Ferienkurs Stetigkeit und Konvergenz Seite 1. Technische Universität München Ferienkurs Analysis 1. Musterlösung = lim.

Größe: px
Ab Seite anzeigen:

Download "Ferienkurs Stetigkeit und Konvergenz Seite 1. Technische Universität München Ferienkurs Analysis 1. Musterlösung = lim."

Transkript

1 Ferienkurs Stetigkeit und Konvergenz Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit und Konvergenz Musterlösung Grenzwerte I Berechnen Sie lim f(), lim f() für f : R\{0} R, f() = 0± ± + 2 skizzieren Sie den Graphen. und lim f() = lim lim f() = lim 0 0 = lim = 2 = lim = lim f() = lim ± ± ± 2 + = 0, da + 2 >. 2. Grenzwerte II Bestimmen Sie, wenn möglich, die folgenden Grenzwerte: (a) lim 3 2 (b) lim (c) lim 9 0 (e) lim (f) lim (a) lim = lim 3 eistiert nicht. 3 3 (b) lim = lim = 2 (c) lim 0 (d) lim 0+ (e) lim = = = lim 2 = (f) lim 3 2 = (g) lim = lim = (g) lim 0 (d) lim

2 Ferienkurs Stetigkeit und Konvergenz Seite 2 3. Stetigkeit Sei f : [a, b] R stetig und streng monoton wachsend, d.h. aus < y folgt f() < f(y). Zeigen Sie: f : [a, b] [c, d] mit c := f(a) und d := f(b) ist bijektiv. Aus streng monoton wachsend folgt injektiv, denn aus y folgt, falls < y, dass f() < f(y), und für > y, dass f() > f(y), in jedem Fall also f() f(y). Zur Surjektivität. Sei z [c, d]. Nach dem Zwischenwertsatz gibt es dann ein [a, b] mit f() = z. Also ist f surjektiv. 4. Unstetigkeit der Umkehrfunktion Sei D R beliebig, f : D [a, b] bijektiv, streng monoton steigend und stetig. Geben Sie ein Beispiel dafür an, dass die Umkehrfunktion von f nicht stetig sein muss. { für [0, ) Ein Beispiel ist f : [0, ) [2, 3] [0, 2], f() = für [2, 3]. f ist stetig. { Die Umkehrfunktion f : [0, 2] [0, ) [2, 3] mit f für [0, ) () = + für [, 2] ist offenbar unstetig bei =. 5. Stetige Fortsetzungen (a) Ist f : R\{0} R, f() = sin ( ) stetig fortsetzbar? (b) Ist f : C\{} C, f(z) = zn z stetig fortsetzbar? (a) f ist stetig als Komposition stetiger Funktionen. Für n = πn ist f( n ) = 0. Für y n = ist f(y 2πn+ n) =. Somit eistiert lim f() 2 π 0 nicht (vgl. Korollar 2.2), f ist also nicht stetig fortsetzbar. z n (b) lim z z = lim ( + z + z z n ) = n (Polynomdivision; alternativ Satz von z l Hôpital) 6. Zwischenwertsatz (a) Jedes reelle Polynom von ungeradem Grade hat mindestens eine Nullstelle in R.

3 Ferienkurs Stetigkeit und Konvergenz Seite 3 (b) = besitzt eine Lösung in R. 4 + (c) Jedes stetige f : [0, ] [0, ] besitzt einen Fipunkt, d.h. es gibt ein [0, ] mit f() =. (a) Sei p() = n a k k, a n 0 und n ungerade. O.E. sei a n > 0. Als k=0 Polynom ist p stetig. Für 0 gilt p() = n ( a n + a n + a n a 0 n). Der Ausdruck in der Klammer konvergiert für ± gegen a n > 0. Somit gilt lim p() = ±. Es gibt also ein mit p( ) < 0 und ein ± + mit p( + ) > 0. Nach dem Zwischenwertsatz gibt es ein 0 (, + ) mit p( 0 ) = 0. (b) Betrachte die Funktion f() = , die auf ganz R definiert 4 + und stetig ist, da die Wurzelfunktion auf R + stetig ist. Nun ist f(0) = 2 > 0 und f(2) = < 0. Nach dem Zwischenwertsatz besitzt f eine Nullstelle 0 in (0, 2), 0 ist also eine Lösung der Gleichung. (c) Sei g() = f(). Dann ist auch g stetig. Weiter ist g(0) [0, ] und g() [, 0]. Nach dem Zwischenwertsatz gibt es also ein 0 [0, ] mit g( 0 ) = 0 bzw. f( 0 ) = Stetige Bilder Sei M R und f C(M). Welche der folgenden Aussagen sind wahr? Begründen Sie Ihre Antworten bzw. bringen Sie ein Gegenbeispiel. (a) Falls M R beschränkt ist, dann ist f(m) beschränkt. (b) Falls M R abgeschlossen ist, dann ist f(m) beschränkt. (c) Falls M R kompakt ist, dann ist f(m) beschränkt. (a) Die Aussage ist falsch. Gegenbeispiel: f : (0, ] R, f() =. (b) Die Aussage ist falsch. Gegenbeispiel: f : R R, f() =. (c) Die Aussage ist wahr. Dies lässt sich mit dem Satz von Maimum und Minimum begründen: f nimmt auf M sein Maimum und Minimum an, weshalb f(m) durch diese nach oben und unten beschränkt ist. 8. Gleichmäßige Stetigkeit und Lipschitz-Stetigkeit (a) Seien D, E C und f : D C, g : E C gleichmäßig stetig mit f(d) E. Zeigen Sie, dass die Funktion g f : D C gleichmäßig stetig ist.

4 Ferienkurs Stetigkeit und Konvergenz Seite 4 (b)man zeige, dass die Funktion k (k ist eine natürliche Zahl > ) auf [0, ) gleichmäßig stetig ist, aber nicht Lipschitz-stetig. Hinweis: Für die gleichmäßige Stetigkeit benutze man die Ungleichung: k a k b k a b (ohne Beweis). (a) Sei ɛ > 0. Da g gleichmäßig stetig ist, gibt es δ > 0 so, dass g(y) g(y ) < ɛ y, y E mit y y < δ. Da f gleichmäßig stetig ist, gibt es δ > 0 so, dass f() f( ) < δ, D mit < δ (Def. gleichmäßige Stetigkeit mit ɛ := δ ). Also folgt:, D mit < δ gilt: g(f()) g(f( )) < ɛ. (b) Gleichmäßige Stetigkeit bedeutet: f() f( 0 ) = k k! 0 ɛ. Nach Hinweis gilt: k k 0 k 0 0 ɛ k =: δ. Damit folgt aus 0 < δ, dass k k 0 < ɛ ist. Das gewählte δ hängt nicht von 0 ab, also handelt es sich um gleichmäßige Stetigkeit, die für alle, 0 D gilt. Zur Lipschitz-Stetigkeit: Um zu zeigen, dass die Funktion nicht Lipschitzstetig ist, betrachte die Lipschitz-Stetigkeit am Nullpunkt, d.h. 0 = 0: k k 0 0 = k L, L > 0. k = k = k k 0 = k k! L Diese Bedingung ist nicht erfüllt für 0, weil dort ist die Funktion nicht Lipschitz-stetig. k. Somit 9. Gleichmäßige Stetigkeit II Untersuchen Sie, welche der folgenden Funktionen gleichmäßig stetig sind: (a) f : R R, f() = 2 (b) f : [0 4, [ R, f() = (c) f : [ 2, 6] R, f() = (a) f : R R, f() = 2 ist nicht gleichmäßig stetig. Beweis(durch Widerspruch): Sei ɛ > 0. Annahme: Es gibt δ > 0, so dass für alle, 2 R mit 2 < δ gilt: f( ) f( 2 ) < ɛ. Wegen ( + δ 2 ) < δ würde dann folgen, dass f( + δ 2 ) f() < ɛ für alle R. Es gilt aber für δ/4: lim f( + δ ) f() = lim δ + δ2 4 2 = lim δ + δ 4 =, Widerspruch!

5 Ferienkurs Stetigkeit und Konvergenz Seite 5 (b) f : [0 4, [ R, f() = ist gleichmäßig stetig: Beweis: Sei ɛ > 0 und seien, Dann gilt: f( ) f( 2 ) = 2 = = Wählt man also δ = ɛ, so folgt aus 0 8, 2 [0 4, [, 2 < δ, dass f( ) f( 2 ) < ɛ. (c) f : [ 2, 6] R, f() = 20 8 ist stetig als Verknüpfung stetiger Funktionen; außerdem ist das Intervall [ 2, 6] kompakt. Es folgt die gleichmäßige Stetigkeit (stetige Funktion auf Kompaktum). 0. Gleichmäßige Konvergenz Entscheiden Sie, ob die folgenden auf (0, ) definierten Funktionenfolgen nicht, punktweise oder sogar gleichmäßig gegen eine Grenzfunktion konvergieren. Geben Sie, falls eistent, die Grenzfunktion an. (a) a n = + n (b) b n = n (c) c n = e n e. (a) Die Funktionenfolge a n konvergiert punktweise gegen a() =, da für festes die Folge ( + n ) nach den Rechenregeln für Folgen gegen strebt. Die Konvergenz ist sogar gleichmäßig, denn unabhängig von ist ɛ > 0 a n a = + n = n < ɛ, falls n > N := ɛ. (b) Die Funktionenfolge b n konvergiert zunächst punktweise gegen die Nullfunktion b() = 0, da für jedes feste > 0 die Zahlenfolge ( n) nach den Rechenregeln für Folgengrenzwerte eine Nullfolge ist. Die Konvergenz ist jedoch nicht gleichmäßig, denn angenommen, es gäbe zu ɛ = ein N N, welches nur von ɛ abhängt, so dass b n () 0 < n > N. Dann wählt man n = N + und = N + 2 (es muss ja für jedes > 0 gelten) und erhält den Widerspruch b n () 0 = N+2 > = ɛ. N+ (c) Die Funktionenfolge c n lässt sich umschreiben zu c n () = e + n. Nach (a) konvergiert ( + n ) für festes gegen und da die Eponentialfunktion stetig ist, konvergiert damit c n () (punktweise) gegen c() = e für n. Die Konvergenz ist jedoch nicht gleichmäßig: Sei n > N. Dann gilt: c n () c() = e e n. Die rechte Seite der Gleichung ist dabei nicht Null und kann durch Erhöhung von beliebig groß gemacht werden, so dass sie jedes zuvor gewählte ɛ übersteigt. Also muss N in Abhängigkeit von gewählt werden.

6 Ferienkurs Stetigkeit und Konvergenz Seite 6. Gleichmäßige Konvergenz II (a)gegeben seien eine Funktionenfolge (f n ) und die Grenzfunktion f, wobei f n, f : R M R, n N. Zeigen Sie: Falls es ein ɛ > 0 und eine Folge ( n ) in M gibt, so dass f n ( n ) f( n ) ɛ für unendlich viele n, dann konvergiert f n nicht gleichmäßig gegen f auf M. (b) Sei M := [0, ], M 2 := [, 2] und f n () := n, R, n N. Berechnen +n 2 2 Sie die Grenzfunktion f von f n und entscheiden Sie, ob f n auf M bzw. M 2 sogar gleichmäßig gegen f konvergiert. (a) Wir nehmen an, dass f n auf M gleichmäßig gegen f konvergiert. Dann gibt es zu jedem ɛ > 0 ein N N, so dass f n () f() < ɛ n > N, M. Dies ist ein Widerspruch zur Voraussetzung, denn es gibt R mit f n () f() ɛ. Somit kann die Konvergenz nicht gleichmäßig sein. (b) Für jedes feste R gilt f n () = n = +n 2 2 n n (n ). Somit konvergiert f n auf R punktweise gegen die Nullfunktion. Auf M ist die Konvergenz nicht gleichmäßig: Sei = n [0, ] und ɛ = 0, 5. Dann gilt: f n () f() = n n = 2 ɛ. +n 2 n 2 Nach (a) ist die Konvergenz also nicht gleichmäßig. Für M 2 ist die Konvergenz gleichmäßig: Sei ɛ > 0. Mit N = ɛ gilt für alle n > N und für alle M 2 : n f n () f() = +n 2 = n 2 < n = +n 2 2 n 2 2 n n < ɛ. 2. Punktweise und gleichmäßige Konvergenz Man zeige: Die Reihe f() = n n= konvergiert punktweise für jedes (0, ) n und sie konvergiert für jedes r (0, ) auf dem Intervall [ r, r] gleichmäßig. Es genügt, die gleichmäßige Konvergenz auf I = [ r, r] mit 0 < r < zu zeigen. Sei also r <. Dann gilt (Dreiecksungleichung): n r n n r < n rn r, da r n < r. Da die geometrische Reihe r n konvergiert, liefert der Konvergenzsatz von Weierstraß die gleichmäßige Konvergenz dieser Reihe.

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie Ferienkurs Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit, Konvergenz, Topologie Lösung 2.03.202. Gleichmäßige Konvergenz Entscheiden Sie, ob die folgenden auf (0,

Mehr

Stetigkeit, Konvergenz, Topologie

Stetigkeit, Konvergenz, Topologie Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Stetigkeit, Konvergenz, Topologie 21.03.2012 Inhaltsverzeichnis 1 Stetigkeit und Konvergenz

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 202/3 Institut für Analysis 26..202 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 7. Übungsblatt Aufgabe Untersuchen

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

15 Hauptsätze über stetige Funktionen

15 Hauptsätze über stetige Funktionen 15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen

Mehr

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 6..3 Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((3++5) Punkte)

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Klausur - Analysis I Lösungsskizzen

Klausur - Analysis I Lösungsskizzen Klausur - Analysis I Lösungsskizzen Aufgabe 1.: 5 Punkte Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Kennzeichnen Sie wahre Aussagen mit W und falsche Aussagen mit F. Es sind keine Begründungen

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Analysis I. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 6. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 2017 1 Erinnerung Eine Abbildung f : X Y heisst injektiv, falls 1, 2 X : 1 2 f( 1 ) f( 2 ). (In Worten:

Mehr

Klausur Analysis für Informatiker Musterlösung

Klausur Analysis für Informatiker Musterlösung Prof. Dr. Torsten Wedhorn WS 9/ Dr. Ralf Kasprowitz Elena Fink Klausur Analysis für Informatiker Musterlösung 9.2.2 Name, Vorname Studienfach Matrikelnummer Semester Übungsgruppe Zugelassene Hilfsmittel:

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge

Mehr

3 Grenzwert und Stetigkeit 1

3 Grenzwert und Stetigkeit 1 3 Grenzwert und Stetigkeit 3. Grenzwerte bei Funktionen In diesem Abschnitt gilt: I ist immer ein beliebiges Intervall, 0 I oder einer der Endpunkte. 3.. Definition Sei I Intervall, 0 IR und 0 I oder Endpunkt

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

3 Folgen, Reihen und stetige Funktionen

3 Folgen, Reihen und stetige Funktionen Höhere Mathematik 101 3 Folgen, Reihen und stetige Funktionen 3.1 Folgen und Reihen: Definitionen und Beispiele Eine reelle oder komplexe Zahlenfolge ist eine Abbildung, die jeder natürlichen Zahl n eine

Mehr

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 207 Erinnerung Satz. (Zwischenwertsatz) Sei f : [a, b] R stetig mit f(a) f(b). Dann gibt es zu jedem

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

8. Stetigkeit. 8.A Grenzwerte von Funktionen. 8. Stetigkeit 85

8. Stetigkeit. 8.A Grenzwerte von Funktionen. 8. Stetigkeit 85 8. Stetigkeit 85 8. Stetigkeit Nachdem wir uns gerade ausführlich mit Grenzwerten von Folgen und Reihen befasst haben, wollen wir den Grenzwertbegriff nun auf Funktionen einer reellen (oder evtl. kompleen)

Mehr

Klausur zur Vorlesung Analysis I für Lehramtskandidaten. (Sommersemester 2008) Dr. C. Lange, J. Schütz

Klausur zur Vorlesung Analysis I für Lehramtskandidaten. (Sommersemester 2008) Dr. C. Lange, J. Schütz Klausur zur Vorlesung Analysis I für Lehramtskandidaten (Sommersemester 008) Dr. C. Lange, J. Schütz Beginn: 17. Juli 008, 10:00 Uhr Ende: 17. Juli 008, 11:30 Uhr Name: Matrikelnummer: Ich studiere: Bachelor

Mehr

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12 Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen Übungsaufgaben zur Vorlesung ANALYSIS I (WS 2/3) Lösungsvorschlag

Mehr

Analysis I. 7. Beispielklausur mit Lösungen

Analysis I. 7. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 7. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine surjektive Abbildung f: L M. () Ein archimedisch

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 9. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 9. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 203/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 9. Übungsblatt Aufgabe

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 11 Einleitung Es wird eine 15-minütige Mikroklausur geschrieben. i) Sei D R oderd C. Wann heißt

Mehr

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen 1 Einleitung Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis 1 aus dem Wintersemester 2008/09

Mehr

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 81 3. Stetigkeit 3.1. Stetigkeit. Im Folgenden sei D R eine beliebige nichtleere Teilmenge. Typischerweise wird D ein allgemeines Intervall sein, siehe Abschnitt

Mehr

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2.

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2. 1. Aufgabe 8 Punkte Geben Sie die Bereiche, auf denen die Funktion f : R R mit f (x) = (x + 1) e x monoton wachsend oder fallend ist, an, und untersuchen Sie die Funktion auf lokale und globale Extrema.

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20 Gleichmäßige Konvergenz für Folgen und Reihen von Funktionen 20.1 Folgen und Reihen von Funktionen 20.3 Die Supremumsnorm 20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20.7 Das Cauchy-Kriterium

Mehr

4.2 Grenzwerte und Stetigkeit reeller Funktionen

4.2 Grenzwerte und Stetigkeit reeller Funktionen 4. Grenzwerte und Stetigkeit reeller Funktionen 73 4. Grenzwerte und Stetigkeit reeller Funktionen Definition 4.. Gegeben sei eine Funktion y = mit D(f). (i) Sei D(f). heißt stetig in, falls es für alle

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

2. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 L := 2. sin(2x) + 1 sin(x)

2. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 L := 2. sin(2x) + 1 sin(x) O. Alaya, R. Bauer M. Fetzer, K. Sanei Kashani B. Krinn, J. Schmid. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 03 Lösungshinweise zu den Hausaufgaben: Aufgabe H 5. Stetigkeit Gegeben ist

Mehr

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. Analysis I, WiSe 2013/14, 04.02.2014 (Iske), Version A 1 Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. a) Welche der folgenden Aussagen über Folgen sind sinnvoll und

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: A. Kirchhoff, T. Pfrommer, M. Kutter, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester Prof. Dr. M. Stroppel Prof. Dr. A. Sändig Lösungshinweise zu den Hausaufgaben: Aufgabe H.

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

Analysis I. 6. Beispielklausur mit Lösungen

Analysis I. 6. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.

Mehr

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1.

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1. Lösungen Klausur Aufgabe (3 Punkte) Zeigen Sie, dass n k k (n + ) n k für alle n N. IA: Für n ist k kk 2 2. IV: Es gilt n k kk (n + ) n für ein n N. IS: Wir haben n+ k k k n k k + (n + ) n+ k IV (n + )

Mehr

Nachklausur Analysis I

Nachklausur Analysis I SS 008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Nachklausur Analysis I 07.0.008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

2.2 Reellwertige Funktionen

2.2 Reellwertige Funktionen 4 Kapitel. Differentialrechnung in einer Variablen. Reellwertige Funktionen Ein zentraler Begriff der Mathematik ist der Begriff der Abbildung oder Funktion, und dieses Konzept taucht in den verschiedensten

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

A U F G A B E N A N A L Y S I S. 11. Vorlesung Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion x, x 0, stetig bei x 0 = 5 ist.

A U F G A B E N A N A L Y S I S. 11. Vorlesung Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion x, x 0, stetig bei x 0 = 5 ist. A U F G A B E N A N A L Y S I S. Vorlesung. Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion, 0, stetig bei 0 = 5 ist. Lösung: Es sei 5 < ɛ. () Daraus folgt 5 ɛ < < 5 + ɛ () oder Folglich gilt

Mehr

Analysis II - 1. Klausur

Analysis II - 1. Klausur Analysis II -. Klausur Sommersemester 25 Vorname: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Analysis II -. Klausur 2.5.25 Aufgabe 2 Punkte Berechnen

Mehr

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A)

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A) Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, 10.1.009 (Version A) Kennwort: Übungsgruppe: (Sie können ein beliebiges Kennwort wählen, um Ihre Anonymität zu wahren! Da die Probeklausur

Mehr

Polynome, Stetigkeit, Dierenzierbarkeit

Polynome, Stetigkeit, Dierenzierbarkeit Polynome, Stetigkeit, Dierenzierbarkeit Inhaltsverzeichnis 1 Polynome 1 1.1 Denitionen...................................................... 1 1.2 Nullstellen.......................................................

Mehr

θ für alle n n 0, 0, dann divergiert a n. θ n, also die mit a n0 θ n 0

θ für alle n n 0, 0, dann divergiert a n. θ n, also die mit a n0 θ n 0 6 REIHEN 6. Konvergenzkriterien - 19 - Wenn man im Majorantenkriterium die geometrische Reihe als Majorante nimmt, erhält man das (6..18) Quotientenkriterium : Sei (a n ) n N0 eine Folge in C. Es gebe

Mehr

1. Probeklausur Analysis 1 WS 2004 / 2005

1. Probeklausur Analysis 1 WS 2004 / 2005 1. Probeklausur Analysis 1 WS 2004 / 2005 Es gibt 13 Aufgaben auf 2 Blättern. Die jeweilige Punktzahl steht am rechten Rand. Die Maximalpunktzahl ist 50. Die Bearbeitungszeit beträgt 40 Minuten. Bei Wahr

Mehr

Grenzwerte und Stetigkeit

Grenzwerte und Stetigkeit KAPITEL 3 Grenzwerte und Stetigkeit 3.1 Grenzwerte..................................... 49 3.2 Stetigkeit....................................... 57 Lernziele 3 Grenzwerte ε-δ-definition des Grenzwerts,

Mehr

n 1, n N \ {1}, 0 falls x = 0,

n 1, n N \ {1}, 0 falls x = 0, IV.1. Stetige Funktionen 77 IV. Stetigkeit IV.1. Stetige Funktionen Stetige Funktionen R R sind vielen sicher schon aus der Schule bekannt. Dort erwirbt man sich die naive Vorstellung, dass eine stetige

Mehr

ANALYSIS I FÜR TPH WS 2018/19 3. Übung Übersicht

ANALYSIS I FÜR TPH WS 2018/19 3. Übung Übersicht ANALYSIS I FÜR TPH WS 208/9 3. Übung Übersicht Aufgaben zu Kapitel 5 und 6 Aufgabe : Konvergenz von Reihen (i) Aufgabe 2: Konvergenz von Reihen (ii) Aufgabe 3: ( ) Konvergenz von Reihen (iii) Aufgabe 4:

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

Reelle/komplexe Zahlen und Vollständigkeit

Reelle/komplexe Zahlen und Vollständigkeit Die folgenden Fragen/Aussagen sind mit ja / wahr oder nein / falsch zu beantworten. Da wir den Stoff der Analysis 1 behandeln, ist im weiteren davon auszugehen dass die Folgen, Reihen, Definitionsbereiche

Mehr

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit Kapitel 6 Grenzwerte von Funktionen und Stetigkeit 225 Relle Funktionen Im Folgenden betrachten wir reelle Funktionen f : D R, mit D R. Wir suchen eine formale Definition für den folgenden Sachverhalt.

Mehr

Vorlesungen Analysis von B. Bank

Vorlesungen Analysis von B. Bank Vorlesungen Analysis von B. Bank vom 23.4.2002 und 26.4.2002 Zunächst noch zur Stetigkeit von Funktionen f : D(f) C, wobei D(f) C. (Der Text schliesst unmittelbar an die Vorlesung vom 19.4.2002 an.) Auf

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Das höhere Mathematikon

Das höhere Mathematikon Das höhere Mathematikon Christian Huber Diese Zusammenfassung ist ein Mix aus dem Skript von Herr Dr. Peer Kunstmann, der allseits beliebten Wikipedia, diversen anderen Onlinequellen und letztendlich meiner

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Lösungen zum Übungsblatt 7

Lösungen zum Übungsblatt 7 Lösungen zum Übungsblatt 7 Mirko Getzin Universität Bielefeld Fakultät für Mathematik 5. Dezember 203 Ich gebe keine Gewähr auf eine vollständige Richtigkeit der Lösungen zu den Übungsaufgaben. Das Dokument

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

3 Abbildungen. 14 I. Zahlen, Konvergenz und Stetigkeit

3 Abbildungen. 14 I. Zahlen, Konvergenz und Stetigkeit 14 I. Zahlen, Konvergenz und Stetigkeit 3 Abbildungen 3.1 Definition. Es seien zwei Mengen M, N gegeben. Unter einer Abbildung f : M N von M nach N versteht man eine Vorschrift, die jedem Element M genau

Mehr

Serie 6 - Funktionen II + Differentialrechnung

Serie 6 - Funktionen II + Differentialrechnung Analysis D-BAUG Dr. Meike Akvel HS 05 Serie 6 - Funktionen II + Differentialrechnung. a) Sei Lösung 3, falls < 0, f : R R, f) c +, falls 0, + 8, falls >. Bestimmen Sie c R un R, so ass f überall stetig

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (0.09.03 0.09.03) Dr. Jörg Horst WS 03-04 Mathematischer Vorkurs TU Dortmund Seite / 5 Mathematischer Vorkurs TU Dortmund Seite 6 / 5 Schenkel Winkelbereich Scheitel S

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 16 Der Zwischenwertsatz Wir interessieren uns dafür, was unter einer stetigen Abbildung f :R R mit einem Intervall passiert.

Mehr

Klausur zur Analysis I WS 01/02

Klausur zur Analysis I WS 01/02 Klausur zur Analysis I WS 0/0 Prof. Dr. E. Kuwert. Februar 00 Aufgabe (4 Punkte) Berechnen Sie unter a) und b) jeweils die Ableitung von f für x (0, ): a) f(x) = e sin x b) f(x) = x α log x a) f (x) =

Mehr

Analysis I. Vorlesung 13. Der Zwischenwertsatz

Analysis I. Vorlesung 13. Der Zwischenwertsatz Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 13 Der Zwischenwertsatz Wir interessieren uns dafür, was unter einer stetigen Abbildung f: R R mit einem Intervall passiert. Der Zwischenwertsatz

Mehr

Analysis I. 5. Beispielklausur mit Lösungen

Analysis I. 5. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 5. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Die Umkehrabbildung zu einer bijektiven Abbildung

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

Klausur - Analysis I Lösungsskizzen

Klausur - Analysis I Lösungsskizzen Klausur - Analysis I Lösungsskizzen Aufgabe 1.: 5 Punkte Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Kennzeichnen Sie wahre Aussagen mit und falsche Aussagen mit. Es sind keine Begründungen

Mehr

Wiederholungsklausur zur Analysis I

Wiederholungsklausur zur Analysis I Wiederholungsklausur zur Analysis I Prof. Dr. C. Löh/M. Blank 5. Oktober 2011 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

ANALYSIS 1 Kapitel 6: Stetige Funktionen

ANALYSIS 1 Kapitel 6: Stetige Funktionen ANALYSIS 1 Kapitel 6: Stetige Funktionen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität Graz 6.1 Grundbegrie

Mehr

3. Übungsblatt zur Analysis II

3. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno WS 9/ 9..9 3. Übungsblatt zur Analysis II Gruppenübung Majorantenkriterium für uneigentliche Riemann-Integrale: Es seien f : [, ) [, ) und g

Mehr

Aufgabensammlung zur Analysis 1

Aufgabensammlung zur Analysis 1 Analysis 1 18.12.2017 Prof. Dr. H. Koch Dr. F. Gmeineder Abgabe: Keine Abgabe. Aufgabensammlung zur Analysis 1 Anmerkungen: Das vorliegende Blatt enthält eine Auswahl von Aufgaben, die auf Klausuren zur

Mehr

Ana-1 1. Ws 2017/ Geben Sie die zugehörige Wahrheitstafel an und stellen sie p q durch logische Ausdrücke mit,, dar.

Ana-1 1. Ws 2017/ Geben Sie die zugehörige Wahrheitstafel an und stellen sie p q durch logische Ausdrücke mit,, dar. Ana-1 1 Ws 2017/18 20.10.17 1 Es bezeichne p q die ausschließende oder-verknüpfung zweier Aussagen. Geben Sie die zugehörige Wahrheitstafel an und stellen sie p q durch logische Ausdrücke mit,, dar. 2

Mehr

Lösungsvorschlag zum 2. Übungsblatt zur Vorlesung Analysis II im Sommersemester Mai 2018

Lösungsvorschlag zum 2. Übungsblatt zur Vorlesung Analysis II im Sommersemester Mai 2018 Institut für Analysis Prof. Dr. Michael Plum M.Sc. Jonathan Wunderlich Lösungsvorschlag zum. Übungsblatt zur Vorlesung Analysis II im Sommersemester 08 3. Mai 08 Aufgabe 5 (K: Es seien n N und A R n eine

Mehr

Kapitel 5 Trigonometrie

Kapitel 5 Trigonometrie Mathematischer Vorkurs TU Dortmund Seite / 7 Schenkel Winkelbereich Scheitel S α Winkel werden in Grad oder im Bogenmaß (auch Rad) angegeben: 360 =. y cot α r = sin α α cos α tan α x Durch diese Betrachtungen

Mehr

Lösungsvorschlag Klausur MA9801

Lösungsvorschlag Klausur MA9801 Lehrstuhl für Numerische Mathematik Garching, den 03.08.2012 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA9801 Aufgabe 1 [4 Punkte] Seien M, N Mengen und f : M N eine Abbildung.

Mehr

2.6 Lokale Extrema und Mittelwertsatz

2.6 Lokale Extrema und Mittelwertsatz 2.6. Lokale Etrema und Mittelwertsatz 49 2.6 Lokale Etrema und Mittelwertsatz In diesem Kapitel bezeichne f stets eine reellwertige Funktion, definiert auf einem abgeschlossenen Intervall [a, b]. Unter

Mehr

Analysis 1 für Informatiker (An1I)

Analysis 1 für Informatiker (An1I) Hochschule für Technik Rapperswil Analysis 1 für Informatiker (An1I) Stand: 2012-11-13 Inhaltsverzeichnis 1 Funktionen 3 1.1 Gerade, ungerade und periodische Funktionen..................... 3 1.2 Injektive,

Mehr

D-BAUG Analysis I HS 2015 Dr. Meike Akveld. Clicker Fragen

D-BAUG Analysis I HS 2015 Dr. Meike Akveld. Clicker Fragen D-BAUG Analysis I HS 05 Dr. Meike Akveld Clicker Fragen Frage Der Satz: Dieser Satz ist falsch ist wahr ist richtig weiss ich nicht Es handelt hier um eine sogenannte Paradoxie. Die Paradoxie dieses Satzes

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 3

Technische Universität München Zentrum Mathematik. Übungsblatt 3 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 3 Hausaufgaben Aufgabe 3. Zeigen Sie mit Hilfe der ɛ-δ-formulierung vgl.

Mehr

Nachklausur Analysis 1 WS 2007 /

Nachklausur Analysis 1 WS 2007 / Nachklausur Analysis 1 WS 27 / 28 18.4.28 Es gibt 11 Aufgaben. Die jeweilige Punktzahl steht am linken Rand. Die Gesamtpunktzahl ist 4 Punkte. Zum Bestehen der Klausur sind 16 Punkte erforderlich. Bei

Mehr

Wichtige Klassen reeller Funktionen

Wichtige Klassen reeller Funktionen 0 Wichtige Klassen reeller Funktionen Monotone Funktionen sind i.a. unstetig, aber man kann etwas über das Grenzwertverhalten aussagen, wenn man nur einseitige Grenzwerte betrachtet. Definition 0. : Sei

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 1

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 1 D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie. Frage Welche der Aussagen sind richtig? Eine divergente Folge ist nicht beschränkt. Falsch. Z.B. ist {( ) n } n N beschränkt und divergent.

Mehr

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88 4. Funktionen Buchholz / Rudolph: MafI 2 88 Kapitelgliederung 4.1 Grundlegende Denitionen 4.2 Polynome und rationale Funktionen 4.3 Beschränkte und monotone Funktionen 4.4 Grenzwerte von Funktionen 4.5

Mehr

Kommutativität. De Morgansche Regeln

Kommutativität. De Morgansche Regeln 1. Formale Logik Proposition 1.1. Die logischen Elementarverknüpfungen gehorchen folgenden Äquivalenzen: (1.1) (1.2) p p p p p p Idempotenz (1.3) (1.4) p q q p p q q p Kommutativität (1.5) (1.6) (p q)

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu MC-Fragen Serie 1 Einsendeschluss: Freitag, der 26.09.2014 12:00 Uhr 1. Welche der folgenden Aussagen sind richtig? (a) Eine divergente Folge ist nicht

Mehr

Mathematik für Sicherheitsingenieure I A

Mathematik für Sicherheitsingenieure I A Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I A Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Reelle Zahlen sind ideale Objekte, die es uns ermöglichen, eine transparente und leistungsfähige Theorie aufzubauen. Ein Computer kann jedoch nur mit Approximationen

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Zulassungsprüfung in Mathematik

Zulassungsprüfung in Mathematik der Deutschen Aktuarvereinigung e V Hinweise: Als Hilfsmittel sind ein Taschenrechner, eine mathematische Formelsammlung sowie entsprechende Literatur zugelassen Die Gesamtpunktzahl beträgt 9 Punkte Die

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : Ê Ê systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr