2.2 Reellwertige Funktionen

Größe: px
Ab Seite anzeigen:

Download "2.2 Reellwertige Funktionen"

Transkript

1 4 Kapitel. Differentialrechnung in einer Variablen. Reellwertige Funktionen Ein zentraler Begriff der Mathematik ist der Begriff der Abbildung oder Funktion, und dieses Konzept taucht in den verschiedensten Zusammenhängen auf. Wir haben den Begriff bereits gebraucht, um die Abzählbarkeit definieren zu können. Jetzt werden wir reellwertige Funktionen in einer reellen Variablen genauer unter die Lupe nehmen. Darunter versteht man Funktionen der Form f:d W, wobei der Definitionsbereich D und die Wertemenge W jeweils Teilmengen von R sind. Häufig verzichtet man auch auf die Angabe von W. Eine solche Funktion können wir bekanntlich in einem zweidimensionalen kartesischen Koordinatensystem graphisch darstellen. Der Graph der Funktion f ist definiert als Graph(f) := {(,f() D} R. Man trägt also jeweils zu D den Punkt mit den Koordinaten (,f()) in das Koordinatensystem ein...1 Definition Eine Funktion f:d W (D,W R) heisst streng monoton steigend auf M D, falls f( 1 ) < f( ) für alle 1 <, i M, und f heisst streng monoton fallend, falls umgekehrt f( 1 ) > f( ) für alle 1 <, i M. Sei zum Beispiel f :R 0 R 0, die Funktion, die durch Einschänkung der Parabelfunktion auf negative Zahlen (oder Null) entsteht, und f + :R 0 R 0,, die Einschränkung auf nichtnegative Zahlen. Dann ist f streng monoton fallend, und f + streng monoton steigend. Beobachtung: Ist eine Funktion f: D R streng monoton steigend (oder fallend) auf D, so ist sie injektiv, das heisst jeder Zahlenwert wird von der Funktion höchstens an einer Stelle angenommen. Beweis. Sei f streng monoton steigend, und nehmen wir an, f sei nicht injektiv. Dann gäbe es zwei verschiedene Elemente 1 mit f( 1 ) = f( ). Ohne Einschränkung können wir annehmen, dass 1 <. Dann folgt aus der Monotonie f( 1 ) < f( ), ein Widerspruch. q.e.d... Satz Eine Funktion f:d W ist genau dann bijektiv, wenn f umkehrbar ist. Das bedeutet, es gibt eine Funktion g: W D, die sogenannte Umkehrfunktion von f, mit der Eigenschaft, dass g(f()) = für alle D und f(g(y)) = y für alle y W. Sind D,W R, so erhält man den Graphen von g durch Spiegelung des Graphen von f an der Winkelhalbierenden, das heisst der Geraden, definiert durch y = in R...3 Beispiel Sei D = R \ { 1 }, W = R \ {0} und f:d W, definiert durch f() = 1. Diese Funktion ist bijektiv. Der Graph von f ist eine Hyperbel mit +1 Asymptoten bei = 1 und y = 0. Durch Spiegelung an der Winkelhalbierenden erhalten wir wieder eine Hyperbel, diesmal mit Asymptoten bei y = 1 und = 0.

2 .. Reellwertige Funktionen 5 Um die Umkehrfunktion g:w D von f genauer zu bestimmen, setzen wir f() = 1 1 y = y und lösen nach auf. Das führt auf die Beziehung =, und wir +1 y erhalten g(y) = 1 y. Nach Umbenennung der Variablen wird daraus die Vorschrift y g() = 1. Für die Umkehrfunktion wird gelegentlich auch die Bezeichnung f 1 verwendet. Diese Bezeichnung werden wir hier aber möglichst vermeiden, weil es leicht zu Verwechslungen kommen kann. Denn i.a. gilt: f 1 () 1 f(). Ist eine Funktion f:d R auf einem bestimmten Teilbereich D 1 D des Definitionsbereiches monoton steigend (oder fallend), so können wir f zumindest auf D 1 umkehren. Denn durch Einschränkung erhalten wir eine bijektive Funktion f 1 :D 1 W 1 := {f() D 1 }, gegeben durch f 1 () = f() für alle D 1, und können nun die dazugehörige Umkehrfunktion bilden g 1 :W 1 D 1. Auf diese Weise kann man n-te Wurzeln ziehen oder die trigonometrischen Funktionen jeweils auf passenden Teilbereichen umkehren...4 Beispiele Sei n N gerade. Die Funktion f:r R, n, ist auf dem Teilbereich D 1 := R 0 monoton steigend, und nimmt dort als Werte alle reellen Zahlen 0 an. Bilden wir die dazugehörige Umkehrfunktion, erhalten wir die n-te Wurzelfunktion g:r 0 R 0, n (n gerade). Für ungerade n N ist die Funktion f:r R, n sogar selbst bijektiv, die Wurzelfunktion ist hier also auch für negative Zahlen definiert: g:r R, n (n ungerade). Die Tangensfunktion ist gegeben durch tan() = sin() cos(). Sie ist definiert für alle R mit cos() 0, das heisst für (n+1) π (für allen Z).AufdemoffenenIntervall( π, π )istdietangensfunktionmonoton steigend, und nimmt dort als Werte alle reellen Zahlen an. Die entsprechende Umkehrfunktion wird als Arcus Tangens bezeichnet: arctan:r ( π, π ).

3 6 Kapitel. Differentialrechnung in einer Variablen.3 Grenzwerte von Funktionen und Stetigkeit Sei f:d W (D,W R) eine reellwertige Funktion, und sei I = (a,b) ein offenes Intervall, das ganz im Definitionsbereich D von f enthalten ist..3.1 Definition Sei 0 [a,b]. Man sagt, die Funktion f habe an der Stelle 0 den Grenzwert y 0, falls für jede Folge ( n ) n N in I, die gegen 0 konvergiert, die Folge der Funktionswerte (f( n )) n N gegen y 0 konvergiert. Ist dies der Fall, schreibt man lim 0, I f() = y 0. Es gibt hier eigentlich drei Fälle: Ist 0 = a, so spricht man auch vom rechtsseitigen Grenzwert und schreibt manchmal lim 0,> 0 f() = y 0. Ist 0 = b, so spricht man vom linksseitigen Grenzwert und notiert lim f() = y 0. 0,< 0 Ist 0 ein innerer Punkt des Intervalls, so handelt es sich um einen beidseitigen Grenzwert, und man schreibt meist einfach lim f() = y Lemma Eistieren an einer Stelle 0 sowohl der rechts- als auch der linksseitige Grenzwert von f und stimmen sie überein, dann ist dies auch der beidseitige Grenzwert..3.3 Beispiele Sei f die Vorzeichenfunktion, definiert durch { 1 für > 0 f() = 1 für < 0. Hier ist der rechtsseitige Grenzwert an der Stelle 0 = 0 gleich 1 und der linksseitige Grenzwert gleich 1. Da die beiden 0 für = 0 Grenzwerte nicht übereinstimmen, kann ein beidseitiger Grenzwert dort nicht eistieren. Die Funktion f() = 1 1 hat eine Definitionslücke bei 0 = 1. Aber der rechts- und der linksseitige Grenzwert ist hier jeweils gleich, also gibt es den beidseitigen Grenzwert lim 1 f() =. Die Funktion f:r >0 [ 1,1], definiert durch f() = sin( 1 ) hat an der Stelle 0 = 0 keinen rechtsseitigen Grenzwert. Dazu geben wir zwei Nullfolgen im Intervall (0, 1) an, deren Funktionswerte nicht gegen denselben Grenzwert

4 .3. Grenzwerte von Funktionen und Stetigkeit 7 konvergieren. Sei dazu a n := 1 und b nπ n := (4n+1)π (a n ) n N und (b n ) n N sind Nullfolgen. Aber für n N. Beide Folgen lim f(a n) = lim sin(nπ) = 0 1 = lim f(b n ) = lim sin( 4n+1) π). n n n n.3.4 Definition Gelegentlich sieht man auch die Notation lim f() = a oder lim f() =. 0 Dabei handelt es sich um sogenannte uneigentliche Grenzwerte. Voneiner Folge( n ) sagt man, sie konvergiere gegen (bzw. ), falls zu jedem M R ein n(m) N eistiert mit n > M (bzw. n < M) für alle n n(m), und schreibt dann lim n = (bzw. ). n Das bedeutet also, dass die Folgenglieder über jede Schranke M hinauswachsen (oder jede Schranke unterschreiten). Besteht die Folge ( n ) n N nur aus positiven Zahlen, so gilt lim 1 n = lim = 0. n n n Nun kann man den Begriff des Grenzwertes einer Funktion sinngemäss erweitern. Man sagt, die Funktion f konvergiere für gegen einen Grenzwert a (auch hier darf jetzt a eventuell unendlich sein), falls für jede Folge ( n ), die gegen konvergiert, die Folge der Funktionswerte (f( n )) gegen a konvergiert..3.5 Beispiel Wir betrachten die Hyperbelfunktion, gegeben durch f() = 1 (für 0). Hier ist lim f() = + und lim 0,>0 f() =. 0,<0 Für die Grenzwerte von Funktionen gelten entsprechende Aussagen wie für die Grenzwerte von Folgen, also Verträglichkeit mit den Grundrechenarten, Verträglichkeit mit der Relation, und es gibt wiederum einen Vergleichssatz..3.6 Satz Seien f, g, h drei reellwertige Funktionen, die alle auf dem offenen IntervallI = (a,b)definiertsind,undsei 0 [a,b].giltf() g() h()füralle I und lim 0, I f() = a = lim 0, I h(), so folgt auch lim 0, I g() = a..3.7 Beispiele lim 1 = 0. lim 1 = lim = lim 3 1 = und lim +1 =. lim 0 sin() = 0, denn 0 sin() für [ π 4, π 4 ], wie man an der Bedeutung des Sinus am Einheitskreis ablesen kann.

5 8 Kapitel. Differentialrechnung in einer Variablen lim 0 cos() = 1, denn 1 cos() 1, weil cos () = 1 sin () 1 für [ π 4, π 4 ]. sin() lim 0, 0 = 1, denn aus der Bedeutung des Tangens am Einheitskreis lesen wir die folgende Ungleichung ab: tan() = sin() cos() für (0, π ). Daraus folgt sin() cos() und wir erhalten für 0 < < π : cos() sin() 1. Weil die Cosinusfunktion gerade und die Sinusfunktion ungerade ist, bleibt dies auchrichtigfür π < < 0.MitdemVergleichssatzfolgtnundieBehauptung. lim 0 sin( 1) = 0, denn es gilt die Abschätzung 0 sin(1 ) für alle 0. Wir kommen nun zum Begriff der Stetigkeit. Anschaulich gesprochen ist eine Funktion auf einem Bereich stetig, wenn sie dort keine Sprünge macht, oder anders gesagt, wenn kleine Änderungen des Argumentes zu kleinen Änderungen des Funktionswertes führen. Dabei betrachten wir nur Funktionen auf offenen Definitionsbereichen. Eine Teilmenge D R heisst offen, wenn D eine Vereinigung von offenen Intervallen ist..3.8 Definition Eine Funktion f: D R, definiert auf einer offenen Teilmenge D, heisst stetig an der Stelle 0 D, wenn für ein offenes Intervall I mit 0 I D gilt lim 0, I f() = f( 0). Die Funktion f heisst stetig, falls f an jeder Stelle des Definitionsbereichs stetig ist. Eine andere äquivalente Charakterisierung der Stetigkeit ist die folgende ǫ-δ- Definition:.3.9 Satz Eine Funktion f ist stetig an der Stelle 0 D, falls für jedes ǫ > 0 ein δ > 0 eistiert, so dass 0 < δ = f() f( 0 ) < ǫ für alle D Beispiele Jede Funktion der Form f() = a+b (für feste a,b R) ist überall stetig. Die Vorzeichenfunktion ist an der Stelle 0 = 0 nicht stetig, dort liegt eine Sprungstelle vor.

6 .3. Grenzwerte von Funktionen und Stetigkeit 9 { für 1 Sei f() = +1 3 =. Der Graphdieser Funktionhat 4 für < 1 eine Knickstelle bei 0 = 1. Dort ist aber der rechts- und linksseitige Grenzwert jeweils gleich f( 1) = 3, also ist dies auch der beidseitige Grenzwert lim 1 f() = 3, und f ist bei 0 stetig. Die Funktion f() = sin() (für 0) können wir stetig durch f(0) = 1 sin() fortsetzen, weil wie oben bereits erwähnt lim 0 = 1 ist. Die Funktion f() = sin( 1 ) (für 0) dagegen besitzt keine stetige Fortsetzung nach 0 = 0. Stetigkeit vererbt sich auf Summen, Differenzen, Produkte und Quotienten (dort wo diese definiert sind), wie sich sofort aus den entsprechenden Sätzen für Grenzwerte ergibt Folgerung Sämtliche rationalen Funktionen sind stetig. Beweis. Wendet man die Produktregel auf die Funktion und auf konstante Funktionen an, erhält man die Stetigkeit sämtlicher Funktionen der Form c n (n N, c R). Daraus ergibt sich durch Summenbildung die Stetigkeit sämtlicher Polynome. Unter einer rationalen Funktion versteht man eine Funktion der Form f = p,wobei p,q Polynome sind. Eshandelt sichalsoumquotientenvonpolynomen q und deshalb stetige Funktionen. q.e.d. Auch die trigonometrischen Funktionen sind stetig..3.1 Beispiel Die Sinusfunktion ist auf ganz R stetig. Dazu verwenden wir das Additionstheorem für den Sinus und die speziellen Grenzwerte von Sinus und Cosinus an der Stelle 0, die wir schon bestimmt haben. lim sin() = limsin( 0 +h) = lim(sin( 0 )cos(h)+sin(h)cos( 0 )) = sin( 0 ). 0 h 0 h 0 Die Cosinusfunktion ergibt sich durch Verschiebung der Sinusfunktion um π, sie also auch stetig. Die Tangensfunktion wiederum ist als Quotient aus Sinus und Cosinus ebenfalls stetig. Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert auf einem abgeschlossenen Intervall, sei stetig, meint man damit, dass f auf (a, b) stetig ist und ausserdem in den Randpunkten gilt: lim f() = f(a) und lim a,>a Der Zwischenwertsatz besagt folgendes: f() = f(b). b,<b.3.13 Satz Sei I R ein abgeschlossenes Intervall und sei f:i R stetig. Sind 1 in I und y R mit f( 1 ) < y 0 < f( ), so gibt es ein 0 zwischen 1 und mit f( 0 ) = y 0.

7 30 Kapitel. Differentialrechnung in einer Variablen Beweis. Hinter dieser Aussage steht das Supremumsaiom. Für Funktionen, die nur für rationale Zahlen definiert sind, ist die Aussage nicht richtig. Für den Beweis können wir annehmen, dass 1 < ist. Weiter können wir durch Verschiebung der Funktion f um den Wert y die Frage darauf reduzieren, eine Nullstelle von f zu finden. Nehmen wir also an: f( 1 ) < 0 < f( ). Eine Strategie zur Konstruktion einer Nullstelle 0 besteht darin, das Intervall [ 1, ] fortgesetzt zu halbieren und nur jeweils die Hälfte zu behalten, über der f das Vorzeichen wechselt. Man erhält eine Intervallschachtelung, und die Grenzen der Intervalle bilden je eine aufsteigende und eine fallende Folge, die gegen denselben Grenzwert 0 konvergieren. Wegen der Stetigkeit muss f( 0 ) = 0 gelten. q.e.d Beispiel Das Polynom p() = besitzt eine Nullstelle zwischen 1 = und = 1, denn p( ) = 5 < 0 und p( 1) = 3 > 0. Wenden wir nun das Intervallhalbierungsverfahren an, um eine solche Nullstelle genauer zu bestimmen. Das Startintervall ist das Intervall I 1 = [ ; 1]. Der Mittelpunkt des Intervalls liegt bei = 1.5 und p( 1.5) = < 0. Also wechselt das Polynom zwischen 1.5 und 1 das Vorzeichen, in der rechten Intervallhälfte gibt es also eine Nullstelle. Darum ersetzen wir das Ausgangsintervall nun durch I = [ 1.5; 1]. Weil p( 1.5) = > 0 ist, findet der Vorzeichenwechsel von p in linken Intervallhälfte von I statt, und wir setzen I 3 = [ 1.5; 1.5]. Im nächsten Schritt finden wir p( 1.375) > 0 und daher I 4 = [ 1.5; 1.375]. Weiter ist p( ) < 0 und daher I 5 = [ ; 1.375]. Nochmaliges Halbieren liefert p( ) > 0 und I 6 = [ ; ]. Es gibt also eine Nullstelle zwischen und Die Stelle ist damit bis auf etwa 3 Hundertstel genau bestimmt. Man kann das Verfahren entsprechend weiter fortsetzen, bis die gewünschte Genauigkeit erreicht ist. Der folgende Satz ist weniger leicht zu beweisen, und wir verzichten deshalb auf den Beweis:.3.15 Satz Auf einem abgeschlossenen Intervall [a,b] ist jede stetige Funktion beschränkt und nimmt ihr Minimum und Maimum an. Aus beiden Sätzen zusammen ergibt sich: Folgerung: Eine stetige Funktion bildet ein abgeschlossenes Intervall wieder auf ein abgeschlossenes Intervall ab. Beweis. Ist nämlich m das Minimum und M das Maimum von f auf dem Intervall [a, b], so nimmt f nach dem Zwischenwertsatz alle Werte zwischen m und M an. Also folgt f([a,b]) = {f() a b} = [m,m]. q.e.d. Aus dem Zwischenwertsatz folgt auch, dass Umkehrfunktionen von stetigen Funktionen wieder stetig sind.

8 .3. Grenzwerte von Funktionen und Stetigkeit Satz Die stetige Funktion f bilde das Intervall [a, b] auf das Intervall [c, d] ab. Dann gilt: 1. f ist genau dann injektiv, wenn f streng monoton ist.. Ist f streng monoton wachsend (bzw. fallend), so ist auch die Umkehrfunktion f 1 :[c,d] [a,b] von f streng monoton wachsend (bzw. fallend). 3. Besitzt f eine Umkehrfunktion, so ist diese ebenfalls stetig. Man kann diese Aussage auch auf Umkehrfunktionen von Funktionen mit offenen oder halboffenen Definitionsbereichen anwenden. Denn Stetigkeit ist eine lokale Eigenschaft, das heisst, um die Stetigkeit an einer bestimmten Stelle 0 zu überprüfen, reicht es die Einschränkung der Funktion auf ein passendes abgeschlossenes Intervall um 0 zu untersuchen Folgerung Die Wurzelfunktionen n (n N) und die Arcusfunktionen arcsin, arccos und arctan sind stetig. Dabei versteht man üblicherweise unter arcsin die Umkehrung der Sinusfunktion auf dem Abschnitt [ π, π ] und unter arccos die Umkehrung der Cosinusfunktion auf dem Abschnitt [0, π]. Schliesslich halten wir noch fest:.3.18 Satz Eine aus stetigen Funktionen zusammengesetzte Funktion ist wieder stetig. Beweis. Sind f:d W und g:d 1 W 1 stetige Funktionen und ist W 1 D, so können wir die Funktionen f und g zusammensetzen: f g:d 1 W, (f g)() = f(g()). Man spricht auch von der Komposition der Funktionen f und g. Sei jetzt 0 D 1. Wegen der Stetigkeit von g gilt für jede Folge ( n ) in D 1, die gegen 0 konvergiert: lim g( n) = g( 0 ). n Aus der Stetigkeit von f folgt nun wiederum lim f(g( n)) = f(g( 0 )). n Also ist auch die zusammengesetzte Funktion f g wieder stetig. q.e.d. Diese Tatsache lässt sich vielseitig verwenden, um Grenzwerte von zusammengesetzten Funktionen zu bestimmen. sin Beispiele lim 0,>0 = 3. sin+ sin Denn lim 0 = lim 0 + = 3. Nun folgt die Behauptung aus der Stetigkeit der Wurzelfunktion.

9 3 Kapitel. Differentialrechnung in einer Variablen lim +1 = 0. Dazu schreiben wir die Differenz folgendermassen um: +1 = ( +1 )( +1+ ) +1+ = lim arctan( 3 +1 ) = π Denn es gilt lim = und lim arctan() = π.

Die Grenzwertbildung ist mit den Grundrechenarten verträglich. Genauer gilt folgendes:

Die Grenzwertbildung ist mit den Grundrechenarten verträglich. Genauer gilt folgendes: 2.. Folgen und Grenzwerte 2 2..8 Satz Der Grenzwert einer konvergenten Folge ist eindeutig bestimmt. Beweis. Nehmen wir an, eine Folge (a n ) n N konvergiere sowohl gegen a, als auch gegen b, und a < b.

Mehr

2.2 Funktionen und Stetigkeit

2.2 Funktionen und Stetigkeit . Funktionen und Stetigkeit.. Funktionen und Stetigkeit 9 Ein zentraler Begriff der Mathematik ist der Begriff der Abbildung oder Funktion, und dieses Konzept taucht in den verschiedensten Zusammenhängen

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

2.6 Lokale Extrema und Mittelwertsatz

2.6 Lokale Extrema und Mittelwertsatz 2.6. Lokale Etrema und Mittelwertsatz 49 2.6 Lokale Etrema und Mittelwertsatz In diesem Kapitel bezeichne f stets eine reellwertige Funktion, definiert auf einem abgeschlossenen Intervall [a, b]. Unter

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (0.09.03 0.09.03) Dr. Jörg Horst WS 03-04 Mathematischer Vorkurs TU Dortmund Seite / 5 Mathematischer Vorkurs TU Dortmund Seite 6 / 5 Schenkel Winkelbereich Scheitel S

Mehr

Kapitel 5 Trigonometrie

Kapitel 5 Trigonometrie Mathematischer Vorkurs TU Dortmund Seite / 7 Schenkel Winkelbereich Scheitel S α Winkel werden in Grad oder im Bogenmaß (auch Rad) angegeben: 360 =. y cot α r = sin α α cos α tan α x Durch diese Betrachtungen

Mehr

3 Folgen, Reihen und stetige Funktionen

3 Folgen, Reihen und stetige Funktionen Höhere Mathematik 101 3 Folgen, Reihen und stetige Funktionen 3.1 Folgen und Reihen: Definitionen und Beispiele Eine reelle oder komplexe Zahlenfolge ist eine Abbildung, die jeder natürlichen Zahl n eine

Mehr

dx nf(x 0). dx f(n 1) (x 0 ) = dn

dx nf(x 0). dx f(n 1) (x 0 ) = dn 4.3. Höhere Ableitungen, Konveität, Newtonverfahren 65 4.3 Höhere Ableitungen, Konveität, Newtonverfahren Ist f:i R differenzierbar auf einem Intervall I, so erhalten wir eine neue Funktion auf I, nämlich

Mehr

Definition, Funktionsgraph, erste Beispiele

Definition, Funktionsgraph, erste Beispiele 5. Vorlesung im Brückenkurs Mathematik 07 Reelle Funktionen Dr. Markus Herrich Markus Herrich Reelle Funktionen Definition, Funktionsgraph, erste Beispiele Markus Herrich Reelle Funktionen Definition Eine

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 16 Der Zwischenwertsatz Wir interessieren uns dafür, was unter einer stetigen Abbildung f :R R mit einem Intervall passiert.

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

Ferienkurs Stetigkeit und Konvergenz Seite 1. Technische Universität München Ferienkurs Analysis 1. Musterlösung = lim.

Ferienkurs Stetigkeit und Konvergenz Seite 1. Technische Universität München Ferienkurs Analysis 1. Musterlösung = lim. Ferienkurs Stetigkeit und Konvergenz Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit und Konvergenz Musterlösung 6.03.20. Grenzwerte I Berechnen Sie lim f(), lim f()

Mehr

1.2 Einfache Eigenschaften von Funktionen

1.2 Einfache Eigenschaften von Funktionen 1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine

Mehr

6.4 Stetige Funktionen

6.4 Stetige Funktionen 6.4 Stetige Funktionen Eine Funktion f heißt stetig im Punkt a, falls sie dort definiert ist und folgende Gleichung erfüllt: lim /a f = f a Ist dies für alle Punkte des Definitionsbereichs A erfüllt, so

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

2. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 L := 2. sin(2x) + 1 sin(x)

2. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 L := 2. sin(2x) + 1 sin(x) O. Alaya, R. Bauer M. Fetzer, K. Sanei Kashani B. Krinn, J. Schmid. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 03 Lösungshinweise zu den Hausaufgaben: Aufgabe H 5. Stetigkeit Gegeben ist

Mehr

Analysis I. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 6. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 2017 1 Erinnerung Eine Abbildung f : X Y heisst injektiv, falls 1, 2 X : 1 2 f( 1 ) f( 2 ). (In Worten:

Mehr

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Funktionen, Stetigkeit Dierentialrechnung Funktionen mit mehreren Variablen Integralrechnung Dierentialgleichungen Teil 2: Wahrscheinlichkeitsrechnung

Mehr

Analysis I. Vorlesung 13. Der Zwischenwertsatz

Analysis I. Vorlesung 13. Der Zwischenwertsatz Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 13 Der Zwischenwertsatz Wir interessieren uns dafür, was unter einer stetigen Abbildung f: R R mit einem Intervall passiert. Der Zwischenwertsatz

Mehr

Grenzwerte und Stetigkeit

Grenzwerte und Stetigkeit KAPITEL 3 Grenzwerte und Stetigkeit 3.1 Grenzwerte..................................... 49 3.2 Stetigkeit....................................... 57 Lernziele 3 Grenzwerte ε-δ-definition des Grenzwerts,

Mehr

c < 1, (1) c k x k0 c k = x k0

c < 1, (1) c k x k0 c k = x k0 4.14 Satz (Quotientenkriterium). Es sei (x k ) Folge in K. Falls ein k 0 existiert, so dass für k k 0 gilt x k 0 und x k+1 x k c < 1, (1) so ist x k absolut konvergent. Beweis. Aus (1) folgt mit vollständiger

Mehr

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1.

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1. 8. GRENZWERTE UND STETIGKEIT VON FUNKTIONEN 51 e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme cos(x+y) = cos(x) cos(y) sin(x) sin(y) und sin(x+y) = cos(x) sin(y)+sin(x) cos(y). f. Für eine

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 26 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

3 Abbildungen. 14 I. Zahlen, Konvergenz und Stetigkeit

3 Abbildungen. 14 I. Zahlen, Konvergenz und Stetigkeit 14 I. Zahlen, Konvergenz und Stetigkeit 3 Abbildungen 3.1 Definition. Es seien zwei Mengen M, N gegeben. Unter einer Abbildung f : M N von M nach N versteht man eine Vorschrift, die jedem Element M genau

Mehr

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 81 3. Stetigkeit 3.1. Stetigkeit. Im Folgenden sei D R eine beliebige nichtleere Teilmenge. Typischerweise wird D ein allgemeines Intervall sein, siehe Abschnitt

Mehr

Funktionen einer reellen Veränderlichen

Funktionen einer reellen Veränderlichen KAPITEL Funktionen einer reellen Veränderlichen.1 Eigenschaften von Funktionen........................... 39. Potenz- und Wurzelfunktionen............................ 1.3 Trigonometrische Funktionen.............................

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b. Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 202/3 Institut für Analysis 26..202 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 7. Übungsblatt Aufgabe Untersuchen

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

10. Isolierte Singularitäten

10. Isolierte Singularitäten 0. Isolierte Singularitäten 57 0. Isolierte Singularitäten Der wichtigste Spezialfall von Laurent-Reihen (und in der Tat auch der, den wir ab jetzt nur noch betrachten werden) ist der, bei dem der innere

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 27 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also Festlegung Definitionsbereich 11.1 Festlegung Definitionsbereich Festlegung: Wir betrachten Funktionen f : D Ñ R, deren Definitionsbereich eine endliche Vereinigung von Intervallen ist, also z.b. D ra,

Mehr

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115 5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 5 Satz 5.5.2 (Ableitung der Umkehrfunktion einer Winkelfunktionen) Die Umkehrfunktionen der trigonometrischen Funktionen sind nach Satz 5.2.3 auf den

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

F u n k t i o n e n Zusammenfassung

F u n k t i o n e n Zusammenfassung F u n k t i o n e n Zusammenfassung Johann Carl Friedrich Gauss (*1777 in Braunschweig, 1855 in Göttingen) war ein deutscher Mathematiker, Astronom und Physiker mit einem breit gefächerten Feld an Interessen.

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 3. Reelle Funktionen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

Analysis 1 für Informatiker (An1I)

Analysis 1 für Informatiker (An1I) Hochschule für Technik Rapperswil Analysis 1 für Informatiker (An1I) Stand: 2012-11-13 Inhaltsverzeichnis 1 Funktionen 3 1.1 Gerade, ungerade und periodische Funktionen..................... 3 1.2 Injektive,

Mehr

4.2 Grenzwerte und Stetigkeit reeller Funktionen

4.2 Grenzwerte und Stetigkeit reeller Funktionen 4. Grenzwerte und Stetigkeit reeller Funktionen 73 4. Grenzwerte und Stetigkeit reeller Funktionen Definition 4.. Gegeben sei eine Funktion y = mit D(f). (i) Sei D(f). heißt stetig in, falls es für alle

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker

Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker REELLE FUNKTIONEN 1 Was muss aufgeführt werden, wenn man eine reelle Funktion angibt? a) Ihre Funktionsvorschrift und ihren Wertebereich. Ihre Funktionsvorschrift und ihren Definitionsbereich. c) Den Wertebereich

Mehr

Funktionen. x : Variable von f oder Argument f x : Funktionswert, Wert der Funktion f an der Stelle x D f. : Definitionsmenge(Urbildmenge)

Funktionen. x : Variable von f oder Argument f x : Funktionswert, Wert der Funktion f an der Stelle x D f. : Definitionsmenge(Urbildmenge) Funktionen Eine Funktion oder Abbildung ist eine Beziehung zwischen zwei nicht leere Mengen D f und Z, die jedem Element x aus einer Menge D f genau ein Element y aus anderer Menge Z zuordnet. f : D f

Mehr

θ für alle n n 0, 0, dann divergiert a n. θ n, also die mit a n0 θ n 0

θ für alle n n 0, 0, dann divergiert a n. θ n, also die mit a n0 θ n 0 6 REIHEN 6. Konvergenzkriterien - 19 - Wenn man im Majorantenkriterium die geometrische Reihe als Majorante nimmt, erhält man das (6..18) Quotientenkriterium : Sei (a n ) n N0 eine Folge in C. Es gebe

Mehr

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil 14 DIE EXPONENTIALFUNKTION IM KOMPLEXEN 73 Wegen (a, 0) + (c, 0) = (a + c, 0) (a, 0) (c, 0) = (ac, 0) kann man die Teilmenge {(a, 0) a R} mit den darauf eingeschränkten Verknüpfungen identifizieren mit

Mehr

Analysis I. 7. Beispielklausur mit Lösungen

Analysis I. 7. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 7. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine surjektive Abbildung f: L M. () Ein archimedisch

Mehr

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet.

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. 1 Der Funktionsbegriff Funktionen Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. Dabei nennt man die Menge A Definitionsmenge

Mehr

15 Hauptsätze über stetige Funktionen

15 Hauptsätze über stetige Funktionen 15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen

Mehr

Thema 5 Differentiation

Thema 5 Differentiation Thema 5 Differentiation Definition 1 Sei f : D R. Dann ist f im Punkt x 0 differenzierbar, falls f(x) f(x 0 ) x x 0 x x 0 auf der Menge D \ {x 0 } existiert. Der Limes ist dann die Ableitung von f im Punkt

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 22 3. Funktionen. Grenzwerte.

Mehr

3 Grenzwert und Stetigkeit 1

3 Grenzwert und Stetigkeit 1 3 Grenzwert und Stetigkeit 3. Grenzwerte bei Funktionen In diesem Abschnitt gilt: I ist immer ein beliebiges Intervall, 0 I oder einer der Endpunkte. 3.. Definition Sei I Intervall, 0 IR und 0 I oder Endpunkt

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 7 Differenzierbarkeit Mathematischer Vorkurs TU Dortmund Seite

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite / 50 Kapitel 5 Mathematischer Vorkurs TU Dortmund Seite 54 / 50 Scheitel S Schenkel α Winkelbereich Winkel werden in Grad

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Funktionen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Funktionen brauchen Prof. Dr. Wolfgang Konen Mathematik, WS03 30.0.03 4. Reelle Funktionen 4.. Warum Informatiker Funktionen brauchen Funktionen beschreiben Zusammenhänge zwischen Zielgrößen und Einflußgrößen und sind damit

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

2.4 Grenzwerte bei Funktionen

2.4 Grenzwerte bei Funktionen 28 Beispiel Im Beispiel am Ende von Abschnitt 2.1 (Seiten 22 und 24) haben wir gesehen, dass für die Anzahl a n von Bakterien nach n Tagen gilt a n = 2500 (1,04 n +1). Nach wieviel Tagen sind es eine Million

Mehr

Analysis I. 3. Beispielklausur mit Lösungen

Analysis I. 3. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 3. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine Abbildung F von einer Menge L in eine

Mehr

Kapitel II Funktionen reeller Variabler

Kapitel II Funktionen reeller Variabler Kapitel II Funktionen reeller Variabler D (Funktion) Es sei f XxY eine Abbildung Die Abbildung f heiß Funktion, falls sie eindeutig ist Man schreibt dann auch: f : X Y f ( x) = y, wobei y das (eindeutig

Mehr

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Janko Latschev Fachbereich Mathematik Universität Hamburg www.math.uni-hamburg.de/home/latschev Hamburg,

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Die Lösungen der Gleichung b x = log b (x)

Die Lösungen der Gleichung b x = log b (x) Die Lösungen der Gleichung b = log b () wgnedin@math.uni-koeln.de 17. Januar 2014 In der ersten Vorlesung des Wintersemesters wurde folgende Frage gestellt: Wieviele Lösungen hat die Gleichung ( ) 1 =

Mehr

3 Folgen und Stetigkeit

3 Folgen und Stetigkeit 3 Folgen und Stetigkeit 3.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index n gibt

Mehr

Funktionen und Stetigkeit

Funktionen und Stetigkeit Kapitel 4 Funktionen und Stetigkeit 4.1 Funktionen Definition 4.1: Eine Funktion f : D C ist eine Zuordnung f : z f(z) einer Zahl z D C zu einem Bildwert f(z) C. Der Punkt z heißt auch Urbild von f(z).

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

Analysis I. 6. Beispielklausur mit Lösungen

Analysis I. 6. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 8/9) Kapitel 3:Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 4. November 8) Abbildungen / Funktionen Definition 3. Eine

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Vorlesung Mathematik für Ingenieure I (Wintersemester 007/08) Kapitel 3: Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 8. November 007) Abbildungen / Funktionen Definition

Mehr

{, wenn n gerade ist,, wenn n ungerade ist.

{, wenn n gerade ist,, wenn n ungerade ist. 11 GRENZWERTE VON FUNKTIONEN UND STETIGKEIT 60 Mit anderen Worten, es ist lim f(x) = b lim f (, a)(x) = b, x a x a wobei f (, a) die Einschränkung von f auf (, a) ist. Entsprechendes gilt für lim x a.

Mehr

ANALYSIS 1 Kapitel 6: Stetige Funktionen

ANALYSIS 1 Kapitel 6: Stetige Funktionen ANALYSIS 1 Kapitel 6: Stetige Funktionen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität Graz 6.1 Grundbegrie

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 13.1.016 Zwischenwertsatz und klassische Funktionen In diesem Abschnitt haben wir es mit Funktionen zu tun, die auf einem Intervall definiert sind. Eine Menge I R ist genau dann ein

Mehr

Spezielle Klassen von Funktionen

Spezielle Klassen von Funktionen Spezielle Klassen von Funktionen 1. Ganzrationale Funktionen Eine Funktion f : R R mit f (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, n N 0 und a 0, a 1,, a n R, (a n 0) heißt ganzrationale Funktion n

Mehr

Die Funktion f (x) = e ix

Die Funktion f (x) = e ix Die Funktion f (x) = e ix Wir wissen e ix = 1, liegt also auf dem Einheitskreis. Mit wachsendem x läuft e ix immer wieder um den Einheitskreis herum. Die Laufrichtung ist gegen den Uhrzeigersinn (mathematisch

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88 4. Funktionen Buchholz / Rudolph: MafI 2 88 Kapitelgliederung 4.1 Grundlegende Denitionen 4.2 Polynome und rationale Funktionen 4.3 Beschränkte und monotone Funktionen 4.4 Grenzwerte von Funktionen 4.5

Mehr

10 Differenzierbare Funktionen

10 Differenzierbare Funktionen 10 Differenzierbare Funktionen 10.1 Definition: Es sei S R, x 0 S Häufungspunkt von S. Eine Funktion f : S R heißt im Punkt x 0 differenzierbar, wenn der Grenzwert f (x 0 ) := f(x 0 + h) f(x 0 ) lim h

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 2

Technische Universität München Zentrum Mathematik. Übungsblatt 2 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 2 Hausaufgaben Aufgabe 2.1 Sei [a, b] R ein Intervall und ( ) n N [a,

Mehr

Analysis I. Guofang Wang , Universität Freiburg

Analysis I. Guofang Wang , Universität Freiburg Universität Freiburg 10.1.2017, 11.1.2017 Definition 1.1 (Ableitung) Die Funktion f : I R n hat in x 0 I die Ableitung a R n (Notation: f (x 0 ) = a), falls gilt: f(x) f(x 0 ) lim = a. (1.1) x x 0 x x

Mehr

13 Stetige Funktionen

13 Stetige Funktionen $Id: stetig.tex,v.4 2009/02/06 3:47:42 hk Exp $ 3 Stetige Funktionen 3.2 Stetige Funktionen In anderen Worten bedeutet die Stetigkeit einer Funktion f : I R also f(x n) = f( x n ) n n für jede in I konvergente

Mehr

8. Stetigkeit. 8.A Grenzwerte von Funktionen. 8. Stetigkeit 85

8. Stetigkeit. 8.A Grenzwerte von Funktionen. 8. Stetigkeit 85 8. Stetigkeit 85 8. Stetigkeit Nachdem wir uns gerade ausführlich mit Grenzwerten von Folgen und Reihen befasst haben, wollen wir den Grenzwertbegriff nun auf Funktionen einer reellen (oder evtl. kompleen)

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

Funktionen einer reellen Veränderlichen

Funktionen einer reellen Veränderlichen KAPITEL Funktionen einer reellen Veränderlichen. Grundbegriffe Definition.. Eine Abbildung oder Funktion f ist eine Zuordnung(svorschrift), die jeder Zahl x aus dem Definitionsbereich D(f) der Funktion

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A)

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A) Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, 10.1.009 (Version A) Kennwort: Übungsgruppe: (Sie können ein beliebiges Kennwort wählen, um Ihre Anonymität zu wahren! Da die Probeklausur

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

Analysis I. 5. Beispielklausur mit Lösungen

Analysis I. 5. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 5. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Die Umkehrabbildung zu einer bijektiven Abbildung

Mehr

Mathematik I. Zusammenhängende Räume

Mathematik I. Zusammenhängende Räume Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 21 Die beiden nächsten Vorlesungen kann man unter dem Aspekt sehen, welche topologischen Eigenenschaften die reellen Zahlen gegenüber

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Vorlesungen Analysis von B. Bank

Vorlesungen Analysis von B. Bank Vorlesungen Analysis von B. Bank vom 23.4.2002 und 26.4.2002 Zunächst noch zur Stetigkeit von Funktionen f : D(f) C, wobei D(f) C. (Der Text schliesst unmittelbar an die Vorlesung vom 19.4.2002 an.) Auf

Mehr