Lösungen zu Mathematik I/II

Größe: px
Ab Seite anzeigen:

Download "Lösungen zu Mathematik I/II"

Transkript

1 Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim tan(x)(x ) = lim tan(x) x L Hôpital = lim cos(x) (x ) (x = lim ) cos(x) L Hôpital = lim L Hôpital = lim c) Das Taylorpolynom zweiter Ordnung der Funktion (im Punkt x = ) ist gegeben durch f(x) = sin(e x ) (x ) cos(x) cos(x) =. T (x) = sin() + cos() x + (cos() sin()) x. d) Wir integrieren die Gleichung y = y. Daraus folgt dass y = y + C.

2 Aus y() = und y () = folgt y = y. Wir integrieren: ln(y) = x + D. Mit der Anfangsbedingung y() = folgt, dass y(x) = e x. e) Das lokale Minimum ist in (, ) und das lokale Maximum in (, ). f) Wir berechnen 3 3 x 3 3x dx = g) Wir berechnen mit f = sin(xy) 3 x 3 3xdx 3 x 3 3xdx = 9. f x = y cos(xy), f xy = cos(xy) xy sin(xy), f y = x cos(xy), f yy = x sin(xy). Im Punkt (, ) ist dann: f xy (, ) =, f yy (, ) =.. (8 Punkte) a) i i = 3 5 i e 3 i + e 4 3 i + e 6 3 i =, ( ) = i. i

3 b) Die Lösungen von c) lauten z z + iz i =. z =, z = i. z = ( + i ) 5 = 4 5 e 3 i. d) Die Nullstellen von z 4 + z 3 + z + z +. lauten z = e 5 i, z = e 4 5 i, z 3 = e 6 5 i, z 4 = e 8 5 i. 3. ( Punkte) a) Entscheiden Sie ob die folgenden Aussagen richtig oder falsch sind. i) falsch, denn =. ii) falsch, (da die Determinante der Matrix ist). iii) richtig (da die Determinante der Matrix ist). iv) falsch (die Determinante der Koeffizientenmatrix ist gleich, daher besitzt das homogene Gleichungssystem unendlich viele Lösungen). b) Wir erhalten , und somit ist Rang(A) = 4. c) Es gilt: v ist Eigenvektor von A zum Eigenwert λ v ist Eigenvektor von A zum Eigenwert λ. Wir haben 6 4 A = =

4 Daher ist v = Eigenvektor von A zum Eigenwert und somit ist v auch 3 Eigenvektor von A zum Eigenwert. d) i) In Matrix-Vektor Notation wird die Entwicklung durch das System ( ) (jn ) ( ) jn = a n beschrieben. Die Eigenwerte λ = und λ = können wir direkt ablesen. ii) Da < λ < λ <, gibt es keinen dominanten Eigenwert und die Populationen sterben aus. a n 4. ( Punkte) a) Wir leiten die erste Differentialgleichung y (x) = y (x) + 3y (x) ein Mal nach x ab und bekommen y (x) = y (x) + 3y (x). () Nun setzen wir die zweite Differentialgleichung y (x) = y (x) in () ein und erhalten y (x) = y (x) + 3y (x). Umgeformt bekommen wir die homogene Differentialgleichung zweiter Ordnung y (x) y (x) 3y (x) =. b) Wir benutzen die Substitution u(x) = y x und unter Berücksichtigung, dass y = u x + u gilt, erhalten wir u x + u = u( u) u x = u, u du = x dx = ln x + c, u = ln x + c u = ln x + c. Also ist die allgemeine Lösung y(x) = x ln x +c c) i) Die homogenen Differentialgleichung y y mit c R. = cos(x) der Variablen und erhalten dy y = cos(x) ln y = ln() + c, mit c R. Dies führt zu y(x) = c R lösen wir mit Trennung dx. Somit folgt mit dem Hinweis ĉ, wobei ĉ R. Alternativ kann man die Formel für eine DGL der Form y (x) + f(x)y(x) = aus der Vorlesung benutzen, und erhält y(x) = Ce f(x)dx = Ce cos(x) dx = Ce ln( ) = da > für x ], [. C, C R,

5 ii) Variation der Konstanten führt auf den Ansatz y(x) = K(x). Somit gilt y (x) = K (x) K(x) cos(x) sin. () (x) Setzen wir den Ansatz y(x) = K(x) und () in die inhomogene Differentialgleichung y (x) + cos(x) y(x) = cos(x) ein, so erhalten wir K (x) cos(x) K(x) sin (x) + cos(x) sin K(x) = cos(x) (x) K (x) = cos(x) K(x) = cos(x)dx = sin (x) cos(x)dx + c = sin (x) + c, c R. Also erhalten wir y(x) = sin (x)+c = + c. iii) Um die Konstante c zu bestimmen, betrachten wir die Anfangsbedingung: y( 6 ) = sin( 6 ) + c sin( 6 ) allgemeine Lösung y(x) = = 4 + c = 3, daraus folgt c = 8. Also ist die (8 Punkte) a) Der Gradient von f ist f(x, y) = ( ) 9 4 x 5 + y, + x. y Die notwendigen Bedingungen für kritische Punkte sind 9 4 x 5 + y = + x y =. Aus der zweiten Gleichung folgt x = y und eingesetzt in die erste Gleichung erhalten wir Es folgt 9 4y 5 + y = y 5y =. y = 9, y =.

6 Die kritischen Punkte liegen bei ( ) u = 3, 9 und u = (, ). Mit den zweiten Ableitungen von f f xx = 9 x, f xy = und f yy = y 3/ erhalten wir für D(x, y) = f xx (x, y)f yy (x, y) f xy (x, y) in u und u ( ) D(u ) = 3 (9/) 3/ = 9 <, D(u ) = 9 ) ( (/) 3/ = 9 = 8 >. Somit liegt in u ein Sattelpunkt vor. In u gilt f xx (u ) = 9 und somit handelt es sich um ein lokales Maximum. b) Wir berechnen das Volumen des Körpers mit Hilfe eines Dreifachintegrals in kartesischen Koordinaten 6. ( Punkte) a) V = = x x y b) Mit der Substitution dzdydx = (( x) ( x) )dx = 6. x γ (t) = (t, ) für t, γ (t) = (, t) für t, γ 3 (t) = (( t), ( t) 3 ) für t, ( x y)dydx (bei I ) x = t, dx = dt und y =, dy =, (bei I ) x =, dx = und y = t, dy = dt, (bei I 3 ) x = ( t), dx = dt und y = ( t) 3, dy = 3( t) dt, folgt I = I = I 3 = 3y dx + x dy =. γ 3y dx + x dy = dt =. γ 3( t)4 3y dx + x dy = 4 γ3 = 3 4.

7 c) I = γ 3y dx + x dy = I + I + I 3 = 5 4. d) Es gilt f(x, y) = 3y und g(x, y) = x, somit g Green erhalten wir dann x f y = 5. Mit dem Satz von x 3 5 dy dx = 5 x 3 dx = 5 4.

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Januar 0 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 3 6 Total Vollständigkeit Bitte

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, August 2009 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Bitte nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3 4 5 6 -

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 014 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II. (8 Punkte) a) Mit Kürzen des Bruchs folgt ( ) x + sin(x) sin(x) cos(x) lim x sin(x) ( ) x = lim x sin(x) + cos(x)

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, August 015 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 3 4 5 6 Total Vollständigkeit

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

(n + 1)2. + n. ((n 1) + 1)2. = (n2 + 2n) A = 21 13

(n + 1)2. + n. ((n 1) + 1)2. = (n2 + 2n) A = 21 13 Universität Stuttgart Fachbereich Mathematik Prof. Dr. E. Teufel, Dr. N. Röhrl, J. Spreer MUSTERLÖSUNG FÜR KLAUSUR Mathematik inf / sotech / tpinf Aufgabe 1 (4 Punkte) Zeigen Sie, dass für alle n gilt

Mehr

Klausur Mathematik II

Klausur Mathematik II Technische Universität Dresden. Juli 8 Institut für Numerische Mathematik Prof. Dr. G. Matthies, Dr. M. Herrich Klausur Mathematik II Modul Dierentialgleichungen und Dierentialrechnung für Funktionen mehrerer

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4 Prof. Dr. B. Billhardt Wintersemester 4/5 Klausur zur Vorlesung Höhere Mathematik II (BNUW) 4.3.5 Aufgabe (a) Ermitteln Sie die Nullstellen des Polynoms p(z) = z 4 4z 3 + 3z + 8z. Tipp: p( + i) =. (b)

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten!

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten! Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik III Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Gewöhnliche Differentialgleichungen Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Gew. DGl 1-1 Zusammenfassung y (x) = F (x, y) Allgemeine

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Mathematik für Informatiker und Softwaretechniker

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Mathematik für Informatiker und Softwaretechniker Apl. Prof. Dr. W.-P. Düll Fachbereich Mathematik Universität Stuttgart Klausur für Studierende der Fachrichtungen inf, swt Bitte unbedingt beachten: Bitte beschriften Sie jeden Ihrer Zettel mit Namen und

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Winter 205 BIOL HST PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 2 3 4 5 Total

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 3.9.5, min Aufgabe (8 Punkte) Gegeben ist der Körper K : {(x, y, z) R 3 x + 4y, z 3}. Berechnen Sie der Ausfluss von g : R 3 R 3 durch den Rand K mit g(x, y, z) (x

Mehr

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x).

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x). Stroppel/Sändig Musterlösung 8. 3., min Aufgabe 5 Punkte Beweisen Sie für alle x R {zπ z Z} die Formel für n N mit Hilfe der vollständigen Induktion. cosxcosxcosx cos n x = sinn+ x n+ sinx Dabei dürfen

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. W. Farkas ETH Zürich, Februar 2018 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total

Mehr

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx. HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld D-BAUG Analysis I/II Winter 5 Dr. Meike Akveld Lösung. [ Punkte] Es sei das Gebiet B {z C } z + Im(z) gegeben. a) Skizzieren Sie das Gebiet B in der komplexen Ebene. Für z x + iy gilt z + Im(z) x + y +

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

BASISPRÜFUNG MATHEMATIK I UND II

BASISPRÜFUNG MATHEMATIK I UND II ETH Zürich Sommer 015 Dr. Ana Cannas BASISPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften 1. Sei a) Ist das System lösbar? b) Lösen Sie das System

Mehr

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Höhere Mathematik Teil

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Höhere Mathematik Teil Prof. Dr. Guido Schneider Fachbereich Mathematik Universität Stuttgart Klausur für Studierende der Fachrichtungen el, kyb, mecha, phys, tpel Bitte unbedingt beachten: Bitte beschriften Sie jeden Ihrer

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

Lösung zur Prüfung HM 1,2 el+phys+kyb+geod, Teil 2

Lösung zur Prüfung HM 1,2 el+phys+kyb+geod, Teil 2 Lösung zur Prüfung HM, el+phys+kyb+geod, Teil Universität Stuttgart Fachbereich Mathematik Institut für Analysis, Dynamik und Modellierung 9.7.6 Name Vorname Matr.-nummer Raum Anmerkungen zur Korrektur:...

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien

Mehr

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu:

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu: 6. Februar 2012 Lösungshinweise Theorieteil Aufgabe 1: Die folgenden Bilder zeigen drei Niveaumengen N 0 {(x, y) R 2 : f(x, y) 0}: Ordnen Sie die Bilder den zugehörigen Funktionen z f(x, y) zu: (a) z (x

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

Lösungshinweise zur Klausur

Lösungshinweise zur Klausur Höhere Mathematik 1 und 4..14 Lösungshinweise zur Klausur für Studierende der Fachrichtungen el, kyb,mecha,phys Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind.

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 7..7 Aufgabe ( Punkte) (a) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix A mit 3 3 A = 3 Ist die Matrix A diagonalisierbar? (b) Die Matrix A

Mehr

Lineare DGL. Bei linearen Problemen liegt eine typische Lösungsstruktur vor. Betrachten wir hierzu die Gleichung 2x+y = 3

Lineare DGL. Bei linearen Problemen liegt eine typische Lösungsstruktur vor. Betrachten wir hierzu die Gleichung 2x+y = 3 Lineare DGL Bei linearen Problemen liegt eine typische Lösungsstruktur vor. Betrachten wir hierzu die Gleichung 2x+y = 3 Die zugehörige homogene Gleichung ist dann 2x+y = 0 Alle Lösungen (allgemeine Lösung)

Mehr

Analysis I & II Lösung zur Basisprüfung

Analysis I & II Lösung zur Basisprüfung FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die

Mehr

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3 Prof. Dr. Eck Höhere Mathematik 3 9.3.9 Aufgabe ( Punkte) Gegeben ist der Körper K mit der Parametrisierung x r cos ϕ cos ϑ K : x = Φ(r,ϕ,ϑ) = r sin ϕ cos ϑ, r [, ], ϕ [,π/], ϑ [,π/6]. x 3 r sin ϑ a) Berechnen

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /5 G. Bärwol, A. Gündel-vom-Hofe..5 Februar Klausur Analysis II für Ingenieurswissenschaften Lösungsskizze. Aufgabe 6Punkte Bestimmen

Mehr

Klausur: Differentialgleichungen Version mit Lösungen

Klausur: Differentialgleichungen Version mit Lösungen Universität Kassel Fachbereich 10/16 Dr. Sebastian Petersen 16.03.2016 Klausur: Differentialgleichungen Version mit Lösungen Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. W. Farkas ETH Zürich, August 017 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 3 4 5 6 Total Bitte

Mehr

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a Aufgabe 8 Punkte). Bestimmen Sie die Lösungsmenge in R in Abhängigkeit von a R) des folgenden linearen Gleichungssystem: x + ax + 6x = 4, ax + 4x + ax =, x + 4x =. Lösung. Wir schreiben das lineare Gleichungssystem

Mehr

Musterlösungen Serie 9

Musterlösungen Serie 9 D-MAVT D-MATL Analysis II FS 2013 Prof. Dr. P. Biran Musterlösungen Serie 9 1. Frage 1 Gegeben ist eine lineare und homogene Differenzialgleichung, welche y : x sin x als Lösung besitzt. Welche der folgenden

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Aufgabe 1 (Komplexe Zahlen) Berechnen Sie die folgenden komplexe Zahlen:

Aufgabe 1 (Komplexe Zahlen) Berechnen Sie die folgenden komplexe Zahlen: Mathematik für Wirtschaftswissenschaftler im SoSe 24 Lösungsvorschläge zur Klausur im SoSe 24 Aufgabe (Komplexe Zahlen) Berechnen Sie die folgenden komplexe Zahlen: z = ( + i) 2 w = + i. Stellen Sie jeweils

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Februar 07 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3

Mehr

D-CHAB Grundlagen der Mathematik I (Analysis B) FS 2016 Theo Bühler

D-CHAB Grundlagen der Mathematik I (Analysis B) FS 2016 Theo Bühler D-CHAB Grundlagen der Mathematik I Analysis B) FS 6 Theo Bühler Lösung. Finde eine Stammfunktion von a) f : R R, fx) := x cosx 5 ) sinx 5 ) ) = 5 cosx 5 )x, also die Stammfunktion von fx) durch F x) :=

Mehr

z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix

z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix Mathematik für Wirtschaftswissenschaftler im WS 03/04 Lösungsvorschläge zur Klausur im WS 03/04 Aufgabe (Komplexe Zahlen (4 Punkte a Berechnen Sie das Produkt der beiden komplexen Zahlen + i und 3 + 4i

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

4x 1 + 2x 2 + 3x 3 = 1, x 2 + ax 3 = 1, ax 2 + x 3 = a 1. 0 a 1 1 Wir führen nun den Gauÿalgorithmus durch:

4x 1 + 2x 2 + 3x 3 = 1, x 2 + ax 3 = 1, ax 2 + x 3 = a 1. 0 a 1 1 Wir führen nun den Gauÿalgorithmus durch: Aufgabe 8 Punkte Bestimmen Sie die Lösungsmenge in R in Abhängigkeit von a R des folgenden linearen Gleichungssystems: 4x + x + 3x 3 =, x + ax 3 =, ax + x 3 =. Lösung. Wir schreiben das lineare Gleichungssystem

Mehr

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1 Fachbereich Mathematik Universität Stuttgart Prof. Dr. C. Rohde Höhere Mathematik I III Diplomvorprüfung 3. 3. 8. Klausur für Studierende der Fachrichtungen phys Bitte unbedingt beachten: In dieser Klausur

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe (9 Punkte) Es sei die Fläche S R 3 gegeben durch S : { } (x, y, z) R 3 : 4z x + y 4, z. (a) ( Punkte) Geben Sie eine Parametrisierung für S an. (b) (4 Punkte) Berechnen Sie den Flächeninhalt von

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Probeklausur Höhere Mathematik II für Elektrotechniker

Probeklausur Höhere Mathematik II für Elektrotechniker I. Bouw.7.8 U. Hackstein Probeklausur Höhere Mathematik II für Elektrotechniker Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 7 Punkte. Aufgabe. Skizzieren Sie folgenden Bereich: D = {(x, y) R x + y

Mehr

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 26 A Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4. Umkehrbarkeit I Man betrachte die durch g(s, t = (e s cos(t, e s sin(t gegebene Funktion g : R R. Zeigen Sie, dass

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Klausur zur Mathematik für Maschinentechniker

Klausur zur Mathematik für Maschinentechniker SS 04. 09. 004 Klausur zur Mathematik für Maschinentechniker Apl. Prof. Dr. G. Herbort Aufgabe. Es sei f die folgende Funktion f(x) = 4x 4x 9x 6 x (i) Was ist der Definitionsbereich von f? Woistf differenzierbar,

Mehr

Musterlösung Prüfung

Musterlösung Prüfung D-BAUG Analysis I/II Winter 24 Meike Akveld Theo Bühler Musterlösung Prüfung. (a) Bestimmen Sie die reellen Koeffizienten p und q, so dass z = 2 3i eine Lösung der Gleichung z 3 3z 2 + pz + q = ist. Bestimmen

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3 Aufgabe ( Punkte) a) Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix 6 A = 6 b) Bestimmen Sie die allgemeine Lösung des Differentialgleichungssystems x = 6x + x 3 x = x x 3 = x + 6x 3 c) Bestimmen

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten Mathematik Rechenfertigkeiten Lösungen zu den Übungen Freitag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 9, 857 Zürich Erstellt von Dr. Irmgard Bühler 9.August Integration,

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Knarr 07. 09. 009 Klausur zur Höheren Mathematik / für Ingenieurstudiengänge Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 80 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhändig

Mehr

Mathematik I Prüfung Frühlingssemester 2014

Mathematik I Prüfung Frühlingssemester 2014 Mathematik I Prüfung Frühlingssemester 2014 Prof. Dr. Enrico De Giorgi 23. Juni 2014 Mathematik II: Prüfung Frühlingssemester 2014 1 Teil I: Offene Fragen (50 Punkte) Allgemeine Anweisungen für offene

Mehr

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen Karlsruher Institut für Technologie (KIT) Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math. Carlos Hauser SoSe 7 7.7.7 Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen.

Mehr

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Herbst 9.9.9 Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge Aufgabe

Mehr

7. Übungsblatt Aufgaben mit Lösungen

7. Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sei die Differentialgleichung 7. Übungsblatt Aufgaben mit Lösungen y x) 2 x y x) + 5 x 2 y x) 5 x yx) = 0 für x > 0. Prüfen Sie, ob die folgenden Funktionen Lösungen dieser Differentialgleichung

Mehr

Variante A Musterlösung

Variante A Musterlösung RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lehrstuhl II für Mathematik Bachelor-Prüfung Höhere Mathematik II / III Variante A Musterlösung Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind

Mehr

H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur

H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur H. Schmidli Mathematik für Physiker WS / Lösung der Klausur. a) Zähler und Nenner konvergieren gegen. Somit verwenden wir die Regel von L Hospital e sin x x x e cos x (cos x)e sin x x (sin x)e cos x x

Mehr

Mathematik für Sicherheitsingenieure I B

Mathematik für Sicherheitsingenieure I B Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 3.3.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I B Aufgabe. (5+8+7 Punkte a Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

Partielle Integration

Partielle Integration Partielle Integration 1 Motivation Eine der wichtigsten Methoden der Integralrechnung ist die partielle Integration. Mit ihr lassen sich Funktionen integrieren, die ein Produkt zweier Funktionen sind.

Mehr

Klausur Mathematik II für Wirtschaftswissenschaftler. Name:... Vorname:... Matr. Nr.:... Studiengang:...

Klausur Mathematik II für Wirtschaftswissenschaftler. Name:... Vorname:... Matr. Nr.:... Studiengang:... Nachklausur Technische Universität Berlin Fakultät II Institut für Mathematik Sommersemester Dr. G. Nunes dos Reis 4. Oktober Klausur Mathematik II für Wirtschaftswissenschaftler Name:.......................................

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1.

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1. Apl. Prof. Dr. N. Knarr Musterlösung.9.6, min Aufgabe ( Punkte) Lösen Sie das folgende Anfangswertproblem: y = e y cos(x), y() =. Sei y : I R die maximale Lösung des gegebenen Anfangswertproblems (diese

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

Musterlösungen Aufgabenblatt 2

Musterlösungen Aufgabenblatt 2 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Physiker Musterlösungen Aufgabenblatt Dienstag 17. Februar 009 Aufgabe 1 (Implizite Funktionen) f(x, y) = x 1 xy 1 y4 = 0 Man bestimme die lokale

Mehr

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?

Mehr

f(x, y) = x 2 4x + y 2 + 2y

f(x, y) = x 2 4x + y 2 + 2y 7. Februar Lösungshinweise Theorieteil Aufgabe : Bestimmen Sie die Niveaumengen (Höhenlinien) der Funktion f(x, y) = x 4x + y + y und skizzieren Sie das zugehörige Höhenlinienbild im kartesischen Koordinatensystem

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 9.8.6 Aufgabe Punkte a Berechnen Sie die Eigenwerte der folgenden Matrix: A 3 b Es sei 4 A. 8 5 Bestimmen Sie P, P M, und eine Diagonalmatrix D M, so,

Mehr

Bergische Universität Wuppertal Klausur zur Mathematik für Ingenieure - Bachelor

Bergische Universität Wuppertal Klausur zur Mathematik für Ingenieure - Bachelor Bergische Universität Wuppertal Klausur zur Mathematik für Ingenieure - Bachelor.9.4 Prof. Dr. M. Heilmann, Apl. Prof. Dr. G. Herbort, Aufgabe Punkte. Zeigen Sie für alle n IN mittels Induktion die Gleichung

Mehr

Klausur zur Höheren Mathematik II/III Prof. Dr. E. Triesch Termin: Fachrichtung:... Diplom. Sonstige:... Matr.-Nr.:... Name:...

Klausur zur Höheren Mathematik II/III Prof. Dr. E. Triesch Termin: Fachrichtung:... Diplom. Sonstige:... Matr.-Nr.:... Name:... RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lehrstuhl II für Mathematik Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung Höhere Mathematik II/III Prüfung: Klausur zur Höheren Mathematik II/III

Mehr

Höhere Mathematik 3 Herbst 2014

Höhere Mathematik 3 Herbst 2014 IMNG, Fachbereich Mathematik Universität Stuttgart Prof. Dr. K. Höllig Höhere Mathematik 3 Herbst 214 Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i) rot(2

Mehr

Eine Funktion f(x) lasse sich in einem Intervall in eine Potenzreihe a n x n entwickeln. Geben Sie eine Potenzreihendarstellung für f (x) an.

Eine Funktion f(x) lasse sich in einem Intervall in eine Potenzreihe a n x n entwickeln. Geben Sie eine Potenzreihendarstellung für f (x) an. Prüfungsklausur Höhere Mathematik II 5. Juli 7) für MB, EC, TeM, FWK, VT, KGB, BGi, WiW, GtB, Ma, WWT, ESM - Lösungen zum Theorieteil - Aufgabe : Eine Funktion fx) lasse sich in einem Intervall in eine

Mehr

(c) Nach wievielen Wochen ist etwa die Hälfte aller Einwohner erkrankt?

(c) Nach wievielen Wochen ist etwa die Hälfte aller Einwohner erkrankt? Mathematik I für Naturwissenschaften Dr. Christine Zehrt 15.11.18 Übung 9 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 19. November 018 in den Übungsstunden Aufgabe 1 In einer Stadt breitet

Mehr

Kurvendiskussion. Lösung: lok. + glob. Maximum bei x = 3 (lok.+glob. Min bei x = 6, lok. Min. bei x = 1) (lok.+glob.) Minimum bei x = 1

Kurvendiskussion. Lösung: lok. + glob. Maximum bei x = 3 (lok.+glob. Min bei x = 6, lok. Min. bei x = 1) (lok.+glob.) Minimum bei x = 1 Kurvendiskussion Vorzeigeaufgabe: Gegeben ist die Funktion f(x) = x 3 + 9x 4x + 6, x [, 3] Bestimmen Sie alle Stellen, an denen f ein lokales oder globales Extremum annimmt. Zusatz: Wie sieht es bei f(x)

Mehr