Funktionen einer reellen Veränderlichen
|
|
|
- Minna Weiner
- vor 7 Jahren
- Abrufe
Transkript
1 KAPITEL Funktionen einer reellen Veränderlichen. Grundbegriffe Definition.. Eine Abbildung oder Funktion f ist eine Zuordnung(svorschrift), die jeder Zahl x aus dem Definitionsbereich D(f) der Funktion f eine Zahl y = f(x) W (f) aus der Wertebereich der Funktion zurordnet. Die Bildmenge bzw. dem Bild f(d), d.h. der Menge aller y fur die es ein (oder mehrere) x D(f) gibt mit y = f(x). Im Allgemeinen gibt als Wertebereich das Bild von f an. Abbildung/Funktion y=f(x) Definitionsbereich D(f)=-4;6] Wertebereich W(f)=f(D) Bild der Funktion f Eine Funktion ist eindeutig, aber nicht eineindeutig. A Eine Funktion kann explizit als y = f(x) gegeben sein, oder implizit als F (x, y) = 0, oder auch in Parameterform x = ϕ(t), y = ψ(t). Definition.. Der Graph einer Funktion ist die Menge aller geordneten Paare (x, f(x)) fur x D(f).
2 . FUNKTIONEN EINER REELLEN VERANDERLICHEN.. Eigenschaften einer Funktion. Definition.3. Eine Funktion f : D(f) W (f) R heit monoton wachsend, wenn aus x < x stets f(x ) f(x ) folgt, streng monoton wachsend, wenn aus x < x stets f(x ) < f(x ) folgt, monoton fallend, wenn aus x < x stets f(x ) f(x ) folgt, streng monoton fallend, wenn aus x < x stets f(x ) > f(x ) folgt, gerade oder achsensymmetrisch, wenn f(x) = f( x) fur alle x D(f) gilt, ungerade oder punktsymmetrisch, wenn f(x) = f( x) fur alle x D(f) gilt, nach unten beschränkt, wenn es eine reelle Zahl c mit f(x) c fur alle x D(f) gibt, nach oben beschränkt, wenn es eine reelle Zahl C mit f(x) C fur alle x D(f) gibt, beschränkt, wenn es eine reelle Zahl k mit f(x) k fur alle x D(f) gibt, periodisch mit der Periode T, wenn f(x) = f(x + T ) fur alle x D(f) gilt, injektiv oder eineindeutig, wenn aus x x folgt f(x ) f(x ), surjektiv oder Abbildung auf, wenn es zu jedem y W (f) mindestens ein x D(f) gibt mit y = f(x), bijektiv, wenn sie surjektiv und injektiv ist. Eine wichtige Eigenschaft bijektiver Funktionen besteht darin, dass sie eine Umkehrfunktion besitzen. Definition.4. Ist f : A B eine bijektive Funktion, die jedem x A genau ein y B zuordnet, dann existiert die Umkehrfunktion f : B A, f (y) = x, die jedem y B genau ein x A zuordnet, d.h. y = f(x) x = f (y)... Potenz- und Wurzelfunktionen. Die Potenzfunktionen y = x n, n =,,... sind deniert auf (, + ),
3 haben den Wertebereich 0, ), sind gerade Funktionen, nach unten beschrankt durch c = 0, streng monoton fallend auf (, 0], streng monoton wachsend auf 0, ), nicht injektiv, da ( x) n = x n ist. Die Potenzfunktionen y = x n, n =,,... sind deniert auf (, + ), haben den Wertebereich (, ), sind ungerade Funktionen, streng monoton wachsend auf (, ), injektiv.. GRUNDBEGRIFFE 3 y=x n, n=,,... y=x n-, n=,,... A Bestimmung der Umkehrfunktion Auosen von y = f(x) nach x : x = f (y), Spiegeln des Graphen der Funktion an der Geraden y = x, dies entspricht dem Vertauschen von x und y. Beispiel.. wird nach x aufgelost: y = f(x) = 4x y = 4x y + = 4x x = (y + ), 4 d.h. die Umkehrfunktion zu f(x) = 4x ist f (x) = (x + ). 4
4 4. FUNKTIONEN EINER REELLEN VERANDERLICHEN Man beachte, dass wir die Standardbezeichnung f(x) fur Funktionen auch bei der Umkehrfunktion verwenden. y=x y=f(x)=4x- 3 y=f - (x)=¼(x+) = ¼x+¼ 3 Definition.5. Die n-te Wurzel, n N, aus einer reellen Zahl a, a 0, ist diejenige nichtnegative reelle Zahl b (also b 0), fur die gilt b n = a. Man schreibt b = n a. Die n-te Wurzel bzw. die Wurzelfunktion f(x) = n (x) ist nur fur nichtnegative x 0 deniert. Wurzeln können nur aus nichtnegativen reellen Zahlen gezogen werden! Die Sinusfunktion f(x) = sin x ergibt sich aus den Beziehungen im rechtwinkligen Dreieck. a b β α c Wir haben: sin α = a c. Oft wird statt eines Winkels die Lange des zum Winkel α gehorigen Bogenstucks = Bogenma x des Einheitskreises in die Sinusfunktion eingesetzt. Auf diese Weise ist sin x fur alle x R erklart, sie ist eine periodische Funktion mit Periodenlange
5 3. WEITERE TRIGONOMETRISCHE FUNKTIONEN 5 T = :, d.h. sin x = sin(x + k), k Z, und alle x R. Die Kosinusfunktion, am rechtwinkligen Dreieck ist: cos α = b c. Wiederum nimmt an Stelle des Winkels α das Bogenma x und erhalten die Kosinusfunktion cos x fur alle x R. Die Cosinusfunktion ist auch ein -periodische Funktion, d.h. cos x = cos(x + k) fur alle k Z und alle x R.. Nützliche Formeln Am rechtwinkligen Dreieck ergibt sich die Beziehung: sin α + cos α = bzw. im Bogenma sin x + cos x =, x R. Spezielle Werte: ϕ 0 6 sin ϕ 0 cos ϕ 3 Weitere Werte im Gradma: Winkel Bogenlange Zum Umformen von Gleichungen sind die folgenden Formeln n utzlich: sin( x) = sin x ungerade Funktion, cos( x) = cos x gerade Funktion, sin ( x + ) = cos x. 3. Weitere trigonometrische Funktionen Weiterhin gibt es die Tangensfunktion tan x = sin x cos x. Sie ist oensichtlich fur cos x = 0, also fur x = +k, k Z nicht erklart, auerdem ist sie eine periodische Funktion mit der Periodenlange T =. Sowie die Kotangensfunktion cot x = cos x sin x. Sie ist oensichtlich fur sin x = 0, also fur x = k, k Z nicht erklart, auerdem ist sie eine periodische Funktion mit der Periodenlange T =.
6 6. FUNKTIONEN EINER REELLEN VERANDERLICHEN 4. Umkehrfunktionen: Zyklometrische Funktionen Wie man leicht an den abgebildeten Graphen der trigonometrischen Funktionen sieht, sind die trigonometrischen Funktionen nicht bijektiv, da sie nicht injektiv sind. Das bedeutet aber, dass es nicht so einfach ist, eine Umkehrfunktion zu denieren. Die Idee besteht nun darin, einen maximalen Bereich f ur die entsprechende trigonometrische Funktion zu nden, so dass sie bijektiv ist. 4.. Arcussinus. Oensichtlich durchlauft die Sinusfunktion alle Werte des Intervalls, ] fur x, ] genau einmal, d.h. die Funktion sin :, ], ], bijekiv. Die Umkehrfunktion arcsin y ist damit erklart als arcsin y = x y = sin x, y, ], x, ]. Deshalb bezeichnet man die Werte x, ] als Hauptwerte und bezeichnet die mit Arcsin x :, ], ]. Fur Werte auerhalb von, ] benutzt man dann, dass die Sinusfunktion auch fur sin : + k, ] + k, ], bijekiv ist und deniert (mit kleinem a\:) " arcsin :, ] + k, ] + k, arcsin y = x y = sin x. 4.. Arcuscosinus. Analoges gilt fur die Cosinus-funktion und den Arcuscosinus; arccos :, ] k, (k + )], arccos y = x y = cos x. Die Hauptwerte sind hier x 0, ] : Arccos x :, ] 0, ]. 5. Arcustangens und Arcuskotangens Desgleichen besitzen die Tangens- und die Kotangensfunktion uber den oenen Intervallen ( + k, + k) bzw. (k, (k + )) fur k Z jeweils eine Umkehrfunktion. Wir betrachten nur die Hauptwerte (k = 0). Wir haben: Arctan : R, ], Arctan y = x y = tan x. und analog Arccot : R 0, ], Arccot y = x y = cot x.
Definition von Sinus und Cosinus
Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,
VORKURS MATHEMATIK FÜR INGENIEURE PD DR. SWANHILD BERNSTEIN, TU BERGAKADEMIE FREIBERG, WINTERSEMESTER 2007/08
VORKURS MATHEMATIK FÜR INGENIEURE PD DR. SWANHILD BERNSTEIN, TU BERGAKADEMIE FREIBERG, WINTERSEMESTER 007/08 Inhaltsverzeichnis 1. Mengen 1.1. Mengenrelationen und -operationen 1.. Zahlenbereiche 4 1.3.
9 Die trigonometrischen Funktionen und ihre Umkehrfunktionen
Übungsmaterial 9 Die trigonometrischen Funktionen und ihre Umkehrfunktionen Die trigonometrischen Funktionen sind die Sinus-, die Kosinus- und die Tangensfunktion. 9. Eigenschaften der trigonometrischen
Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).
Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,
E. AUSBAU DER INFINITESIMALRECHNUNG 17. UMKEHRFUNKTIONEN (INVERSE FUNCTION)
160 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch
Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I
Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Komplexe Zahlen Definition komplexer Zahlen in der Gaußschen Zahlenebene, algebraische Form, trigonometrische Form, exponentielle
Dezimalzahlen. Analysis 1
Dezimalzahlen Definition. Eine endliche Dezimalzahl besteht aus - einem Vorzeichen +,, oder 0 - einer natürlichen Zahl d 0 - einer endlichen Folge von Ziffern d 1,...,d l von 0 bis 9. Die Länge l kann
22 Die trigonometrischen Funktionen und die Hyperbelfunktionen
22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens
Einleitung 1. 3 Beweistechniken und einige Beweise Teil I 19
Inhaltsverzeichnis Inhaltsverzeichnis iv Einleitung 1 1 Aussagen, Mengen und Quantoren 3 1.1 Aussagen und logische Verknüpfungen........................ 3 1.2 Mengen.........................................
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als
IV. Stetige Funktionen. Grenzwerte von Funktionen
IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es
Trigonometrische Funktionen
Trigonometrische Funktionen Rainer Hauser September 013 1 Einleitung 1.1 Der Begriff Funktion Eine Funktion ordnet jedem Element m 1 einer Menge M 1 ein Element m einer Menge M zu. Man schreibt dafür f:
Trignonometrische Funktionen 6a
Schuljahr 2015/16 [email protected] Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, November 23, 2015 Winkelmaße Winkelmaß bis 6. Klasse: Grad (0 360 )
Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007
Workshops zur VO Einführung in das mathematische Arbeiten im SS 007 Inhaltsverzeichnis Funktionen Evelina Erlacher 7. März 007 Der Funktionsbegriff Darstellungsmöglichkeiten von Funktionen 3 Einige Typen
Funktionen. Mathematik-Repetitorium
Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2
Mathematik für Ökonomen 1
Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen
Beispiel zu Umkehrfunktionen des Sinus
Beispiel zu Umkehrfunktionen des Sinus Die Funktion f : [ π, π ] [, ], x sin(x) besitzt die Umkehrfunktion f Arcsin (Hauptzweig des Arcussinus). Wir betrachten die beiden Funktionen g : [ 3 π, 5 π] [,
Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen
Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte
Vorkurs Mathematik 2014
Dr. Mario Helm et al. Institut für Numerische Mathematik und Optimierung Fakultät für Mathematik und Informatik Vorkurs Mathematik 4 Winkelmessung und trigonometrische Funktionen 6.-..4 Winkel und Winkelmessung
9 Funktionen und ihre Graphen
57 9 Funktionen und ihre Graphen Funktionsbegriff Eine Funktion ordnet jedem Element aus einer Menge D f genau ein Element aus einer Menge W f zu. mit = f(), D f Die Menge aller Funktionswerte nennt man
1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:
Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar
2.6 Der komplexe Logarithmus und allgemeine Potenzen
2.6 Der komplexe Logarithmus und allgemeine Potenzen Ziel: Umkehrung der komplexen Exponentialfunktion fz) = expz). Beachte: Die Exponentialfunktion expz) ist für alle z C erklärt, und es gilt Dexp) =
α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel
Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,
Mengen, Funktionen und Logik
Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,
Stetigkeit von Funktionen
Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte
Formelsammlung spezieller Funktionen
Lehrstuhl A für Mathematik Aachen, en 70700 Prof Dr E Görlich Formelsammlung spezieller Funktionen Logarithmus, Eponential- un Potenzfunktionen Natürlicher Logarithmus Der Logarithmus ist auf (0, ) efiniert
F u n k t i o n e n Zusammenfassung
F u n k t i o n e n Zusammenfassung Johann Carl Friedrich Gauss (*1777 in Braunschweig, 1855 in Göttingen) war ein deutscher Mathematiker, Astronom und Physiker mit einem breit gefächerten Feld an Interessen.
Thema 4 Limiten und Stetigkeit von Funktionen
Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.
1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem
.0.0. Funktionen einer reellen Veränderlichen und ihre Darstellung im, - Koordinatensstem Vereinbarungen Wir betrachten vorerst nur noch Funktionen f, deren Definitionsund Wertebereich jeweils R oder ein
Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α
Grundwissen 0. Berechnungen an Kreis und Kugel a) Bogenmaß Beispiel: Gegeben ist ein Winkel α=50 ; dann gilt: b = b = π 50 0,8766 r r 360 Die (reelle) Zahl ist geeignet, die Größe eines Winkels anzugeben.
Die elementaren trigonometrischen Funktionen und ihre Umkehrfunktionen sind: Funktion Kurzzeichen Umkehrfunktion Kurzzeichen Sinus
trigonometrische Funktionen Übersicht über die trigonometrischen Funktionen Die elementaren trigonometrischen Funktionen und ihre Umkehrfunktionen sind: Funktion Kurzzeichen Umkehrfunktion Kurzzeichen
Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt
Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt f 1 : W D, y wobei D mit f() = y die Umkehrfunktion zu f. Der Graph G f 1 = {(y,
F u n k t i o n e n Trigonometrische Funktionen
F u n k t i o n e n Trigonometrische Funktionen Jules Antoine Lissajous (*1822 in Versailles, 1880 in Plombières-les-Bains) wurde durch die nach ihm benannten Figuren bekannt, die bei der Überlagerung
Potenzen und Wurzeln, Exponentialfunktion und Logarithmus sowie Winkel- und Arkusfunktionen
Potenzen und Wurzeln, Eponentialfunktion und Logarithmus sowie Winkel- und Arkusfunktionen Katharina Brazda 8. März 7 Inhaltsverzeichnis Notation Potenzen und Wurzeln. Definition von Potenzen (mit ganzzahligen
10 - Elementare Funktionen
Kapitel 1 Mathematische Grundlagen Seite 1 10 Elementare Funktionen Definition 10.1 (konstante Funktion) Konstante Funktionen sind nichts weiter als Parallelen zur xachse, wenn man ihren Graphen in das
Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion.
Tutorium Mathe 1 MT I Funktionen: Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren Man nennt die Untersuchung von Funktionen auch Kurvendiskussion 1 Definitionsbereich/Wertebereich
Trigonometrische Funktionen
Trigonometrische Funktionen Wir beginnen mit der Sinusfunktion: f(x) = sin(x) Wir schränken den Definitionsbereich auf eine Periode ein, d.h. xœ 0,2 bzw. 0 x 2p. Hier ist der Graph: Folgendes sollte beachtet
Mathematik 2. B.Grabowski. 8. Mai 2007
Mathematik 2 B.Grabowski 8. Mai 2007 Zusammenfassung Das vorliegende Papier umfasst den Inhalt der Vorlesung Mathematik 2 für Ingenieure und gibt Hinweise zu weiterführender Literatur. Wir verweisen auch
$Id: stetig.tex,v /06/26 15:40:18 hk Exp $
$Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,
Trigonometrie. Winkelfunktionen und Einheitskreis
Trigonometrie Die Trigonometrie ist die Lehre der Winkel- oder Kreisfunktionen. Die auffälligste Eigenschaften der Funktionen der Trigonometrie ist die Periodizität: Trigonometrische Funktionen zeigen
Stetigkeit. Definitionen. Beispiele
Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt
lim Der Zwischenwertsatz besagt folgendes:
2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert
3 Abbildungen von Funktionsgraphen
27 3 Abbildungen von Funktionsgraphen In Kapitel 1 dieses Workshops haben wir uns mit der Transformation von geometrischen Figuren im Achsenkreuz beschäftigt: mit Verschiebungen, Spiegelungen, Achsenstreckungen
Skriptum zum Praktikum Einführung in die Mathematik 2
Skriptum zum Praktikum Einführung in die Mathematik Tobias Hell & Georg Spielberger Letzte Änderung:. Februar 0 Universität Innsbruck WS 00/ Inhaltsverzeichnis Präliminarien 4 Rechnen mit Potenzen und
Surjektive, injektive und bijektive Funktionen.
Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens
Kapitel 6 Folgen und Stetigkeit
Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n
I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE
I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen
Übung 2 vom
Übung vom.0.04 Aufgabe 5 Gegeben ist die Gleichung sin(α) + sin(α + β) + sin(α + β) = 0 Für welches Argument β ist diese Gleichung für jedes α erfüllt? Wo findet diese Gleichung Anwendung in der Technik?
8. Spezielle Funktionen
94 Andreas Gathmann 8. Spezielle Funktionen Nachdem wir jetzt schon relativ viel allgemeine Theorie kennen gelernt haben, wollen wir diese nun anwenden, um einige bekannte spezielle Funktionen zu studieren
13. Funktionen in einer Variablen
13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier
17 Logarithmus und allgemeine Potenz
7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur
Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen
Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.
r Oberflächeninhalt 1 Berechnungen am Kreis O 4r 1.1 Bogenmaß Das Bogenmaß x ist das zu gehörende Verhältnis Bogenlänge, also die 1.
Grundwissen Mathematik 0 Berechnungen am Kreis. Bogenmaß Das Bogenmaß ist das zu gehörende Verhältnis Bogenlänge, also die Radius Zahl / r Umrechnungen: r r 0 30 45 60 90 360 0. Kreisteile Sektorfläche:.3
21 Winkelfunktionen
Winkelfunktionen. Berechnungen am rechtwinkligen Dreieck Ein Dreieck, in dem ein Winkel genau 90 hat nennt man ein rechtwinkliges Dreieck. Für die Dreiecksseiten hat man hier verschiedene Bezeichnungen
2.8 Trigonometrische Funktionen (Thema aus dem Bereich Analysis/Geometrie)
.8 Trigonometrische Funktionen (Thema aus dem Bereich Analysis/Geometrie) Inhaltsverzeichnis Repetition und Einleitung Verhältnisse beim Kreis mit Radius r 3 3 Die Graphen der Sinus- und der Cosinusfunktion
Urs Wyder, 4057 Basel Funktionen. f x x x x 2
Urs Wyder, 4057 Basel [email protected] Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4
2 Komplexe Funktionen
2 Komplexe Funktionen Wir betrachten komplexwertige Funktionen f einer komplexen Variablen. 2.1 Begriff und geometrische Deutung Definition: Eine komplexe Funktion ist eine Funktion, deren Definitions-
F u n k t i o n e n Potenzfunktionen
F u n k t i o n e n Potenzfunktionen Die Kathedrale von Brasilia steht in der brasilianischen Hauptstadt Brasilia wurde von Oscar Niemeyer (*907 in Rio de Janeiro). Die Kathedrale von Brasilia besteht
Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktionen Gymnasium ab Klasse 10 Alexander Schwarz
Analysis Trigonometrische Funktionen Gymnasium ab Klasse 0 Alexander Schwarz www.mathe-aufgaben.com Dezember 0 Hinweis: Außer bei Aufgabe darf der GTR benutzt werden. Aufgabe : Bestimme ohne GTR: a) sin(405
Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Übungsheft
Vorkurs Mathematik Vorbereitung auf das Studium der Mathematik Übungsheft Dr. Johanna Dettweiler Institut für Analysis 0. Oktober 009 Aufgaben zu Kapitel Die Nummerierung der Aufgaben bezieht sich auf
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen
Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)
1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.
Mathematik 1 für Wirtschaftsinformatik
Mathematik 1 für Wirtschaftsinformatik Wintersemester 01/13 Hochschule Augsburg Mathematik : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren
15 Hauptsätze über stetige Funktionen
15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen
Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion
Stetigkeit von Funktionen
9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a
Kapitel 6. Exponentialfunktion
Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.
Die allgemeine Sinusfunktion
Die allgemeine Sinusfunktion 1. Die Tageslänge(Zeitdauer zwischen Sonnenaufgang und Sonnenuntergang) an einem festen Ort verändert sich im Lauf eines Jahres. Die Graphik zeigt diese Veränderung für München.
Spickzettel Mathe C1
Spickzettel Mathe C1 1 Mengenlehre 1.1 Potenzmenge Die Potenzmenge P (Ω) einer Menge Ω ist die Menge aller Teilmengen von Ω. Dabei gilt: P (Ω) := {A A Ω} card P (Ω) = 2 card Ω P (Ω) 1.2 Mengenalgebra Eine
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 12 TRIGONOMETRISCHE GRUNDBEZIEHUNGEN
ARBEITSBLATT TRIGONOMETRISCHE GRUNDBEZIEHUNGEN Ein paar wichtige Grundbeziehungen zwischen den Winkelfunktionen sollten Sie unbedingt auswendig wissen: Als Erstes zeichnen wir uns noch einmal einen beliebigen
Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man
Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man x / M. Man sagt, M ist Teilmenge von N und schreibt M N, wenn für jedes x M auch x N gilt.
Musterlösung zu Blatt 12 der Vorlesung Analysis I WS08/09
Musterlösung zu Blatt 1 der Vorlesung Analysis I WS08/09 Schriftliche Aufgaben Aufgabe 1. Beweisskizze a): Wir benutzen die Stetigkeit von sin und cos und sin π/) = 1, sinπ/) = 1, cos π/) = cosπ/) = 0,
6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim.
6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert falls g(x), beide Funktionen gegen Null konvergieren, d.h. = g(x) = 0 beide Funktionen gegen Unendlich konvergieren, d.h.
Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt
Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS Prof. Dr. M. Voigt 2. März 2015 II Inhaltsverzeichnis 5 Grundlagen 1 5.1 Funktionen einer Variablen...................... 1 5.2 spezielle Funktionen.........................
Serie 13: Online Test
D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.
2 1.4 Sind folgende Funktionen injektiv? Wenn ja, bestimmen Sie die Umkehrfunktion!
. Übung: Grundlagen. Es gibt ein seltsames Buch, da steht auf jeder Seite genau ein Satz; auf Seite : In diesem Buch steht mindestens ein falscher Satz., auf Seite : In diesem Buch stehen mindestens zwei
Elemente der Analysis I: Zusammenfassung und Formelsammlung
Elemente der Analysis I: Zusammenfassung und Formelsammlung B. Schuster/ L. Frerick 9. Februar 200 Inhaltsverzeichnis Grundlagen 5. Mengen und Zahlen................................ 5.. Mengen...................................
Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit
WS 8/9 5 7 Elementarmathematik (LH) und Fehlerfreiheit 5. Trigonometrie 5.. Trigonometrische Terme am Einheitskreis 5... Das olarkoordinatensstem Man kann die Lage eines unktes im -dimensionalen Raum folgendermaßen
Wahrscheinlichkeitsrechnung. Trigonometrie Sinus und Kosinus
Gymnasium Neutraubling Grundwissen Mathematik 10. Jahrgangsstufe Wissen und Können Aufgaben, Beispiele und Erläuterungen 1. Bedingte Wahrscheinlichkeit Bezeichnungen: P(A): Wahrscheinlichkeit des Ereignisses
Polynome sind Gefangene ihrer leicht durchschaubaren Eigenschaften.
Polynome und mehrfache Nullstellen Polynome sind Gefangene ihrer leicht durchschaubaren Eigenschaften. Stichwort: Polynome im Affenkasten www.mathematik-verstehen.de 1 Polynome und mehrfache Nullstellen
Folgen, Reihen, Grenzwerte u. Stetigkeit
Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen
Einführung in die Physikalischen Rechenmethoden I + II
Skriptum zur Vorlesung Einführung in die Physikalischen Rechenmethoden I + II Univ. Prof. Dr. Christoph Dellago Universität Wien Fakultät für Physik Institut für Experimentalphysik Boltzmanngasse 5, 1090
Abbildungseigenschaften
Abbildungseigenschaften.5. Injektivität Injektivität (injektiv, linkseindeutig) ist eine Eigenschaft einer mathematischen Funktion. Sie bedeutet, dass jedes Element der Zielmenge höchstens einmal als Funktionswert
Vorlesung. Funktionen/Abbildungen 1
Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.
Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen
1/5 Erinnerung: Kongruenzsätze SSS, SWS, WSW, SsW Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen Grundwissen: Elementare Sätze über Dreiecke: o Winkelsumme 180 0 o Dreiecksungleichung
Die Bedeutung der Areafunktionen
Die Bedeutung der Areafunktionen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 8. März 003 Die Umkehrfunktionen der hyperbolischen Funktionen heißen Areafunktionen. Woher dieser Name kommt, und
Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya
Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................
LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung
LMU MÜNCHEN Mathematik für Studierende der Biologie Wintersemester 2016/17 GRUNDLAGENTUTORIUM 5 - Lösungen Anmerkung Es handelt sich hierbei um eine Musterlösung so wie es von Ihnen in einer Klausur erwartet
Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/
Lösung zur Übung 2. Lösung durch Ausrechnen Die Funktion lässt sich durch die Doppelwinkelfunktion des Sinus ausdrücken.
Lösung zur Übung Aufgabe 5 Berechnen Sie die kleinste Periode folgender Funktionen a) y(x) = sin(x) cos(x) Lösung durch Ausrechnen Die Funktion lässt sich durch die Doppelwinkelfunktion des Sinus ausdrücken.
11.3 Komplexe Potenzreihen und weitere komplexe Funktionen
.3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt
2 Funktionen. Abb. 2.1: Ein rechtwinkliges Dreieck
7 2 Funktionen Ein großer Teil der Mathematik beschäftigt sich damit, Abhängigkeiten von zwei oder mehr Größen zu studieren. Als Beispiele lassen sich nennen: Der Verlauf des Deutschen Aktienindex (DAX)
Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker
Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme
Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften. 1 Übungsblatt Mengen. Dr. Jörg Horst WS 2014/2015
Dr. Jörg Horst WS 04/05 Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften Übungsblatt Mengen Aufgabe : Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 0 < x
