Mathematik 3 für Informatik
|
|
|
- Thomas Kai Hermann
- vor 9 Jahren
- Abrufe
Transkript
1 Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4 x + dx 5 x5 x + x + c mit x α dx α+ xα+ und Linearität des Integrals x + x dx 3 3 b x4 dx x 4/3 dx 3 7 x7/3 + c 3 x7 + c 7 x + 4x x + 4x dx x dx + 4 x 3/ dx + 4x dx 3 x x5/ + x + c 3x d + 5 dx 3x / + c mit linearer Substitution y 3x + 5 e sin 3x+4 cos 5x dx sin 3x dx+4 cos 5x dx cos 3x+ 4 sin 5x+c lin. Substitution 3 5 x f + x dx y dy ln y + c ln + x + c Substitution y + x e /x g x dx e y dy e y + c e /x + c mit y dy dx x x h x 3 ln x dx 4 x4 ln x 4 x4 x 4 x4 ln x 4 x3 4 x4 ln x 6 x4 + c 4 x4 ln x 4 + c 7. Berechnen Sie die folgenden bestimmten Integrale: d π e a b π x 4 x + dx 5 x5 x + x sin 3x dx cos 3x π cos 3π cos dx c 5x 5 5x x + sin x dx x + cos x + sin x sin π π + cos π sin + cos 4 + π + + π + 5, 4 x 3 4x dx 3 8 4x /3 4 f e /x 3 8 π 63 /3 5 /3 3 5, 83 6, 8 3, 66 8 x dx e/x e e, 7 Zur Bestimmung der Stammfunktionen: a und f siehe Aufgabe 5, b und c mit linearer Substitution, d mit partieller Integration ux x + und v x sin x, e mit Substitution y 4x.
2 . a Bestimmen Sie den Gradienten und die HesseMatrix der Funktion Die partiellen Ableitungen sind f x x, y, z 4x + yz cos xyz, f z x, y, z xy cos xyz + e y+z. f x x, y, z Damit ist grad fx, y, z f y x, y, z f z x, y, z fx, y, z x + sin xyz + e y+z f y x, y, z xz cos xyz + e y+z und 4x + yz cos xyz xz cos xyz + e y+z xy cos xyz + e y+z Durch Berechnung der. partiellen Ableitungen erhält man die HesseMatrix H f f xxx, y, z f xy x, y, z f xz x, y, z f yx x, y, z f yy x, y, z f yz x, y, z f zx x, y, z f zy x, y, z f zz x, y, z 4 y z sin xyz z cos xyz xyz sin xyz y cos xyz xy z sin xyz z cos xyz xyz sin xyz x z sin xyz + e y+z x cos xyz x yz sin xyz + e y+z y cos xyz xy z sin xyz x cos xyz x yz sin xyz + e y+z x y sin xyz + e y+z b Geben Sie den Gradienten an der Stelle x ; y ; z ; ; an. cos grad f; ; cos + e cos + e c Bestimmen Sie an der Stelle x ; y ; z ; ; die Richtungsableitungen in Richtung der Vektoren u ; ;, v ; ; und w 3; ; Mit g grad f; ; ; ; aus b ist ; ; g, u, u v ; ; g, v und w ; ; g, w d Geben Sie die Gleichung für den Tangentialraum an der Stelle x ; y ; z ; ; an. Die allgemeine Gleichung für den Tangentialraum ist T x, y, z fx, y, z + grad fx, y, z, Mit f; ; + sin + e und grad f; ; T x, y, z +, aus b erhält man x y z + x x y y z z x + y + z + e Bestimmen Sie die dritten partiellen Ableitungen f xyz, f xzy und f yxz. f xyz xy f z xzy f yxz x y z cos xyz 3xyz sin xyz die Reihenfolge der Ableitungen ist vertauschbar, daher ist nur eine Rechnung erforderlich.
3 . Gemessen werden Gröÿen x ±, und y ±, 3. Bestimmen Sie mittels einer linearen Approximation des Fehlers, mit welcher Genauigkeit sich daraus a z x y b w 3 + y berechnen lassen. a Aus dz z x dx + z y dy y dx + x dy folgt in linearer Näherung z y x + x y, +, 3, 7. b Aus dz 3x x dx + y 3 +y x 3 +y dy mit Kettenregel folgt z 3 x + x 3 +y x y y 3 4, +, 3, +,, y Sei fx, y e x y + x lny + x + ln. a Bestimmen Sie den Gradienten und die HesseMatrix von f. grad f H f f x f y f xx f xy f yx f yy e x y + lny + x + ln e x y + x y+ e x y + ln e x y + y+ e x y + y+ e x y x y+ b Bestimmen Sie die Gleichung für die Tangentialebene an der Stelle x, y,. x Mit f, und grad f, erhält man T x, y +, y + x y. c Geben Sie an der Stelle x, y, die Richtungsableitungen in Richtung von v und w an., grad f,, v, und, grad f,, w v w,. c Prüfen Sie, ob in x, y, ein lokales Maximum, Minimum oder ein Sattelpunkt vorliegt. Es ist grad f, und H f, det H f, ln <. ln Es folgt, dass f an der Stelle, einen Sattelpunkt hat.
4 6. Bestimmen Sie eine Funktion F x mit F x cosx und F sowie F. Es muss gelten F x cosx dx sinx + c Berechnung mit linearer Substitution, wobei c so zu wählen ist, dass F sin + c, also c. Dann folgt F x sinx + dx cosx + x + c 4, wobei c so zu wählen ist, dass F cos + + c c c 4, also c 3. 4 Somit erfüllt F x 4 cosx + x 3 4 die geforderten Bedingungen. 8. Prüfen Sie, ob die folgenden uneigentlichen Integrale existieren und berechnen Sie sie gegebenenfalls: a x dx Mit y x dy x dx folgt x dx y / dy y + c x + c, wobei der linksseitige Grenzwert lim b b existiert. Es folgt, dass das uneigentliche Integral existiert mit b sin dx x x Mit der Substitution y dy dx erhält man x x b sin dx /b x x sin y dy cos y /b cos b cos mit lim b cos b cos lim b b cos. Es folgt, dass das uneigentliche Integral existiert mit c π cos x dx Hier ist der Integrand an der unteren Grenze x nicht deniert. Mit der Substitution y cos x dy sin x dx erhält man cos x dx cos π cos a y / dy y cos a cos a π a x dx sin dx cos, 46. x x mit lim a cos a lim a cos a cos. Es folgt, dass auch hier das uneigentliche Integral existiert mit π 4. Bestimmen alle lokalen Extremwerte der folgenden Funktionen a fx, y xy + 7y x y, cos x dx. Die partiellen Ableitungen sind f x x, y y 4x und f y x, y x + 7 y. Für grad fx, y muss also gelten y 4x und x + 7 y. Dieses lineare Gleichungssystem hat die eindeutige Lösung x und y 4. die. Gleichung liefert y 4x, dies in die. Gleichung eingesetzt ergibt 7 7x x und somit mit der. Gleichung y 4 4. Um festzustellen, ob es sich um ein lokales Minimum, Maximum oder einen Sattelpunkt handelt, ist die HesseMatrix zu bestimmen: fxx f H f x, y xy 4. Es ist det H f yx f yy f 7 > und f xx ; 4 4 <. Somit liegt an der Stelle x, y ; 4 ein lokales Maximum vor, der zugehörige Funktionswert ist f;
5 b fx, y x 3 3x y + 3xy + y 3 3x y Damit der Gradient der Nullvektor ist, muss gelten fx 3x grad fx, y 6xy + 3y 3 f y 3x + 6xy + 3y f x 3x 6xy + 3y 3 3x 6xy + 3y 3 x xy + y x y x y ± y x ± sowie 3x + 6xy + 3y x + xy + y 7. Für die erste Gleichung gibt es somit zwei Möglichkeiten i y x + und ii y x. Beide können in die zweite Gleiichung eingesetzt werden: Für i erhält man x + x x + + x + 7 x + x + x + x + x + 7 x + 4x 6 x + x 3 x ± + 3 ±. x 3 x Mit y x+ liefert dies zwei Nullstellen des Gradienten und. y y Mit ii wird die zweite Gleichung zu x + x x + x 7 x + x x + x x + 7 x 4x 6 x x 3 x ± + 3 ±, woraus man zwei weitere Nullstellen des Gradienten erhält: x3 x4 und. y 3 y 4 3 Diese vier Kandidaten werden nun in die HesseMatrix fxx f H f xy 6x 6y 6x + 6y eingesetzt: f yx f yy 6x + 6y 6x + 6y H f x, y det H f x, y >. Wegen f xx x, y 6 < liegt ein lokales Maximum vor, der zugehörige Funktionswert ist f 3; H f x, y det H 6 8 f x, y < und 6 6 H f x 3, y 3 det H 6 8 f x 3, y <. Somit bendet sich an den Stellen x, y und x 3, y 3 jeweils ein Sattelpunkt. H f x 4, y det H f x 4, y >. Wegen f xx x, y +6 > liegt ein lokales Minimum vor, der zugehörige Funktionswert ist f3; 34.
Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12
Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3
Funktionen mehrerer Veränderlicher
Funktionen mehrerer Veränderlicher Betrachtet werden Funktionen f : D R mit Denitionsbereich D R n und Wertebereich R, d. h. man hat die Funktionsgleichung y = f (x) = f (x, x 2,..., x n ) Beispiele: f
Nachklausur Analysis 2
Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,
Lösungen zu Mathematik I/II
Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x
Ableitungen von Funktionen
Kapitel 8 Ableitungen von Funktionen 8. Der Begriff der Ableitung Aufgabe 8. : Prüfen Sie mit Hilfe des Differenzenquotienten, ob folgende Funktionen an den gegebenen Stellen x 0 differenzierbar sind.
Lösung zur Klausur zur Analysis II
Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes
Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion
Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt
Lösungen zu Mathematik I/II
Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim
UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009
UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe
Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch
TECHNISCHE UNIVERSITÄT BERLIN SS 07 Institut für Mathematik Stand: 3. Juli 007 Ferus / Garcke Lösungsskizzen zur Klausur vom 6.07.07 Analysis II. Aufgabe (5 Punkte Der metrische Raum (X, d ist gegeben.
Lösungen der Aufgaben zu Kapitel 9
Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x
Probeklausur zu Mathematik 3 für Informatik
Gunter Ochs Juli 0 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immel ohne Galantie auf Fehreleiheit Sei f ln a Berechnen Sie die und die Ableitung f und f Mit der Produktregel erhält
Funktionen mehrerer Variabler
Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen
Prüfung zur Vorlesung Mathematik I/II
Dr. A. Caspar ETH Zürich, Januar 0 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 3 6 Total Vollständigkeit Bitte
Technische Universität München Zentrum Mathematik. Übungsblatt 10
Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt Hausaufgaben Aufgabe. Sei f : R 2 R gegeben durch x 2 y für (x, y)
Musterlösungen Aufgabenblatt 2
Jonas Kindervater Ferienkurs - Höhere Mathematik III für Physiker Musterlösungen Aufgabenblatt Dienstag 17. Februar 009 Aufgabe 1 (Implizite Funktionen) f(x, y) = x 1 xy 1 y4 = 0 Man bestimme die lokale
Mathematik I für MB und ME
Übungsaufgaben Aufgaben zur Wiederholung Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 06/07 a) Stellen Sie die Gleichung a b 3+c = a +c, a, b > 0, nach
HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.
HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden
Prüfung zur Vorlesung Mathematik I/II
Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit
Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0.
Analysis D-BAUG Dr Cornelia Busch FS 2016 Serie 3 1 a) Zeigen Sie, dass der Graph von f(x, y) = 9 (x 2) 2 (y 3) 2 eine Halbkugel beschreibt und bestimmen Sie ihren Radius und ihr Zentrum z = f(x, y) =
Probeklausur zu Mathematik 3 für Informatik Lösungshinweise (ohne Garantie auf Fehlefreiheit)
Gunter Ochs 9. Juni 05 Probeklausur zu Mathematik für Informatik Lösungshinweise ohne Garantie auf Fehlefreiheit. Sei fx x x. a Bestimmen Sie den Grenzwert lim x fx. Da an der Stelle x Zähler Nenner Null
Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix
Stroppel Musterlösung 7.., 8min Aufgabe Punkte Bestimmen Sie die Determinante der Matrix A =. Geben Sie alle Lösungen x des homogenen Gleichungssystems Ax = an. Entwicklung nach der ersten Spalte: deta
Extrema von Funktionen mit zwei Variablen
Extrema von Funktionen mit zwei Variablen Es gilt der Satz: Ist an einer Stelle x,y ) f x x,y ) = und f y x,y ) = und besteht außerdem die Ungleichung f xx x,y )f yy x,y ) f xy x,y ) >, so liegt an dieser
Schein-Klausur HM II F 2003 HM II : S-1
Schein-Klausur HM II F 3 HM II : S- Aufgabe : Berechnen Sie die folgenden Grenzwerte: a) lim x ln ( + x) x b) lim (coshx) sin x Lösung: Wir verwenden in beiden Fällen die Regel von de l Hospital. a) Es
Serie 4: Gradient und Linearisierung
D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die
Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt
Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?
Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.
10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung
f(x, y) = x 2 4x + y 2 + 2y
7. Februar Lösungshinweise Theorieteil Aufgabe : Bestimmen Sie die Niveaumengen (Höhenlinien) der Funktion f(x, y) = x 4x + y + y und skizzieren Sie das zugehörige Höhenlinienbild im kartesischen Koordinatensystem
Funktionen in mehreren Variablen Lösungen
Funktionen in mehreren Variablen en Jonas Funke 5.08.008 1 Stetigkeit und partielle Dierentiation 1 Stetigkeit und partielle Dierentiation 1.1 Aufgabe Gegeben ist die Funktion: { (x + y 1 ) sin( ) (x,
Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010
Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-
UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009
UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe
MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE
Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer
Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.
Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim
2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)
Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss
Mathematik IT 3 (Analysis)
Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Mathematik IT 3 (Analysis für die Studiengänge Informatik, IMT und ebusiness im Wintersemester 015/016 Geben
Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu:
6. Februar 2012 Lösungshinweise Theorieteil Aufgabe 1: Die folgenden Bilder zeigen drei Niveaumengen N 0 {(x, y) R 2 : f(x, y) 0}: Ordnen Sie die Bilder den zugehörigen Funktionen z f(x, y) zu: (a) z (x
z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix
Mathematik für Wirtschaftswissenschaftler im WS 03/04 Lösungsvorschläge zur Klausur im WS 03/04 Aufgabe (Komplexe Zahlen (4 Punkte a Berechnen Sie das Produkt der beiden komplexen Zahlen + i und 3 + 4i
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik
Lösungsvorschlag zur Nachklausur zur Analysis
Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie
Prof. Dr. Rolf Linn
Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen
1 Übungsaufgaben zu Kapitel 1
Übungsaufgaben zu Kapitel. Übungsaufgaben zu Abschnitt... Aufgabe. Untersuchen Sie die nachstehend definierten Folgen ( a k ) k und ( b k ) k auf Konvergenz und bestimmen Sie ggf. den jeweiligen Grenzwert:
Mathematik I für MB und ME
Mathematik I für MB und ME Übungsaufgaben Serie 5: Folgen Funktionen Dierentialrechnung Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 206/207 Bestimmen Sie die Grenzwerte der nachstehenden
KLAUSUR. Analysis (E-Technik/Mechatronik/W-Ing) Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf
KLAUSUR Analysis (E-Technik/Mechatronik/W-Ing).9.7 Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Unterschrift: In der Klausur können Sie insgesamt
Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n.
Blatt 1 V 1 Grenzwerte von Folgen Aufgabe V1 Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2 ( n! a) lim n 2n n 3 b) lim n n 7 c) lim 1 1 ) 3n n n Marco Boßle
Klausur Mathematik I
Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.
Klausur Mathematik II
Technische Universität Dresden. Juli 8 Institut für Numerische Mathematik Prof. Dr. G. Matthies, Dr. M. Herrich Klausur Mathematik II Modul Dierentialgleichungen und Dierentialrechnung für Funktionen mehrerer
Mathematik II Sammlung von Klausuraufgaben
Mathematik II Sammlung von Klausuraufgaben Die Klausur wird aus etwa 10 Aufgaben bestehen. Die folgenden Aufgaben sollen einen Eindruck vom Typ der Aufgaben vermitteln, die Bestandteil der Klausur sein
Klausur HM II/III F 2003 HM II/III : 1
Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.
Tutorium Mathematik II, M Lösungen
Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,
7 Integralrechnung für Funktionen einer Variablen
7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare
Tutorium Mathematik II, M Lösungen
Tutorium Mathematik II, M Lösungen 24. Mai 2013 *Aufgabe 1. Bestimmen Sie für die folgenden Funktionen jeweils die Gleichung der Tangentialebene für alle Punkte auf der Fläche. Wann ist die Tangentialebene
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen
Lösungen zu Mathematik I/II
Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx
Funktionen mehrerer Variabler
Inhaltsverzeichnis 8 Funktionen mehrerer Variabler 8. Einführende Definitionen und Bemerkungen....................... 8. Graphische Darstellungsmöglichkeiten.......................... 8. Grenzwert und
Höhere Mathematik II. Variante A
Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite
Mathematik 3 für Informatik
Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren
Stetigkeit und Dierenzierbarkeit im R n
Stetigkeit und Dierenzierbarkeit im R n 1 Stetigkeit Wir übertragen den Stetigkeitsbegri auf mehrstellige reellwertige Funktionen. Denition 1. Sei M R n. Eine Funktion f : M R heiÿt stetig in a M gdw.
Grundlagen der Mathematik (BSc Maschinenbau)
Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH
Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele
Grundkurs Höhere Mathematik I (für naturwissenschaftliche Studiengänge) Beispiele Prof. Dr. Udo Hebisch Diese Beispielsammlung ergänzt das Vorlesungsskript und wird ständig erweitert. 1 DETERMINANTEN 1
a) Wir verwenden Partialbruchzerlegung (PBZ). Der Nenner des Integranden ist x 4 + x 2 = x 2 (x 2 + 1)
Aufgabe 1 a) Wir verwenden Partialbruchzerlegung (PBZ). Der Nenner des Integranden ist x 4 + x 2 = x 2 (x 2 + 1) und hat somit bei x = eine doppelte und bei x = ±i zwei nicht-reelle Nullstellen. Damit
Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf
Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 26 A Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar
Künzer Samstag, Mathematik für Wirtschaftswissenschaften. Lösung zur Klausur
Künzer Samstag, 282 Aufgabe I Es ist f (x = ( x 2 e x2 /2 Mathematik für Wirtschaftswissenschaften Lösung zur Klausur Für x R ist f (x = genau dann, wenn x {, +} ist Somit sind dies die einzigen Flachstellen
Extremwerte von Funktionen mehrerer reeller Variabler
Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: [email protected] Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:
Mehrdimensionale Differentialrechnung Übersicht
Mehrdimensionale Differentialrechnung Übersicht Partielle und Totale Differenzierbarkeit Man kann sich mehrdimensionale Funktionen am Besten für den Fall f : R 2 M R vorstellen Dann lässt sich der Graph
Technische Universität München. Probeklausur Lösung SS 2012
Technische Universität München Andreas Wörfel & Carla Zensen Ferienkurs Analysis für Physiker Probeklausur Lösung SS Aufgabe Differenzierbarkeit / Punkte: [4,, 3, 4] Es sei f(x, y) = sin(x3 + y 3 ) x +
Höhere Mathematik I: Klausur Prof Dr. Irene Bouw
Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie
Differential- und Integralrechnung
Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik
Mathematischer Vorkurs Lösungen zum Übungsblatt 3
Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester [email protected] Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)
Lösungen zu Mathematik I/II
Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)
Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56
Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f x = f (x 0 + x) f (x 0 ) x = f (x)
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 12. Übung/Lösung Mathematik für Studierende der Biologie
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: [email protected] Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:
Lösungsskizzen zur Nachklausur
sskizzen zur Nachklausur Mathematik II für die Fachrichtungen Biologie und Chemie Sommersemester 22 Aufgabe Es seien die folgenden Vektoren 2 v = 2, v 2 = und v 3 = 2 im R 3 gegeben. (a) Zeigen Sie, dass
Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag
Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien
Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler
Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.
Übungen zum Ferienkurs Analysis II 2014
Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben
Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 2011/12 Dr. K. Rothe Anleitungsaufgaben zu Analysis III für Studierende der Ingenieurwissenschaften Aufgabe 1: Für die folgenden Funktionen f : IR 2
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 26/7 (2.3.27). (a) Bestimmen Sie die kartesische Form von z = 5i 2i und z 2 = ( ) 9 3 2 2 i. (b) Bestimmen Sie sämtliche
(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z
Aufgabe Zeigen Sie mit vollständiger Induktion: Für alle n N gilt (8 Punkte) n ( + z 2j ) = 2n+, wobei z C, z, eine komplexe Zahl ist Lösung [8 Punkte] Induktionsanfang: n = : ( + z 2j ) = ( + z 2 ) =
Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (
Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler
Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die
Aufgabensammlung zum UK Mathematische Optimierung
Aufgabensammlung zum UK Mathematische Optimierung Mehrdimensionale Analysis Stetigkeit. Man bestimme den natürlichen Definitionsbereich D f der folgenden Funktionen f: a) f(x, y) = ln(x y ) b) f(x, y)
Klausur Höhere Mathematik I für die Fachrichtung Physik
Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche
D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15
D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 15 1. Der Wert einer Funktion f : R R fällt am schnellsten in die Richtung (a) (b) (c) der minimalen partiellen Ableitung. entgegengesetzt
Prüfung zur Vorlesung Mathematik I/II
Prof. Dr. E. W. Farkas ETH Zürich, August 2009 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Bitte nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit
Musterlösung Höhere Mathematik I/II Di. Aufgabe 1 (11 Punkte) Geben Sie die Matrixbeschreibung der Quadrik
Aufgabe Punkte Geben Sie die Matrixbeschreibung der Quadrik {x R 3x 3x 8x x +x +4x +7 = 0} an Berechnen Sie die euklidische Normalform der Quadrik und ermitteln Sie die zugehörige Koordinatentransformation
Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen. Graphentheorie
Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen Graphentheorie Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen Def.: eine Funktion n f :D mit D,x (x,...x
