n a n a n+ = 2 ( 5 ), (goldener Schnitt). n (26) Zeige: n 2n+ = 2, n + n = 0, n (27) Zeige: n n, n a, für 0 < a, q n 0, für q <. (28) Zeige: (29) Berechne (30) Zeige: (3) Zeige: n k= n= q k = qn+, q (endliche geometrische Reihe), q q k = q, q < 6 2 k, k=2 2 k, (geometrische Reihe). k=2 = (harmonische Reihe). k n n n 2 +n divergiert. (32) Ein Kapital sei zu p % angelegt. 4 2 k+ 3 k, Wie groß ist das Kapital nach n Jahren? (n+) 3 (n ) 3 n (2n+3) 2 = 3 2. ( ) k x 2k. Begründe die Faustformel: Verdoppelung nach 70 n Jahren. Hinweis: Für kleine x gilt ln( + x) x. (33) Um 0 Uhr stehen großer und kleiner Zeiger einer Uhr genau übereinander. Wann stehen sie erstmalig wieder übereinander? Bestimme einen expliziten Ausdruck für die Folge (x n ) der Minuten, zu der die Zeiger übereinanderstehen. Wie oft haben sie in genau 2 Stunden übereinandergestanden (Start bei 0 bzw. Uhr)?
5 Polynome, rationale Funktionen (34) Skizziere folgende Polynome (Nullstellen, evtl. Linearfaktorzerlegung): y = x 3 3x 2 x + 3, y = x 4 3x 2 + 2, y = x 5 2x 4 + 5x 3 + 6x 2, (d) y = 6x 4 + 7x 3 3x 2 4x + 4. (35) Skizziere folgende rationale Funktionen (Nullstellen, Polstellen, Asymptote): y = y = (x+)(x 2), x x (x+)(x 2), y = x2 x+. (d) y = (x+3)2 (x+2)x 3 (x ) 2 (x 3) 3 ) (x+2) 4 (x+) 2 (x ) 2 (x 2) 3 (x 3). Trigonometrische, Exponential, Logarithmus Funktionen (36) Skizziere 3 sin x, 3 sin 2x, 3 sin(2x + π 3 ). (37) Skizziere e x, e x, 2 x, 3 x, ( ) x, 2 3e 2x 4, e x sin x. (38) Skizziere ln x, log 2 x, log 3 x, ln x, ln x, ln x, ln 2 x, ln x, x ln x. (39) Eine Population der Anfangsgröße m 0 = 000 habe eine tägliche Wachstumsrate von 0%. Wieviele Individuen y(0) sind nach 0 Tagen vorhanden? Nach wievielen Tagen hat sich die Population verdoppelt? (40) Die Halbwertzeit einer Substanz (Pu 239) beträgt Jahre. Wieviel ist von kg der Substanz nach 00 Jahren noch vorhanden? (4) Für alle x IR gilt + x e x.
6 Differentiation, Integration (42) Man differenziere (Summen, Produkt, Quotienten, Kettenregel) x 3 + 2x 2 + 4, x ln x, 2x 2 e x sin x, tan ϕ, (t 3 ) 2, e cos t. (43) Man berechne Steigung und Tangente an die Kurve x 2 + y 2 = 5 im Punkt (, 2). (44) Man berechne folgende Grenzwerte (l Hospital): sin x x 0 x x, sin 2 x x 0 x, x 0 x 3x e x, 3 x e x, sin x ln x x 2, x x tan x x 0 x, x ln x, x 0 + x 0 + x x. (45) Man untersuche folgende Funktion auf Differenzierbarkeit im Nullpunkt. { x sin f(x) = x, x 0 0, x = 0 (46) Welcher Punkt auf dem Parabelbogen y = 3x x 2, 0 x 3 hat vom Nullpunkt (0, 0) maximalen Abstand? (47) Fertige aus drei gleichbreiten Brettern eine Rinne mit maximalem Querschnitt! (48) Aus einem Draht der Länge L forme man einen Kreis und ein Quadrat so, daß die Summe der Flächeninhalte möglichst groß wird. (49) Zwei Masten von je 27m Höhe stehen auf gleichmäßig ansteigendem Gelände; ihre waagerechte Entfernung beträgt 200m, ihr Höhenunterschied 5m. Die Spitzen der Masten sind durch Leitungen verbunden. Die B in der Spitze A des tiefer gelegenen Mastes an die Leitung gelegte Tangente trifft den zweiten Mast im Punkt C, der 9m 200m A 9m tiefer liegt als A. C In welchem Punkt kommt die Leitung dem Boden am 27m nächsten, wenn man sie näherungsweise als Parabel (statt cosh Funktion, Kettenlinie) mit senkrechter Achse auffaßt? (50) Eine 400m Laufbahn, bestehend aus zwei parallelen Geraden mit zwei angesetzten Halbkreisen, soll so angelegt werden, daß der Inhalt des Rechtecks zwischen den Geraden möglichst groß wird. Wie lang ist die Gerade, wie groß ist das Rechteck? (5) Unter evtl. teilweiser Benutzung einer Mauer der Länge L = 50m und 00m Draht zäune man ein rechteckiges Grundstück so ein, daß der Flächeninhalt F möglichst groß wird.
7 (52) Funktionen mehrerer Veränderlicher Gegeben sei die Fläche z = y +x 2 im IR 3. Man veranschauliche sich diese Fläche. Berechne den Gradienten grad f(, 2). Berechne die Tangentialebene an die Fläche im Punkt (, 2, ). (53) Man bestimme die partiellen Ableitungen von f(x, y) = x 2 y 3 + xy 2 + 2y, den Gradienten von f an der Stelle (x, y) und an der Stelle (0, ), sowie die Tangente an die Niveaulinie von f durch (0, ). (54) Es sei z = f(x, y) = x 2 y 3y. Man berechne: die Schnittkurven von w = f(x, y) mit den Ebenen x = 4 bzw. y = 3, die Tangentenvektoren dieser Kurven in (4, 3, f(4, 3)), die Ebene, die von ihnen in diesem { Punkt aufgespannt wird. x k y (55) Untersuche die Funktionen f k (x, y) = x 2 +y 2, (x, y) (0, 0) (k =, 2, 3) 0 (x, y) = (0, 0) im Punkt (0, 0) auf Stetigkeit, partielle Differenzierbarkeit, Differenzierbarkeit. (56) Differenziere mit der Kettenregel: w = e x 2y, x = sin t, y = t 3, berechne dw dt. w = x 2 ln y, x = u v, y = 3u 2v, berechne w u und w v. w = xy x 2 +y 2 und x = x(r, ϕ) = r cos ϕ y = y(r, ϕ) = r sin ϕ, berechne w r und w ϕ. Mehrfache Integration (57) Man berechne V (2x + y + z) dv, wobei V der von den Koordinatenebenen und der Ebene E : x + y + z = begrenzte Körper ist. (58) Berechne das Volumen der Kugel vom Radius R (d) als Einfachintegral (Rotationskörper!), als Doppelintegral (Polarkoordinaten!), als Dreifachintegral (Kugelkoordinaten!), mittels Guldinscher Regel (Schwerpunkt der oberen Halbkreisfläche ist (0, 4 3π R)).
Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University
Dr. O. Wittich Aachen,. September 7 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 7, RWTH Aachen University Intervalle, Beschränktheit, Maxima, Minima Aufgabe Bestimmen Sie jeweils, ob
Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende
Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.
Analysis I, WiSe 2013/14, 04.02.2014 (Iske), Version A 1 Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. a) Welche der folgenden Aussagen über Folgen sind sinnvoll und
Mengen, Relationen, Abbildungen A B = A B. Schreiben Sie die unten dargestellte Relation als Teilmenge von A B.
Aufgabensammlung zum Vorkurs in Mathematik Thomas Püttmann Mengen, Relationen, Abbildungen Aufgabe : Verdeutlichen Sie das Distributivgesetz und das Gesetz von De Morgan durch Mengendiagramme. A (B C)
Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9.
9. Mehrdimensionale Analysis 1/42 9. Mehrdimensionale Analysis Differentialrechnung für skalare Felder 2/42 Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare
Ferienkurs Stetigkeit und Konvergenz Seite 1. Technische Universität München Ferienkurs Analysis 1. Musterlösung = lim.
Ferienkurs Stetigkeit und Konvergenz Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit und Konvergenz Musterlösung 6.03.20. Grenzwerte I Berechnen Sie lim f(), lim f()
Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen
Vorkurs Mathematik für Naturwissenschaftler und Ingenieure
Institut für Mathematik Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Ausführliches Inhaltsverzeichnis mit thematischen Links Prof. Dr. Konrad Engel Prof. Dr. Roger Labahn {konrad.engel,roger.labahn}@uni-rostock.de
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengang Bauingenieurwesen Dresden 2005 . Mengen Kenntnisse
1 Mengenlehre. Maturavorbereitung GF Mathematik. Aufgabe 1.1. Aufgabe 1.2. Bestimme A \ B. Aufgabe 1.3. Aufgabe 1.4. Bestimme B \ A. Aufgabe 1.
Maturavorbereitung GF Mathematik Kurzaufgaben 1 Mengenlehre Aufgabe 1.1 Gegeben sind die Mengen A = {1, 2, 3} und B = {2, 3, 6, 8}. Bestimme A B. Aufgabe 1.2 Gegeben sind die Mengen A = {1, 2, 3} und B
Vorkurs Mathematik für Naturwissenschaftler und Ingenieure
Institut für Mathematik Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Ausführliches Inhaltsverzeichnis mit thematischen Links Prof. Dr. Konrad Engel Prof. Dr. Roger Labahn {konrad.engel,roger.labahn}@uni-rostock.de
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als
Übungen Ingenieurmathematik
Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),
Vorkurs Mathematik für Naturwissenschaftler und Ingenieure
Institut für Mathematik Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Ausführliches Inhaltsverzeichnis mit thematischen Links Prof. Dr. Konrad Engel PD Dr. Roger Labahn {konrad.engel, roger.labahn}@uni-rostock.de.09.
Brückenkurs Mathematik ( )
Fachhochschule Hannover Fachbereich Elektrotechnik Dr. Gerhard Merziger Brückenkurs Mathematik 4.9. 5.9.006) Montag 4.9.06 Zahlen: IN, Z, Q, IR 0) Bruchrechnung:... Rechnen mit rationalen Zahlen Bruchrechnung)
Mathematik 1 Übungsserie 3+4 ( )
Technische Universität Ilmenau WS 2017/2018 Institut für Mathematik Thomas Böhme BT, EIT, II, MT, WSW Aufgabe 1 : Mathematik 1 Übungsserie 3+4 (23.10.2017-04.11.2017) Sei M eine Menge. Für eine Teilmenge
Übungen Analysis I WS 03/04
Blatt Abgabe: Mittwoch, 29.0.03 Aufgabe : Beweisen Sie, daß für jede natürliche Zahl n gilt: n ( ) n (x + y) n = x i y n i, i (b) n ν 2 = ν= i=0 n(n + )(2n + ), 6 (c) 2 3n ist durch 7 teilbar. Aufgabe
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Kartographie/Geoinformatik Vermessung/Geoinformatik Dresden
ARBEITSUNTERLAGEN. zum STARTERKURS an der UNIVERSITÄT DES SAARLANDES
ARBEITSUNTERLAGEN zum STARTERKURS an der UNIVERSITÄT DES SAARLANDES Vorbemerkung Ziel des Propädeutikums ist es, die Schulmathematik wieder ins Gedächtnis zu rufen und eine gemeinsame Grundlage für die
Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University
Priv. Doz. Dr. A. Wagner Aachen, 9. September 6 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 6, RWTH Aachen University Intervalle, Supremum und Infimum Für a, b R, a < b nennen wir eine
Übungsklausur Höhere Mathematik I für die Fachrichtung Physik
Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 6..3 Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((3++5) Punkte)
Mathematik I für MB und ME
Übungsaufgaben Aufgaben zur Wiederholung Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 06/07 a) Stellen Sie die Gleichung a b 3+c = a +c, a, b > 0, nach
Prof. Dr. Rolf Linn
Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen
Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem
Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007
Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.
Klausur zur Analysis I WS 01/02
Klausur zur Analysis I WS 0/0 Prof. Dr. E. Kuwert. Februar 00 Aufgabe (4 Punkte) Berechnen Sie unter a) und b) jeweils die Ableitung von f für x (0, ): a) f(x) = e sin x b) f(x) = x α log x a) f (x) =
Übungsaufgaben zur Analysis
Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)
Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren
Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis
Einführung in die Algebra
1 Einführung in die Algebra 1.1 Wichtige Formeln Formel Symbol Definition Wert Bedingungen n Fakultät n! k = 1 2 3 n n N Binomialkoeffizient Binomische Formeln Binomischer Lehrsatz Potenzen ( ) n k Definition
REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth
REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische
Übungen zu Einführung in die Analysis
Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung
Vorlesung Analysis I WS 07/08
Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................
Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem
ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld
ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,
Lösung: Serie 7 - Hyperbelfunktionen Newton-Verfahren
a Lösung: Serie 7 - Hyperbelfunktionen Newton-Verfahren y ex +e x e x ye x + 0 e x y ± y Da y ist, ist die Wurzel auf der rechten Seite immer reell Wir interessieren uns nur für nichtnegative x Der Logarithmus
Übungsaufgaben zu Kapitel 1 bis 4 (Studiengang Produktionstechnik)
Hochschule für Technik und Wirtschaft Dresden Wintersemester 8/9 Fakultät Informatik/Mathematik Prof. Dr. B. Jung Übungsaufgaben zu Kapitel bis 4 (Studiengang Produktionstechnik) Aufgabe : Vereinfachen
Brückenkurs Mathematik zum Sommersemester 2015
HOCHSCHULE HANNOVER UNIVERSITY OF APPLIED SCIENCES AND ARTS Dipl.-Math. Xenia Bogomolec Brückenkurs Mathematik zum Sommersemester 2015 Übungsblatt 1 (Grundlagen) Aufgabe 1. Multiplizieren Sie folgende
Mathematik Rechenfertigkeiten
0 Mathematik Rechenfertigkeiten Lösungen zu den Übungen Donnerstag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 90, 8057 Zürich Erstellt von Dr. Irmgard Bühler (Überarbeitung:
Analysis I Lösung von Serie 9
FS 07 9.. MC Fragen: Ableitungen (a) Die Figur zeigt den Graphen einer zweimal differenzierbaren Funktion f. Was lässt sich über f, f und f sagen? Nichts Die Funktion f ist positiv. Die Funktion f ist
Kapitel 4 Folgen, Reihen & Funktionen
Kapitel 4 Folgen, Reihen & Funktionen Inhaltsverzeichnis FOLGEN REELLER ZAHLEN... 3 DEFINITION... 3 GRENZWERT... 3 HÄUFUNGSPUNKT... 4 MONOTONIE... 4 BESCHRÄNKTHEIT... 4 SÄTZE... 4 RECHNEN MIT GRENZWERTEN...
Stetigkeit von Funktionen
Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte
c) y = ln( 2x + 5) d) y = 2) Verwandeln Sie die gegebene implizite Funktion in die explizite Form y(x):
Übungen zur Einführung in die Physikalischen Rechenmethoden I (Mathematische Grundlagen für das Physikstudium I) WS /, 6 VO+UE Univ. Prof. Dr. Christoph Dellago ) Finden Sie die Umkehrung von folgenden
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Betriebswirtschaft International Business Dresden 05 . Mengen
Klausur - Analysis I Lösungsskizzen
Klausur - Analysis I Lösungsskizzen Aufgabe 1.: 5 Punkte Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Kennzeichnen Sie wahre Aussagen mit und falsche Aussagen mit. Es sind keine Begründungen
Aufgabe 1. Version A Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.
Analysis I, WiSe 013/14, 04.0.014 (Ise 1 Aufgabe 1. Version A Multiple Choice (4 Punte. Kreuzen Sie die richtige(n Antwort(en an. a Welche der folgenden Aussagen über Folgen sind sinnvoll und wahr? jede
Numerische Verfahren und Grundlagen der Analysis
Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)
Brückenkurs Rechentechniken
Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige
1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2.
1. Aufgabe 8 Punkte Geben Sie die Bereiche, auf denen die Funktion f : R R mit f (x) = (x + 1) e x monoton wachsend oder fallend ist, an, und untersuchen Sie die Funktion auf lokale und globale Extrema.
Analysis I. 1. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge
Vorlesungsprüfung Differential- und Integralrechnung (PHY.C30) Fragenkatalog
Vorlesungsprüfung Differential- und Integralrechnung (PHY.C30) Fragenkatalog Im folgenden finden Sie eine Liste von typischen Prüfungsfragen für die Vorlesungsprüfung Differential- und Integralrechnung
Mathematik Rechenfertigkeiten
2011 Mathematik Rechenfertigkeiten Übungen Donnerstag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 190, 8057 Zürich Erstellt von Dr. Irmgard Bühler (Überarbeitung: Dominik
Analysis I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 08/9 c Dr. K. Rothe Analysis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt Mengen Darstellung durch: a) Aufzählung
Nachklausur zur Analysis 1, WiSe 2016/17
BERGISCHE UNIVERSITÄT WUPPERTAL 04.04.7 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis, WiSe 06/7 Aufgabe
Klausur Höhere Mathematik I für die Fachrichtung Physik
Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche
Mathematik Rechenfertigkeiten
2012 Mathematik Rechenfertigkeiten Übungen Donnerstag Dr. Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 190, 8057 Zürich Erstellt von Dr. Irmgard Bühler (Überarbeitung: Dr.
Nachklausur Analysis I
SS 008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Nachklausur Analysis I 07.0.008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung
Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29
Inhaltsverzeichnis Vorwort I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation 7 Division mit Rest 7 Teiler und Primzahlen 9 Der ggt und das kgv 11 2. Rechnen mit Brüchen
Analysis für Informatiker und Statistiker Nachklausur
Prof. Dr. Peter Otte Wintersemester 213/14 Tom Bachmann, Sebastian Gottwald 14.3.214 Analysis für Informatiker und Statistiker Nachklausur Lösungsvorschlag Name:.......................................................
Tutorium: Analysis und Lineare Algebra
Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 25.06.2018 20. Juni 2018 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2018 Steven Köhler 20. Juni 2018 Konvergenz
Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant)
Modul Grundbildung Analysis WiSe 10/11 Im Folgenden bedeutet A: Wurde in diesem Kapitel behandelt B: Interessante Aufgaben C: Weitere Fragen (Nicht nur für die Klausur interessant) V1 Konvergenz, Grenzwert
Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29
Inhaltsverzeichnis Vorwort 1 I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation............. 7 Division mit Rest........................... 7 Teiler und Primzahlen........................
Schein-Klausur HM II F 2003 HM II : S-1
Schein-Klausur HM II F 3 HM II : S- Aufgabe : Berechnen Sie die folgenden Grenzwerte: a) lim x ln ( + x) x b) lim (coshx) sin x Lösung: Wir verwenden in beiden Fällen die Regel von de l Hospital. a) Es
K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis
Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).
Prüfungsfragen zur Theorie
Prüfungsfragen zur Theorie Formulieren Sie die Monotoniegesetze (Rechenregeln für Ungleichungen)! Satz: Für alle a,b,c,d gilt: a b und c.d a+c b+d Satz: Für alle a,b,c,d + o gilt: a b und c d ac bd 1 Satz:
D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 1
D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie. Frage Welche der Aussagen sind richtig? Eine divergente Folge ist nicht beschränkt. Falsch. Z.B. ist {( ) n } n N beschränkt und divergent.
Mathematik 2 SS 2016
Mathematik 2 SS 2016 2. Übungsblatt Gruppe 1 18. Man zeige, dass die Gleichung f(x, y) = y 5 e y (2x 2 + 3) sin y + x 2 y 2 x cos x = 0 in einer Umgebung des Punktes P (0, 0) nach y aufgelöst werden kann,
V.1 Konvergenz, Grenzwert und Häufungspunkte
V.1 Konvergenz, Grenzwert und Häufungspunkte S. 108 110 A. Bereits bekannt: Folge Extrem wichtig: Grenzwert bzw. Konvergenz: a n a oder lim n a n = a : ε R, ε > 0 n 0 N : a n a < ε n n 0 Begriffe: Fast
Schulstoff. Übungen zur Einführung in die Analysis. (Einführung in das mathematische Arbeiten) Sommersemester 2010
Übungen zur Einführung in die Analysis (Einführung in das mathematische Arbeiten) Sommersemester 010 Schulstoff 1. Rechnen mit Potenzen und Logarithmen 1. Wiederholen Sie die Definiton des Logarithmus
Analysis I. 7. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 7. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine surjektive Abbildung f: L M. () Ein archimedisch
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Allgemeiner Maschinenbau Fahrzeugtechnik Dresden 2002
Analysis I. 6. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.
Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften. 1 Übungsblatt Mengen. Dr. Jörg Horst WS 2014/2015
Dr. Jörg Horst WS 04/05 Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften Übungsblatt Mengen Aufgabe : Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 0 < x
Mathematik Rechenfertigkeiten
2014 Mathematik Rechenfertigkeiten Übungen Donnerstag Dr. Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 190, 8057 Zürich Erstellt von Dr. Irmgard Bühler (Überarbeitung: Dr.
Übungen zur Vorlesung Einführung in die Mathematik
Übungen zur Vorlesung Einführung in die Mathematik von G. Greschonig und L. Summerer, WS 2017/18 Aufgabe 1. Zeige, dass das Quadrat einer ungeraden Zahl, vermindert um 1, stets durch 4 teilbar ist. Folgere
Klausur Analysis für Informatiker Musterlösung
Prof. Dr. Torsten Wedhorn WS 9/ Dr. Ralf Kasprowitz Elena Fink Klausur Analysis für Informatiker Musterlösung 9.2.2 Name, Vorname Studienfach Matrikelnummer Semester Übungsgruppe Zugelassene Hilfsmittel:
Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15
5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet
Mathematik II für Inf und WInf
Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell
Differential- und Integralrechnung
Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik
10.6. Implizite ebene Kurven und Tangenten
0.6. Implizite ebene Kurven und Tangenten Im Gegensatz zu expliziten Darstellungen sind weder implizite noch Parameterdarstellungen einer Kurve eindeutig. Der Übergang von impliziten zu expliziten Darstellungen
$Id: stetig.tex,v /06/26 15:40:18 hk Exp $
$Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,
Analysis I. 4. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein
FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.
FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f
Mathematik Rechenfertigkeiten
Mathematik Rechenfertigkeiten Skript Donnerstag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 9, 857 Zürich Skript: Dr. Irmgard Bühler (Überarbeitung: Dominik Tasnady) 8.August
Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2.
Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung Blatt Probeklausur 2 Lösungen zur Probeklausur 2 Aufgabe 1 1. Formulieren Sie den Satz von Taylor
Mathematik I für MB und ME
Mathematik I für MB und ME Übungsaufgaben Serie 5: Folgen Funktionen Dierentialrechnung Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 206/207 Bestimmen Sie die Grenzwerte der nachstehenden
I 1. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (d) 4cosxdx (e) 3e x dx (f) ( e x + x 2) dx
Integralrechnung: I. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (a) y =,5 (b) y = + (c) y = 5 (d) y = 3 (e) y = (f) y = (g) y = 3 (h) y = (i) y = 3 4 4 (j) y = 6 + 3 (k) y = 3 + 4 (l)
Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz:
d-infk Lösung von Serie 4 FS 07 4.. Inhomogene Lineare Differentialgleichungen Das charakteristische Polynom der homogenen DGl y (4) + y + y = 0 ist λ 4 + λ + = (λ + ). Seine Wurzeln sind ±i und jede hat
KLAUSUR. Analysis (E-Technik/Mechatronik/W-Ing) Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf
KLAUSUR Analysis (E-Technik/Mechatronik/W-Ing).9.7 Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Unterschrift: In der Klausur können Sie insgesamt
