Musterlösung zu Blatt 12 der Vorlesung Analysis I WS08/09

Größe: px
Ab Seite anzeigen:

Download "Musterlösung zu Blatt 12 der Vorlesung Analysis I WS08/09"

Transkript

1 Musterlösung zu Blatt 1 der Vorlesung Analysis I WS08/09 Schriftliche Aufgaben Aufgabe 1. Beweisskizze a): Wir benutzen die Stetigkeit von sin und cos und sin π/) = 1, sinπ/) = 1, cos π/) = cosπ/) = 0, sowie cosx) > 0 für alle x π/, π/). Es folgt lim x π/,x> π/ sinx) = 1, lim x π/,x> π/ cosx) = 0. Jetzt benutzen wir Aufgabe 1 von Blatt 10, davon Teile ) und 3), angewandt auf die Funktionen sin und x 1 cosx), um die erste zu beweisenden Gleichung zu erledigen. Die zweite Gleichung folgt analog. Wichtige Schritte: Aufgabe 1 von Blatt 10 benutzen. Beweisskizze b): Die Funktion sin ist auf [0, π/) streng monoton wachsend und nicht-negativ was wir aus der geometrischen Denition des Sinus wissen). Die Funktion cos ist auf [0, π/) aus dem gleichen Grund streng monoton fallend und positiv. Also ist x 1 cosx) in diesem Bereich streng monoton wachsend und positiv. Folglich ist das Produkt x sinx) cosx) der beiden Funktion in fraglichem Bereich nicht-negativ und streng monoton wachsend. Da die Funktion tan in diesem Bereich streng monoton wachsend ist und im Bereich π/, π/) ungerade, ist sie insgesamt streng monoton wachsend. Sie ist stetig als Quotient zweier stetiger Funktionen. Die Surjektivität und damit Bijektivität) kann man nun aus a) und dem Zwischenwertsatz folgern. Wichtige Schritte: Genau hinschauen + ZWS. Beweisskizze c): Gesucht ist also ein x π/, π/) mit tanx) = 1 bzw. tanx) = 1). Im ersten Fall suchen wir also ein x mit sinx) = cosx). Aus sin + cos = 1 folgt schon sinx) = cosx) = ± 1/. Aus geometrischen Überlegungen oder den Additionstheoremen erhalten wir sofort x = π/ was einem Winkel von 5 Grad entspricht). Es folgt also arctan1) = π/. Analog oder aus Symmetrieüberlegungen, arctan ist eine ungerade Funktion) folgt arctan 1) = π/. Der Graph von arctan beginnt links fast parallel zur x-achse auf der Höhe π/, wird langsam steiler, ist in 1 gerade π/, geht dann mit Steigung 1 durch 0, geht dann bei 1 durch π/ und wird dann wieder acher, bis er auf Höhe π/ wieder fast parallel zur x-achse ist. Aufgabe. [Für diese Aufgabe folgt eine richtige Lösung, keine bloÿe Skizze. Man beachte, daÿ in dieser Lösung keine Äquivalenzpfeile oder Implikationspfeile in Rechnungen benutzt werden, sondern alle logischen Verknüpfungen im Text 1

2 ausgesprochen werden. Das Resultat liest sich, denke ich, recht üssig. Dieses Vorgehen empfehle ich zur Nachahmung, auch da es so schwerer fällt, logische Flüchtigkeitsfehler einzubauen.] Voraussetzungen: Seien die Funktionen cosh: C C und sinh: C C deniert durch coshz) := 1 e z + e z), sinhz) := 1 e z e z). Behauptung a): Die Funktionen cosh und sinh sind stetig, und es gelten für alle z C die folgenden Gleichungen: coshz) = cosiz), sinhz) = i sinhiz), cosh z) = coshz), sinh z) = sinhz). Beweis a): Die Funktionen z z und z e z sind laut Vorlesung auf ganz C stetig, also auch ihre Hintereinanderausführung z e z. Die Summe von stetigen Funktionen ist stetig, weshalb z e z + e z stetig ist. Das Produkt einer stetigen Funktion mit einem festen Skalar ist stetig, also auch cosh. Ebenso ist die Dierenz z e z e z zweier stetiger Funktionen stetig, also auch sinh. Sei z C. Wir setzen nun iz in die Denition 1.1 des Kosinus auf C ein und erhalten cosiz) = 1 e iiz) + e iiz)) = 1 e z + e +z) = coshz). Ebenso setzen wir iz in die Denition 1.1 des Sinus auf C ein und erhalten e z e +z) = sinhz). i siniz) = i e iiz) e iiz)) = 1 i Für die letzten beiden Gleichungen, die wir zeigen wollen, benutzen wir direkt die obigen Denitionen von cosh und sinh. Es gilt und cosh z) = 1 sinh z) = 1 Behauptung b): Für alle z, w C gilt e z + e z)) = 1 e z + e z) = coshz) e z e z)) = 1 e z e z) = sinhz). coshz + w) = coshz) coshw) + sinhz) sinhw), sinhz + w) = sinhz) coshw) + coshz) sinhw), cosh z) + sinh z) = 1. Beweis b): [Anmerkung: Die ersten beiden Formeln kann man auf zwei Wegen beweisen, nämlich durch Einsetzen in die Denition und Ausrechnen, sowie alternativ, indem man obige Formeln für den Zusammenhang von cosh und cos etc. benutzt, um die Additionstheoreme auf Satz 1.1 Additionstheoreme für Sinus und Kosinus) zurückzuführen. Wir führen hier beiden Wege einmal vor. Wir benutzen im übrigen immer wieder das Additionstheorem für die Exponentialfunktion, Satz 1.1 ).]

3 Seien z und w in C. Dann gilt coshz + w) = 1 e z+w + e z+w)) = 1 e z e w + e z e w). Andererseits gilt coshz) coshw) + sinhz) sinhw) = 1 e z + e z) 1 e w + e w) + 1 e z e z) 1 e w e w) = 1 e z e w + e z e w + e z e w + e z e w) + 1 e z e w e z e w e z e w + e z e w) = 1 e z e w + e z e w). Hier haben wir im letzten Schritt einige Terme gekürzt bzw. zusammengefaÿt. Insgesamt haben wir nun die gewünschte Gleichung gezeigt. Das zweite Additionstheorem zeigen wir nun, indem wir es auf Satz 1.1 zurückführen: Es gilt sinhz) coshw) + coshz) sinhw) = i siniz) cosiw) + cosiz) i siniw)) = isiniz) cosiw) + cosiz) siniw)) 1.1 = i siniz + iw) = i siniz + w)) = sinhz + w). Hierbei haben wir die Formel aus Satz 1.1 für iz und iw anstelle von z und w benutzt. Nun zur letzten verbleibenden Formel, diese zeigen wir wieder direkt; es gilt und analog Also ergibt sich coshz) + sinhz) = 1 ez + e z ) + 1 ez e z ) = e z coshz) sinhz) = e z. cosh z) sinh z) = coshz)+sinhz))coshz) sinhz)) = e z e z = e z z = e 0 = 1. Behauptung c): Für alle z C gelten coshz) = z n n)! und sinhz) = z n+1 n + 1)! Beweis c): [Anmerkung: Auch hier gibt es wieder zwei Beweisvarianten: Eine direkte und eine unter Benutzung der analogen Formeln für Sinus und Kosinus. Wir machen beides einmal vor.] Sei z C. Es gilt coshz) = cosiz) 1.13 = 1) n iz)n = n)! 1) n i n zn n)! = z n n)!, da für alle n N gilt: i n = i ) n = 1) n, und deshalb 1) n i n = 1) n = 1. 3

4 Nun zur zweiten Formel: Es gilt sinhz) = 1 e z e z) = 1 z n 1 z) n = 1 z n z) n ; hier haben wir benutzt, daÿ beide Reihen absolut) konvergieren, wir also getrost die Summation und die Dierenz vertauschen dürfen. Ist nun n N gerade, so gilt z n = z) n, also z n z) n = 0. Ist n N ungerade, so gilt z n z) n = z n. Insgesamt ist also der Term in der Summe 0 für gerade n und gleich zn für ungerade n. Nach Umindizierung wir ersetzen jedes gerade n durch zweimal die Hälfte und werfen die ungeraden n einfach weg) erhalten wir die gesuchte Formel. Wichtige Schritte: Viele kleine... Aufgabe 3 Beweisskizze a): [Wer Aufgabe von Blatt 11 gelöst hat, ist hier klar im Vorteil! Wir machen hier alles aber noch einmal ohne Rückverweis auf diese Aufgabe!] Monotonie: x e x ist streng monoton wachsend auf R Satz 1. )). Also ist x e x streng monoton fallend, also x e x streng monoton wachsend. Also ist x e x e x streng monoton wachsend. Somit ist auch sinh auf R streng monoton wachsend. Bijektivität: Es gilt lim x e x = und lim x e x = 0 siehe Satz 1.9 bzw. Satz 1. und den Beweis dazu). Folglich gilt lim x e x e x = + und lim x e x e x =. Es folgt lim x sinhx) = + und lim x sinhx) =. Aus der Stetigkeit von sinh und dem Zwischenwertsatz folgt nun die Surjektivität. Injektivität folgt schon aus der strengen Monotonie. Die Formel für den arcus sinus hyperbolicus erhält man nun durch Einsetzen. Wichtige Schritte: Eigenschaften der Expontenialfunktion und der Zwischenwertsatz. Es gibt auch andere Lösungswege, etwa unter Zuhilfenahme von Aufgabe, Blatt 11. Beweisskizze b): coshr) = cosh[0, )) folgt aus coshx) = cosh x) für alle x R. Die Bijektivität kann auf verschiedenste Weise zeigen. Eine, brutale, Möglichkeit ist, coshx) in die angebotene Formel für die Umkehrfunktion einzusetzen und andersherum) und auf diese Weise nachzurechnen, daÿ Arccosh, wie angegeben, eine Umkehrfunktion von cosh auf fraglichem Intervall ist. Dann muÿ cosh dort bijektiv sein. Hätte man die Dierentialrechnung zu Verfügung, wäre man ganz schnell fertig. Wir benutzen folgenden Argument: Erstens überzeugt man sich anhand elementarer Umformungen), daÿ y + 1/y für alle y > 0 gilt; hierbei gilt Gleichheit genau dann, wenn y = 1 gilt. Es folgt coshx) 1 für alle x R mit Gleichheit genau für x = 0. Nun benutzen wir das Additionstheorem für

5 cosh: Seien x und x aus [0, ) mit x > x. Setze w := x x > 0. Dann gilt coshx ) = coshx + w) = coshx) coshw) + sinhx) sinhw). Aus a) wissen wir, daÿ sinhx) sinh0) = 0, da x 0 und sinh monoton wachsend ist. Analog gilt sinhw) > 0. Schlieÿlich gilt coshw) > 1. Also folgt coshx ) = coshx) coshw) + sinhx) sinhw) coshx) coshw) > coshx). Nun gilt cosh0) = 1 und oenbar lim x coshx) =, also ist cosh bijektiv auf den angegebenen Intervallen. Das die angegeben Formel für Arccosh stimmt, überprüft man wiederum durch Einsetzen. Skizze c): Der Graph von cosh ist eine Art Kreuzung einer nach oben geöneten Parabel mit der Exponentialfunktion; in 0 ist die Funktion 1 und verläuft dort waagerecht. Nach links und rechts steigt sie dann aber bald viel schneller an, als jedes Polynom. Der Graph von sinh ist andererseits eine Art Kreuzung von x x 3 und der Exponentialfunktion. Die Funktion kommt von herauf, ist in 0 gleich 0, hat dort aber Steigung 1, und steigt dann rasant an. Sie verläuft aber immer unterhalb von cosh. Die anderen beiden Graphen erhält man, indem man an der Geraden durch den Ursprung mit Steigung 1 spiegelt. Aufgabe Beweisskizze: Die Wurzelfunktion f ist auÿerhalb der Null dierenzierbar, aber nicht in 0. Die Ableitung ist für x > 0 gegeben durch f x) = 1. x Für alle x, x 0, ) mit x x gilt = x x ) x + x ) = 1. x + x Aus der Stetigkeit der Inversion und der Wurzelfunktion folgt dann für alle x 0, ): lim x x 1 = lim x x x + x = 1 x, was zu beweisen war. Für die Null stellen wir folgenden Überlegung an: Es gilt für alle x > 0 gilt 0 x 0 x = 1 x ; dies konvergiert nicht für x 0. 5

Beispiel zu Umkehrfunktionen des Sinus

Beispiel zu Umkehrfunktionen des Sinus Beispiel zu Umkehrfunktionen des Sinus Die Funktion f : [ π, π ] [, ], x sin(x) besitzt die Umkehrfunktion f Arcsin (Hauptzweig des Arcussinus). Wir betrachten die beiden Funktionen g : [ 3 π, 5 π] [,

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

Exponentialfunktion (1)

Exponentialfunktion (1) Exponentialfunktion (1) Satz 3.37 Die Potenzreihe n=0 z n n! konvergiert für alle z C absolut (R = ). Beweis. Mit dem Quotienkriterium ergibt sich für alle z C z n+1 (n + 1)! n! z n = z 0. n + 1 Peter

Mehr

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115 5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 5 Satz 5.5.2 (Ableitung der Umkehrfunktion einer Winkelfunktionen) Die Umkehrfunktionen der trigonometrischen Funktionen sind nach Satz 5.2.3 auf den

Mehr

(k +2)(k +3) x 2 (k +3)!

(k +2)(k +3) x 2 (k +3)! 5.3. SINUS UND KOSINUS 9 5.35. Lemma. Es gilt (i) (ii) (iii) cos() < 0, sin(x) > 0 für alle x (0, ], x cos(x) ist streng monoton fallend in [0, ]. Beweis. (i) Es ist cos() = 1! + 4 6 4! 6! 8 10 8! 10!

Mehr

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Lösung - Serie 3 MC-Aufgaben (Online-Abgabe) 1. Es sei die Funktion f : [0, ) [0, ) definiert durch f(x) = ln(x + 1), wobei der Logarithmus ln zur Basis

Mehr

HM I Tutorium 8. Lucas Kunz. 12. Dezember 2018

HM I Tutorium 8. Lucas Kunz. 12. Dezember 2018 HM I Tutorium 8 Lucas Kunz. Dezember 08 Inhaltsverzeichnis Theorie. Stetigkeit und Grenzwerte............................ Sinus und Cosinus.................................3 Tangens und Cotangens............................

Mehr

HM I Tutorium 9. Lucas Kunz. 22. Dezember 2017

HM I Tutorium 9. Lucas Kunz. 22. Dezember 2017 HM I Tutorium 9 Lucas Kunz. Dezember 017 Inhaltsverzeichnis 1 Theorie 1.1 Exponentialfunktion.............................. 1. Sinus und Cosinus................................ 1.3 Tangens und Cotangens............................

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite / 50 Kapitel 5 Mathematischer Vorkurs TU Dortmund Seite 54 / 50 Scheitel S Schenkel α Winkelbereich Winkel werden in Grad

Mehr

3. Übung zur Analysis II

3. Übung zur Analysis II Universität Augsburg Sommersemester 207 3. Übung zur Analysis II Prof. Dr. Marc Nieper-Wißkirchen Caren Schinko, M. Sc. 8. Mai 207 3. (a) m. Die Dirichletsche Reihe. In Abschnitt 5.8 haben wir bereits

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 2.0. - Freitag 2.0. Vorlesung 5 Elementare Funktionen Kai Rothe Technische Universität Hamburg Dienstag 9.0. 0 Brückenkurs Mathematik, c K.Rothe, Vorlesung 5 Umkehrfunktion........................

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (0.09.03 0.09.03) Dr. Jörg Horst WS 03-04 Mathematischer Vorkurs TU Dortmund Seite / 5 Mathematischer Vorkurs TU Dortmund Seite 6 / 5 Schenkel Winkelbereich Scheitel S

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

3. DIE EXPONENTIALFUNKTION UND VERWANDTES

3. DIE EXPONENTIALFUNKTION UND VERWANDTES 3. DIE EXPONENTIALFUNKTION UND VERWANDTES (1) DIE KOMPLEXE EXPONENTIALFUNKTION Für α = (a n ) n=0mit a n := 1, (n IN) gilt r α = lim n (n + 1)! = lim n (n + 1) =. Damit konvergiert die zugehörige Potenzreihe

Mehr

Kapitel 5 Trigonometrie

Kapitel 5 Trigonometrie Mathematischer Vorkurs TU Dortmund Seite / 7 Schenkel Winkelbereich Scheitel S α Winkel werden in Grad oder im Bogenmaß (auch Rad) angegeben: 360 =. y cot α r = sin α α cos α tan α x Durch diese Betrachtungen

Mehr

Vorlesung Analysis I WS 07/08

Vorlesung Analysis I WS 07/08 Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................

Mehr

Mathematik n 1

Mathematik n 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 0 Mathematik + Übung 6 Besprechung der Aufgaben ) - ) des Übungsblatts am jeweils ersten Übungstermin zwischen Montag, 7..0 und Donnerstag,

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Lösung zur Übung für Analysis einer Variablen WS 2016/17. f 1(x) = ln x + 1 (1) k=0. dx ee ln x = x xx (x x 1 + x x (1 + ln x) ln x) (3)

Lösung zur Übung für Analysis einer Variablen WS 2016/17. f 1(x) = ln x + 1 (1) k=0. dx ee ln x = x xx (x x 1 + x x (1 + ln x) ln x) (3) Blatt Nr. Prof. F. Merkl Lösung zur Übung für Analysis einer Variablen WS 06/7 Aufgabe Die Ableitungen der Funktionen in Frage sind: a): b): c): d): f () ln + () f () d n k0 k d n! n! ( k) () n n l0 k0

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Spezielle Funktionen. Definition 8.1 : Sei D C eine Kreisscheibe f : D C heißt Lipschitz (-stetig) oder dehnungsbeschränkt auf D

Spezielle Funktionen. Definition 8.1 : Sei D C eine Kreisscheibe f : D C heißt Lipschitz (-stetig) oder dehnungsbeschränkt auf D 8 Spezielle Funktionen werden in diesem Abschnitt definiert, also insbesondere Exponentialfunktion, Logarithmusfunktion, die trigonometrischen Funktionen sowie weitere wichtige Funktionen, die mit exp,

Mehr

Klausur Analysis für Informatiker Musterlösung

Klausur Analysis für Informatiker Musterlösung Prof. Dr. Torsten Wedhorn WS 9/ Dr. Ralf Kasprowitz Elena Fink Klausur Analysis für Informatiker Musterlösung 9.2.2 Name, Vorname Studienfach Matrikelnummer Semester Übungsgruppe Zugelassene Hilfsmittel:

Mehr

Serie 1: Repetition von elementaren Funktionen

Serie 1: Repetition von elementaren Funktionen D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 1: Repetition von elementaren Funktionen Bemerkung: Die Aufgaben der Serie 1 bilden den Fokus der Übungsgruppen in der zweiten Semesterwoche

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel III WS 2009 / 10 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

D-BAUG Analysis I HS 2015 Dr. Meike Akveld. Clicker Fragen

D-BAUG Analysis I HS 2015 Dr. Meike Akveld. Clicker Fragen D-BAUG Analysis I HS 05 Dr. Meike Akveld Clicker Fragen Frage Der Satz: Dieser Satz ist falsch ist wahr ist richtig weiss ich nicht Es handelt hier um eine sogenannte Paradoxie. Die Paradoxie dieses Satzes

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. Dezember 2011)

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 2008/09) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 9. November 2008) Die

Mehr

3 Die komplexen Grundfunktionen

3 Die komplexen Grundfunktionen Analysis IV, SS 01 Freitag 18.5 $Id: grundf.tex,v 1.5 01/05/18 07:49:5 hk Exp $ 3 Die komplexen Grundfunktionen 3.1 Die Exponentialfunktion und verwandte Funktionen In der letzten Sitzung hatten wir die

Mehr

Abbildung 11.1: Approximation einer Tangente

Abbildung 11.1: Approximation einer Tangente Analysis, Woche Differentialrechnung I A. Ableitung einer Funktion Sei f : R R eine Funktion. Die Gerade durch die Punkte (a, f (a)) und (b, f (b)) findet man als Graph der Funktion l : R R mit l (x) =

Mehr

f (b) f (a) b a Wenn man nun b immer näher an a nimmt, sieht es aus, als ob die zugehörige Gerade sich der Tangente nähert.

f (b) f (a) b a Wenn man nun b immer näher an a nimmt, sieht es aus, als ob die zugehörige Gerade sich der Tangente nähert. Analysis, Woche Differentialrechnung I A. Ableitung einer Funktion Sei f : R R eine Funktion. Die Gerade durch die Punkte (a, f (a)) und (b, f (b)) findet man als Graph der Funktion l : R R mit l (x) =

Mehr

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88 4. Funktionen Buchholz / Rudolph: MafI 2 88 Kapitelgliederung 4.1 Grundlegende Denitionen 4.2 Polynome und rationale Funktionen 4.3 Beschränkte und monotone Funktionen 4.4 Grenzwerte von Funktionen 4.5

Mehr

Analysis für Informatiker und Statistiker Nachklausur

Analysis für Informatiker und Statistiker Nachklausur Prof. Dr. Peter Otte Wintersemester 213/14 Tom Bachmann, Sebastian Gottwald 14.3.214 Analysis für Informatiker und Statistiker Nachklausur Lösungsvorschlag Name:.......................................................

Mehr

Definition von Sinus und Cosinus

Definition von Sinus und Cosinus Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,

Mehr

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung LMU MÜNCHEN Mathematik für Studierende der Biologie Wintersemester 2016/17 GRUNDLAGENTUTORIUM 5 - Lösungen Anmerkung Es handelt sich hierbei um eine Musterlösung so wie es von Ihnen in einer Klausur erwartet

Mehr

Ferienkurs Stetigkeit und Konvergenz Seite 1. Technische Universität München Ferienkurs Analysis 1. Musterlösung = lim.

Ferienkurs Stetigkeit und Konvergenz Seite 1. Technische Universität München Ferienkurs Analysis 1. Musterlösung = lim. Ferienkurs Stetigkeit und Konvergenz Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit und Konvergenz Musterlösung 6.03.20. Grenzwerte I Berechnen Sie lim f(), lim f()

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

Lösung zur Serie 8. x + 2x 2 sin(1/x), falls x 0, f(x) := 0, falls x = 0. = lim

Lösung zur Serie 8. x + 2x 2 sin(1/x), falls x 0, f(x) := 0, falls x = 0. = lim Lösung zur Serie 8 Aufgabe 40 Wir zeigen in dieser Aufgabe, dass die Voraussetzung dass die Funktion in einer kleinen Umgebung injektiv sein muss, beim Satz über die Umkehrfunktion notwendig ist. Hierzu

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 04/05 0..04 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 7. Übungsblatt

Mehr

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung Beispiel. Die Reihe log + x) = ) k k + xk+ für < x < konvergiert auch für x = +. Somit ist nach em Abelschen Grenzwertsatz insbesonere ie Gleichung log + ) = gültig. Daraus folgt ie Darstellung log2) =

Mehr

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil 14 DIE EXPONENTIALFUNKTION IM KOMPLEXEN 73 Wegen (a, 0) + (c, 0) = (a + c, 0) (a, 0) (c, 0) = (ac, 0) kann man die Teilmenge {(a, 0) a R} mit den darauf eingeschränkten Verknüpfungen identifizieren mit

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1.

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1. 8. GRENZWERTE UND STETIGKEIT VON FUNKTIONEN 51 e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme cos(x+y) = cos(x) cos(y) sin(x) sin(y) und sin(x+y) = cos(x) sin(y)+sin(x) cos(y). f. Für eine

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

Analysis I. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 6. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 2017 1 Erinnerung Eine Abbildung f : X Y heisst injektiv, falls 1, 2 X : 1 2 f( 1 ) f( 2 ). (In Worten:

Mehr

TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN

TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN Zusammenfassung. Wir listen die wichtigsten Grundtatsachen trigonometrischer und hyperbolischer Funktionen auf... Sinus.. Trigonometrische Funktionen analytische

Mehr

3 Stetigkeit und Grenzwerte von Funktionen

3 Stetigkeit und Grenzwerte von Funktionen 54 3 STETIGKEIT UND GRENZWERTE VON FUNKTIONEN = q + q+ = q. 3 Stetigkeit und Grenzwerte von Funktionen 3. Stetigkeit Definition 3.. Seien M, N C und sei f : M N eine Funktion. Sei ξ M. Dann heißt f stetig

Mehr

Münchner Volkshochschule. Themen

Münchner Volkshochschule. Themen Themen Logik und Mengenlehre Zahlensysteme und Arithmetik Gleichungen und Ungleichungen Lin. Gleichungssysteme und spez. Anwendungen Geometrie und Trigonometrie Vektoren in der Ebene und Punktemengen Funktionen

Mehr

Die trigonometrischen Funktionen

Die trigonometrischen Funktionen Die trigonometrischen Funktionen Betrachte die Funktion f(x) = 1 x auf dem Intervall [ 1, 1]. Für x = 1 erhält man den Punkt P 1 = ( 1, ), für x = den Punkt P = (, 1) und für x = 1 den Punkt P 1 = (1,

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

Komplexe Analysis D-ITET. Serie 1

Komplexe Analysis D-ITET. Serie 1 Prof. Dr. P. S. Jossen M. Wellershoff Frühlingssemester 08 Komplexe Analysis D-ITET Serie ETH Zürich D-MATH Aufgabe. echnen mit komplexen Zahlen (.a) Berechnen Sie die folgenden Terme: i) ( 4 + 7i) + (8

Mehr

c < 1, (1) c k x k0 c k = x k0

c < 1, (1) c k x k0 c k = x k0 4.14 Satz (Quotientenkriterium). Es sei (x k ) Folge in K. Falls ein k 0 existiert, so dass für k k 0 gilt x k 0 und x k+1 x k c < 1, (1) so ist x k absolut konvergent. Beweis. Aus (1) folgt mit vollständiger

Mehr

Tutorium: Analysis und lineare Algebra. Differentialrechnung. Steven Köhler. mathe.stevenkoehler.de Steven Köhler

Tutorium: Analysis und lineare Algebra. Differentialrechnung. Steven Köhler. mathe.stevenkoehler.de Steven Köhler Tutorium: Analysis und lineare Algebra Differentialrechnung Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Differenzenquotient Der Di erenzenquotient ist de niert als f(x) x f(x) f(x 0)

Mehr

Analysis I Lösung von Serie 9

Analysis I Lösung von Serie 9 FS 07 9.. MC Fragen: Ableitungen (a) Die Figur zeigt den Graphen einer zweimal differenzierbaren Funktion f. Was lässt sich über f, f und f sagen? Nichts Die Funktion f ist positiv. Die Funktion f ist

Mehr

Spezielle Klassen von Funktionen

Spezielle Klassen von Funktionen Spezielle Klassen von Funktionen 1. Ganzrationale Funktionen Eine Funktion f : R R mit f (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, n N 0 und a 0, a 1,, a n R, (a n 0) heißt ganzrationale Funktion n

Mehr

Höhere Mathematik 1 Übung 9

Höhere Mathematik 1 Übung 9 Aufgaben, die in der Präsenzübung nicht besprochen wurden, können in der darauf folgenden übung beim jeweiligen übungsleiter bzw. bei der jeweiligen übungsleiterin abgegeben werden. Diese Abgabe ist freiwillig

Mehr

Elementare Funktionen. Analysis I November 28, / 101

Elementare Funktionen. Analysis I November 28, / 101 Elementare Funktionen Analysis I November 28, 2017 76 / 101 Exponentialfunktion Buch Kap. 2.3 Exponentialfunktionen f(x) = a x, a > 0, D = R. Ist a = e (Eulerzahl e = 2, 71828...), sprechen wir von der

Mehr

Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University

Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University Priv. Doz. Dr. A. Wagner Aachen, 9. September 6 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 6, RWTH Aachen University Intervalle, Supremum und Infimum Für a, b R, a < b nennen wir eine

Mehr

11 Spezielle Funktionen und ihre Eigenschaften

11 Spezielle Funktionen und ihre Eigenschaften 78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

Kapitel VI. Reihen. VI.1 Definitionen und Beispiele. Definition VI.1. Sei (a n ) n=1 KN eine Zahlenfolge. Dann heißt die Folge (s m ) m=1 KN, mit

Kapitel VI. Reihen. VI.1 Definitionen und Beispiele. Definition VI.1. Sei (a n ) n=1 KN eine Zahlenfolge. Dann heißt die Folge (s m ) m=1 KN, mit Kapitel VI Reihen VI. Definitionen und Beispiele Definition VI.. Sei (a n KN eine Zahlenfolge. Dann heißt die Folge (s m KN, mit m s m := a n, (VI. Reihe in K und s m nennt man die m. Partialsumme (dieser

Mehr

2.5 Komplexe Wurzeln. Mathematik für Naturwissenschaftler I 2.5

2.5 Komplexe Wurzeln. Mathematik für Naturwissenschaftler I 2.5 Mathematik für Naturwissenschaftler I 2.5 Die Periodizität von e z ist der Grund, warum im Komplexen Logarithmen etwas schwieriger zu behandeln sind als im Reellen: Der natürliche Logarithmus ist die Umkehrung

Mehr

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Übungsheft

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Übungsheft Vorkurs Mathematik Vorbereitung auf das Studium der Mathematik Übungsheft Dr. Johanna Dettweiler Institut für Analysis 0. Oktober 009 Aufgaben zu Kapitel Die Nummerierung der Aufgaben bezieht sich auf

Mehr

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Funktionen, Stetigkeit Dierentialrechnung Funktionen mit mehreren Variablen Integralrechnung Dierentialgleichungen Teil 2: Wahrscheinlichkeitsrechnung

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de SS 08 Vorlesung MINT Mathekurs SS 08 / 49 Vorlesung 5 (Lecture 5) Reelle Funktionen einer reellen Veränderlichen

Mehr

Serie 12 - Integrationstechniken

Serie 12 - Integrationstechniken Analysis D-BAUG Dr. Meike Akveld HS 5 Serie - Integrationstechniken. Berechnen Sie folgende Integrale: a e x cos(x dx Wir integrieren zwei Mal partiell, bis wir auf der rechten Seite wieder das Integral

Mehr

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen Mathematik für Studierende der Biologie Wintersemester 207/8 Grundlagentutorium 4 Lösungen Sebastian Groß Termin Mittwochs 5:45 7:45 Großer Hörsaal Biozentrum (B00.09) E-Mail gross@bio.lmu.de Sprechzeiten

Mehr

9. Übungsblatt zur Vorlesung Mathematik I für Informatik

9. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sven Herrmann Dipl.-Math. Susanne Pape 9. Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 2009/2010 8./9. Dezember 2009 Gruppenübung

Mehr

(b) Bestimmen Sie mit Hilfe des Newton-Verfahrens eine Nullstelle von f auf 6 Nachkommastellen

(b) Bestimmen Sie mit Hilfe des Newton-Verfahrens eine Nullstelle von f auf 6 Nachkommastellen Mathematik I für Naturwissenschaften Dr. Christine Zehrt 5.10.18 Übung 6 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 9. Oktober 018 in den Übungsstunden Aufgabe 1 GebenSieohneTaschenrechnereineNäherungvon

Mehr

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University Dr. O. Wittich Aachen,. September 7 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 7, RWTH Aachen University Intervalle, Beschränktheit, Maxima, Minima Aufgabe Bestimmen Sie jeweils, ob

Mehr

Musterlösungen zu Blatt 15, Analysis I

Musterlösungen zu Blatt 15, Analysis I Musterlösungen zu Blatt 5, Analysis I WS 3/4 Inhaltsverzeichnis Aufgabe 85: Konvergenzradien Aufgabe 86: Approimation von ep() durch Polynome Aufgabe 87: Taylorreihen von cos 3 und sin Aufgabe 88: Differenzenquotienten

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Universität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übungen Aufgaben zu Kapitel 4 (aus: K. Hefft, Mathematischer Vorkurs zum Studium der Physik, sowie Ergänzungen) Aufgabe 4.1: Graphen,

Mehr

Prüfungsteil B, Aufgabengruppe 1: Analysis. Bayern Aufgabe 1. BundesabiturMathematik: Musterlösung

Prüfungsteil B, Aufgabengruppe 1: Analysis. Bayern Aufgabe 1. BundesabiturMathematik: Musterlösung Abitur MathematikBayern 04 Prüfungsteil B, Aufgabengruppe BundesabiturMathematik: Prüfungsteil B, Aufgabengruppe : Bayern 04 Aufgabe a). SCHRITT: SCHNITTPUNKTE MIT DEN KOORDINATENACHSEN Die Koordinatenachsen

Mehr

2. Teilklausur. Analysis 1

2. Teilklausur. Analysis 1 Universität Konstanz FB Mathematik & Statistik Prof. Dr. M. Junk Dipl.-Phys. Martin Rheinländer 2. Teilklausur Analysis 4. Februar 2006 4. Iteration Name: Vorname: Matr. Nr.: Hauptfach: Nebenfach: Übungsgruppen-Nr.:

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 6 Einleitung Eventuell auftretende Fragen zum Übungsblatt sollen beantwortet werden. Dazu ist es erforderlich,

Mehr

Weihnachts-Übungen zur Mathematik I für Physiker

Weihnachts-Übungen zur Mathematik I für Physiker MATHEMATISCHES INSTITUT WS 018/019 DER UNIVERSITÄT MÜNCHEN Weihnachts-Übungen zur Mathematik I für Physiker Prof. Dr. D.-A. Deckert Blatt 10 Hiermit möchten wir Ihnen ein paar Weihnachtsgeschichten mit

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

Lösung zur Übung 7. Leiten Sie die Ableitung der Tangensfunktion aus dem Grenzwert des Differenzenquotienten unter Verwendung des Additionstheorems

Lösung zur Übung 7. Leiten Sie die Ableitung der Tangensfunktion aus dem Grenzwert des Differenzenquotienten unter Verwendung des Additionstheorems Lösung zur Übung 7 Aufgabe 25) Leiten Sie die Ableitung der Tangensfunktion aus dem Grenzwert des Differenzenquotienten unter Verwendung des Additionstheorems her. tan(α + β) tan(α) + tan(β) tan(α) tan(β)

Mehr

ANALYSIS 2 VERSION 26. Juni 2018

ANALYSIS 2 VERSION 26. Juni 2018 ANALYSIS VERSION 6 Juni 018 LISIBACH ANDRÉ 6 Potenzreihenentwicklung 61 Einleitung Die Linearisierung einer Funktion f(x an der Stelle x ist die Funktion L(x f( + df dx ((x Die Linearisierung ist ein Polynom

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 22 3. Funktionen. Grenzwerte.

Mehr

Klausur zur Höheren Mathematik I (ET/IT/AI/IKT/P/MP) WS 2016/

Klausur zur Höheren Mathematik I (ET/IT/AI/IKT/P/MP) WS 2016/ Dr. P. Furlan Dr. J. Horst Fakultät Mathematik Technische Universität Dortmund Klausur zur Höheren Mathematik I (ET/IT/AI/IKT/P/MP) WS 06/7 6.0.07 Es sind insgesamt 50 Punkte erreichbar. Bei mindestens

Mehr

Eigenschaften der Exponentialfunktion. d dx. 8.3 Elementare Funktionen. Anfangswertproblem für gewöhnliche Differentialgleichung.

Eigenschaften der Exponentialfunktion. d dx. 8.3 Elementare Funktionen. Anfangswertproblem für gewöhnliche Differentialgleichung. Kapitel 8: Potenzreihen un elementare Funktionen 8.3 Elementare Funktionen Die Exponentialfunktion ist für z C efiniert urch expz) := k! zk, hat Konvergenzraius r =, un aher ist expz) für alle z C stetig.

Mehr