Aufgabe 1 (Komplexe Zahlen) Berechnen Sie die folgenden komplexe Zahlen:

Größe: px
Ab Seite anzeigen:

Download "Aufgabe 1 (Komplexe Zahlen) Berechnen Sie die folgenden komplexe Zahlen:"

Transkript

1 Mathematik für Wirtschaftswissenschaftler im SoSe 24 Lösungsvorschläge zur Klausur im SoSe 24 Aufgabe (Komplexe Zahlen) Berechnen Sie die folgenden komplexe Zahlen: z = ( + i) 2 w = + i. Stellen Sie jeweils das Ergebnis sowohl in der Form a + bi mit reellen Zahlen a und b als auch in der Form r (cos(ϕ) + i sin(ϕ)) mit positivem r und ϕ < 2π dar. Lösung zu Aufgabe a) Es gilt: ( + i) 2 = + 2 i = i. Die Polarkoordinaten ergeben sich aus r = ( ) = 4 und ϕ = arctan = π. b) Man erhält i = i ( + i)( i) = i i = i. Die Polarkoordinaten ergeben sich aus r = somit ϕ = 7 4 π = 2 2 und arctan ( ) = π 4 Aufgabe 2 (Lineares Gleichungssystem) Sei das folgende lineare Gleichungssystem auf dem R 7 gegeben. (8 Punkte) x x 2 +2x +x 4 +x 5 2x 6 +x 7 = 4 2x +x 2 x x 4 +2x 5 x 6 +x 7 = x 2x 2 +x +2x 4 x 5 x 6 =. Bestimmen Sie die Lösungsmenge des Gleichungssystems und geben Sie eine Basis des Lösungsraums des zugehörigen homogenen Systems an. Lösung zu Aufgabe 2 Wir lösen das Gleichungssystem indem wir an der zugehörigen erweiterten Matrix Zeilenumformungen durchführen

2 Aus der letzten Matrix kann man die Lösungsmenge berechnen: 7 t t + t 4 2t 5 ( 5 + 5t + t 2 t 4 + t 5 ) t t 2 t... t 5 R. t t 4 t 5 Als Basis des Lösungsraums des homogenen Systems erhält man z.b Aufgabe (Inverse Matrix) Seien die reellen Matrizen A = B = gegeben. Entscheiden Sie in beiden Fällen ob die inverse Matrix A bzw. B existiert und berechnen Sie diese gegebenenfalls. Lösung zu Aufgabe a) Mit dem übliche Verfahren (Umformen der mit der Einheitsmatrix erweiterten Matrix A) erhält man: Durch Vertauschen der zweiten und dritten Zeile ergibt sich nun die Inverse von A nämlich: A =. b) Die Matrix B ist nicht invertierbar da beim Anwenden des Gaußverfahrens Nullzeilen entstehen.

3 Aufgabe 4 (Kapitalentwicklung) Jemand zahlt 2 Jahre lang jedes Jahr zu Jahresanfang 2. e in einen Sparvertrag ein. Das Guthaben wird jeweils zum Jahresende mit 2% verzinst. a) Wie hoch ist nach zwanzig Jahren der Kontostand? b) Wie viele Jahre müsste der Sparvertrag bei sonst gleichen Konditionen laufen damit am Ende mindestens eine Million Euro auf dem Konto sind? Lösung zu Aufgabe 4 a) Die Formel für den Endwert einer vorschüssigen Rente lautet K n = r q qn q. In der Aufgabe haben wir r = 2. q = 2 und n = 2. Damit ergibt sich K 2 = Der Kontostand nach 2 Jahren beträgt also e. b) Wir lösen die obige Formel für den Endwert einer vorschüssigen Rente nach n auf. K n = r q qn q (q )K n = r q (q n ) (q )K n = r q n+ r q q n+ = q K n + q ( ) r q n = log q K n + q r Damit erhalten wir ( n ln 2.. ) / ln(2) 45. Der Vertrag müsste mindestens 5 Jahre Laufzeit haben. Aufgabe 5 (Folgen und Reihen) a) Seien die Folgen a n := n b n := 2 n + c n := n 2 n 2 + n + gegeben. Geben Sie für jede der drei Folgen jeweils an ob es sich um eine konvergente Folge handelt und was gegebenenfalls der Grenzwert ist. b) Betrachten Sie nun die Reihen n= a n n= b n und n= c n. Entscheiden Sie ob diese konvergieren und bestimmen Sie gegebenenfalls den Grenzwert. Lösung zu Aufgabe 5 a) Die Folgen a n und b n sind Nullfolgen für die Folge c n gilt c n = n 2 n 2 + n + = + n + n 2.

4 b) Die erste Reihe ist eine geometrische Reihe n= qn mit q =. Diese konvergiert für q <. Für den Limes gilt nach der Summenformel für die geometrische Reihe n= qn = q = 2. Die zweite Reihe divergiert denn bekanntlich divergiert die har-. Die dritte Reihe divergiert ebenfalls da c n n keine Nullfolge monische Reihe n= ist. Aufgabe 6 (Funktionsgrenzwerte) Bestimmen Sie die folgenden Funktionsgrenzwerte: e x x 2 4 a) lim b) lim x sin(x) x 2 x 2. Lösung zu Aufgabe 6 a) Mit der Regel von L Hôpital: e x lim x sin(x) = lim e x x cos(x) = =. b) Mit der dritten binomischen Formel erhält man: x 2 4 lim x 2 x 2 = lim (x + 2)(x 2) = lim x + 2 = 4 x 2 x 2 x 2 Alternativ: Auch das Anwenden der Regel von L Hôpital führt hier zum Ziel. Aufgabe 7 (Definitheit) Welche der folgenden reellen symmetrischen Matrizen sind positiv definit welche sind negativ definit? A= B= C= 2 2 D= Begründen Sie Ihre Antworten. Lösung zu Aufgabe 7 a) Wir berechnen zuerst die Determinante der Matrix A. Dazu führen wir Zeilenumformungen durch: Es gilt also det(a) = = 6. Die beiden anderen Hauptminoren sind 4 und = 8. Da alle Hauptminoren positiv sind ist die Matrix positiv definit. b) Die Matrix B ist negativ definit denn eine Diagonalmatrix ist negativ definit wenn ihre Diagonaleinträge alle negativ sind. c) Die Matrix C ist weder positiv noch negativ definit da der erste Hauptminor gleich Null ist. d) Die Matrix D ist weder positiv noch negativ definit denn der erste Hauptminor ist negativ und der zweite auch: ( ) ( ) 2 2 =.

5 Aufgabe 8 (Lokale Extrema) Gegeben sei die Funktion f(x y) = x 2 + x + 2 y2 + y + xy auf R 2. a) Berechnen Sie den Gradienten f(x y) und die Hessematrix Hessf(x y). b) Bestimmen Sie alle lokalen Extrema der Funktion. Lösung zu Aufgabe 8 a) Der Gradient von f berechnet sich zu ) f (x y) = ( f(xy) x f(xy) y Die Hessematrix von f ist konstant gleich Hessf(x y) = ( 2 f(xy) x x 2 f(xy) y x = ( ) 2x + y +. x + y + 2 f(xy) x y 2 f(xy) y y ) = ( ) 2. (8 Punkte) b) Zunächst bestimmen wir die lokalen Flachstellen von f indem wir den Gradienten gleich Null setzen. Dies führt auf die Gleichungen 2x + y + = x + y + =. Abziehen der unteren von der oberen Gleichung ergibt x = woraus y = folgt. Die einzige Lösung des Gleichungssystems und somit der einzige Flachpunkt von f ist also (x y) = ( ). Die (konstante) Hessematrix ist positiv definit da die Hauptminoren 2 und also beide positiv sind. Also liegt in ( ) ein lokales Minimum der Funktion f vor und dies ist das einzige lokale Extremum der Funktion. Aufgabe 9 (Flachstellen unter Nebenbedingung) Sei die Funktion f(x y z) = x 2 y z für positive reelle Zahlen x y z definiert. Finden Sie alle Flachstellen von f unter der Nebenbedingung x + y + z = 2. Lösung zu Aufgabe 9 Sei g(x y z) := x + y + z 2. Wir berechnen die Gradienten von f und g: f (x y z) = 2xy z y 2 x 2 z und g (x y z) = x 2 y Damit eine Lösung von f (x y z) = λ g (x y z) vorliegt muss also 2xy z = y 2 x 2 z = x 2 y gelten. Nun erhält man z.b. aus 2xy z = x 2 y dass x = 2z gilt und aus y 2 x 2 z = x 2 y dass y = z gilt. Aus der Nebenbedingung folgt damit 2z + z + z = 2 somit z = 2. Schließlich erhalten wir x = 2z = 4 und y = z = 6. Die einzige Flachstelle ist somit (4 6 2). Aufgabe (Taylorpolynom) Sei die Funktion f(x) = e x(x+) für reelle x gegeben. Bestimmen Sie das Taylorpolynom dritter Ordnung am Entwicklungspunkt x =.

6 Lösung zu Aufgabe Das Taylorpolynom p(x) hat die Form f (k) () p(x) = x k. k! Die Ableitungen f (k) () berechnen sich zu k= f () (x) = e x2 +x f () () = f () (x) = e x2 +x (2x + ) f () () = f (2) (x) = e x2 +x (2x + ) 2 + e x2 +x 2 f (2) () = f () (x) = e x2 +x (2x + ) + e x2 +x 4(2x + ) + e x2 +x 2(2x + ) f () () = 7. Wir erhalten also p(x) = + x + 2 x x am Entwicklungs- als Taylorpolynom dritter Ordnung für die Funktion f(x) = e x(x+) punkt x =. Aufgabe (Differentialgleichung) Finden Sie eine Lösung des folgenden Anfangswertproblems: y = exp(x) y y() =. Lösung zu Aufgabe Setze f(x) := exp(x) und g(y) := y. Damit erhalten wir F (x) := und H(y) := y x Die gesuchte Lösung erhält man wenn man exp(t) dt = [exp(t)] x = exp(x) t dt = [ln(t)] y = ln(y) ln() = ln(y). H(y(x)) = ln(y(x)) = exp(x) = F (x) nach y(x) auflöst: y(x) = exp(exp(x) ).

z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix

z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix Mathematik für Wirtschaftswissenschaftler im WS 03/04 Lösungsvorschläge zur Klausur im WS 03/04 Aufgabe (Komplexe Zahlen (4 Punkte a Berechnen Sie das Produkt der beiden komplexen Zahlen + i und 3 + 4i

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 9.8.6 Aufgabe Punkte a Berechnen Sie die Eigenwerte der folgenden Matrix: A 3 b Es sei 4 A. 8 5 Bestimmen Sie P, P M, und eine Diagonalmatrix D M, so,

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 7..7 Aufgabe ( Punkte) (a) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix A mit 3 3 A = 3 Ist die Matrix A diagonalisierbar? (b) Die Matrix A

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix Stroppel Musterlösung 7.., 8min Aufgabe Punkte Bestimmen Sie die Determinante der Matrix A =. Geben Sie alle Lösungen x des homogenen Gleichungssystems Ax = an. Entwicklung nach der ersten Spalte: deta

Mehr

Modulprüfung Hm 1 & Hm 2

Modulprüfung Hm 1 & Hm 2 Seite von 9 Modulprüfung Hm & Hm Hinweise: - Es gibt 9 Aufgaben. Die jeweilige Punktzahl ist angegeben. - Die Maximalpunktzahl ist 56. Zum Bestehen der Klausur sind 4 Punkte hinreichend. - Die Bearbeitungszeit

Mehr

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x).

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x). Stroppel/Sändig Musterlösung 8. 3., min Aufgabe 5 Punkte Beweisen Sie für alle x R {zπ z Z} die Formel für n N mit Hilfe der vollständigen Induktion. cosxcosxcosx cos n x = sinn+ x n+ sinx Dabei dürfen

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a Aufgabe 8 Punkte). Bestimmen Sie die Lösungsmenge in R in Abhängigkeit von a R) des folgenden linearen Gleichungssystem: x + ax + 6x = 4, ax + 4x + ax =, x + 4x =. Lösung. Wir schreiben das lineare Gleichungssystem

Mehr

Lösungshinweise zur Klausur

Lösungshinweise zur Klausur Höhere Mathematik 1 und 4..14 Lösungshinweise zur Klausur für Studierende der Fachrichtungen el, kyb,mecha,phys Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind.

Mehr

Stroppel Musterlösung , 180min

Stroppel Musterlösung , 180min Stroppel Musterlösung 040907, 80min Aufgabe (8 Punkte) (a) Seien A, D, T R d d für ein d N Weiter sei T invertierbar und es gelte T AT D Zeigen Sie durch vollständige Induktion, dass A n T D n T gilt für

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (7 Punkte) Gegeben seien folgende Potenzreihen: ( 2) n n xn,

Stroppel Musterlösung , 180min. Aufgabe 1 (7 Punkte) Gegeben seien folgende Potenzreihen: ( 2) n n xn, Stroppel Musterlösung 0. 09. 03, 80min Aufgabe 7 Punkte) Gegeben seien folgende Potenzreihen: ) n fx) = n xn, gx) = n= + ) n n x+) n. 3 n= a) Bestimmen Sie jeweils den Konvergenzradius und den Entwicklungspunkt.

Mehr

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien

Mehr

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Mathematik für Informatiker und Softwaretechniker

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Mathematik für Informatiker und Softwaretechniker Apl. Prof. Dr. W.-P. Düll Fachbereich Mathematik Universität Stuttgart Klausur für Studierende der Fachrichtungen inf, swt Bitte unbedingt beachten: Bitte beschriften Sie jeden Ihrer Zettel mit Namen und

Mehr

Künzer Samstag, Mathematik für Wirtschaftswissenschaften. Lösung zur Klausur

Künzer Samstag, Mathematik für Wirtschaftswissenschaften. Lösung zur Klausur Künzer Samstag, 282 Aufgabe I Es ist f (x = ( x 2 e x2 /2 Mathematik für Wirtschaftswissenschaften Lösung zur Klausur Für x R ist f (x = genau dann, wenn x {, +} ist Somit sind dies die einzigen Flachstellen

Mehr

Probeklausur zur Analysis 2, SoSe 2017

Probeklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 21717 Fakultät 4 - Mathematik und Naturwissenschaften Prof N V Shcherbina Dr T P Pawlaschyk wwwkanauni-wuppertalde Probeklausur zur Analysis 2, SoSe 217 Hinweis Die Lösungen

Mehr

Quadratische Formen und Definitheit

Quadratische Formen und Definitheit Universität Basel Wirtschaftswissenschaftliches Zentrum Quadratische Formen und Definitheit Dr. Thomas Zehrt Inhalt: 1. Quadratische Formen 2. Quadratische Approximation von Funktionen 3. Definitheit von

Mehr

KLAUSUR. Analysis (E-Techniker/Mechatroniker/W-Ingenieure) Dr. habil. Sebastian Petersen Dr. Anen Lakhal. Version mit Lösungsskizzen

KLAUSUR. Analysis (E-Techniker/Mechatroniker/W-Ingenieure) Dr. habil. Sebastian Petersen Dr. Anen Lakhal. Version mit Lösungsskizzen KLAUSUR Analysis (E-Techniker/Mechatroniker/W-Ingenieure) 4.3.27 Dr. habil. Sebastian Petersen Dr. Anen Lakhal Version mit Lösungsskizzen Für jede Aufgabe gibt es Punkte. Zum Bestehen der Klausur sollten

Mehr

3. Approximation von Funktionen und Extremwertprobleme im R n

3. Approximation von Funktionen und Extremwertprobleme im R n 3. Approximation von Funktionen und Extremwertprobleme im R n Wie in D ist es wichtig Funktionen mit mehreren Variablen durch Polynome lokal approximieren zu können. Polynome lassen sich im Gegensatz zu

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

Klausur Wirtschaftsmathematik: Lösungshinweise

Klausur Wirtschaftsmathematik: Lösungshinweise Klausur Wirtschaftsmathematik: Lösungshinweise Prüfungsdatum: 4. Januar 4 Prüfer: Etschberger/Jansen/Nebel Studiengang: IM und BW Aufgabe 8 Punkte a) Gegeben sei die invertierbare Matrix F mit F D @ A

Mehr

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt.

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt. Aufgabe Zeigen Sie mittels vollständiger Induktion, dass für alle n N j 2 j n(n + )(2n + ) gilt. Der Beweis wird mit Hilfe vollständiger Induktion geführt. Wir verifizieren daher zunächst den Induktionsanfang,

Mehr

4x 1 + 2x 2 + 3x 3 = 1, x 2 + ax 3 = 1, ax 2 + x 3 = a 1. 0 a 1 1 Wir führen nun den Gauÿalgorithmus durch:

4x 1 + 2x 2 + 3x 3 = 1, x 2 + ax 3 = 1, ax 2 + x 3 = a 1. 0 a 1 1 Wir führen nun den Gauÿalgorithmus durch: Aufgabe 8 Punkte Bestimmen Sie die Lösungsmenge in R in Abhängigkeit von a R des folgenden linearen Gleichungssystems: 4x + x + 3x 3 =, x + ax 3 =, ax + x 3 =. Lösung. Wir schreiben das lineare Gleichungssystem

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Knarr 07. 09. 009 Klausur zur Höheren Mathematik / für Ingenieurstudiengänge Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 80 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhändig

Mehr

Gottwald, Künzer, Ritter Wintersemester 2018/19. Mathematik für Wirtschaftswissenschaftler. Test 3

Gottwald, Künzer, Ritter Wintersemester 2018/19. Mathematik für Wirtschaftswissenschaftler. Test 3 Name: Gottwald, Künzer, Ritter Wintersemester 2018/19 Mathematik für Wirtschaftswissenschaftler Test Bearbeitungszeit: 60 Minuten. Erlaubte Hilfsmittel: 4 eigenhändig handgeschriebene Seiten DIN A4. Bewertung:

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

(n + 1)2. + n. ((n 1) + 1)2. = (n2 + 2n) A = 21 13

(n + 1)2. + n. ((n 1) + 1)2. = (n2 + 2n) A = 21 13 Universität Stuttgart Fachbereich Mathematik Prof. Dr. E. Teufel, Dr. N. Röhrl, J. Spreer MUSTERLÖSUNG FÜR KLAUSUR Mathematik inf / sotech / tpinf Aufgabe 1 (4 Punkte) Zeigen Sie, dass für alle n gilt

Mehr

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n.

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n. Blatt 1 V 1 Grenzwerte von Folgen Aufgabe V1 Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2 ( n! a) lim n 2n n 3 b) lim n n 7 c) lim 1 1 ) 3n n n Marco Boßle

Mehr

KLAUSUR. Analysis (E-Technik/Mechatronik/W-Ing) Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf

KLAUSUR. Analysis (E-Technik/Mechatronik/W-Ing) Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf KLAUSUR Analysis (E-Technik/Mechatronik/W-Ing).9.7 Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Unterschrift: In der Klausur können Sie insgesamt

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1.

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1. Apl. Prof. Dr. N. Knarr Musterlösung.9.6, min Aufgabe ( Punkte) Lösen Sie das folgende Anfangswertproblem: y = e y cos(x), y() =. Sei y : I R die maximale Lösung des gegebenen Anfangswertproblems (diese

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1.

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1. Name: Matrikel-Nr.: 1 Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung R 3 R 2, x 1 f : x 1 + e x2 2 sin(x3 ) x = x 2 e x 1 (1 + x 2 1 + x, 2x 3 )

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Klausur Wirtschafts- und Finanzmathematik Lösungshinweise

Klausur Wirtschafts- und Finanzmathematik Lösungshinweise Klausur Wirtschafts- und Finanzmathematik Lösungshinweise Prüfungsdatum: 8. Januar 06 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Punkte: 5, 5, 5, 5, 5, 5 Summe der Punkte: 90 Aufgabe 5

Mehr

1 Übungsaufgaben zu Kapitel 1

1 Übungsaufgaben zu Kapitel 1 Übungsaufgaben zu Kapitel. Übungsaufgaben zu Abschnitt... Aufgabe. Untersuchen Sie die nachstehend definierten Folgen ( a k ) k und ( b k ) k auf Konvergenz und bestimmen Sie ggf. den jeweiligen Grenzwert:

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (5 Punkte) Gegeben sei eine lineare Abbildung α: R 4 R 3 : x Ax mit. . Weiter sei b = A =

Stroppel Musterlösung , 180min. Aufgabe 1 (5 Punkte) Gegeben sei eine lineare Abbildung α: R 4 R 3 : x Ax mit. . Weiter sei b = A = Stroppel Musterlösung 4. 9., 8min Aufgabe 5 Punkte Gegeben sei eine lineare Abbildung α: R 4 R 3 : x Ax mit 4 A =. Weiter sei b = 3 gegeben. Entscheiden Sie jeweils, ob die durch gekennzeichneten freien

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1 Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: 1 1 0 2 b 1 1 2 4 1 1 4 6 x = 1 1. 2 2 2a 2 3a 1 (a) Bringen Sie das lineare Gleichungssystem auf Treppenform. (b) Für welche

Mehr

Analysis I & II Lösung zur Basisprüfung

Analysis I & II Lösung zur Basisprüfung FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die

Mehr

Klausur DI/LA F 2006 LA : 1

Klausur DI/LA F 2006 LA : 1 Klausur DI/LA F 26 LA : Aufgabe (4+2=6 Punkte): Gegeben seien die Matrix A und der Vektor b mit λ A = λ und b = λ a) Bestimmen Sie die Werte λ R, für welche das Gleichungssystem Ax = b genau eine, keine

Mehr

Tutorium: Analysis und lineare Algebra. Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen

Tutorium: Analysis und lineare Algebra. Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen Tutorium: Analysis und lineare Algebra Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Die Regeln von de l

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Mathematik für Anwender I. Klausur

Mathematik für Anwender I. Klausur Fachbereich Mathematik/Informatik 27. März 2012 Prof. Dr. H. Brenner Mathematik für Anwender I Klausur Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften

BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften Musterl osung BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften Analysis II Klausur WS 211/212 Prof. Dr. Hartmut Pecher 3.2.212, 9:15 Uhr Name Matr.Nr. Studienfach Fachsemester

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei die Matrix

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei die Matrix Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei die Matrix 1 1 1 A = 3 3 3 2 2 2 (a) Bestimmen Sie Rang(A), Kern(A) und Bild(A). Ist A invertierbar? Geben Sie zwei verschiedene rechte Seiten b 1, b 2 an, so

Mehr

Tutorium: Analysis und lineare Algebra

Tutorium: Analysis und lineare Algebra Tutorium: Analysis und lineare Algebra Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Die Regeln von de l

Mehr

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z Aufgabe Zeigen Sie mit vollständiger Induktion: Für alle n N gilt (8 Punkte) n ( + z 2j ) = 2n+, wobei z C, z, eine komplexe Zahl ist Lösung [8 Punkte] Induktionsanfang: n = : ( + z 2j ) = ( + z 2 ) =

Mehr

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen 1. Bestimmen Sie für die folgenden Funktionen zunächst die kritischen Stellen und entscheiden

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Übungen zur Analysis II Blatt 27 - Lösungen

Übungen zur Analysis II Blatt 27 - Lösungen Prof. Dr. Torsten Wedhorn SoSe 22 Daniel Wortmann Übungen zur Analysis II Blatt 27 - Lösungen Aufgabe 5: 6+6+6* Punkte Bestimme alle lokalen Extrema der folgenden Funktionen: a b c* f : R 3 R g : R 2 R

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Vorbereitung für die Prüfung Mathematik II für Informatiker

Vorbereitung für die Prüfung Mathematik II für Informatiker Technische Universität Ilmenau SS 2010 Institut für Mathematik Inf Prof. Dr. Michael Stiebitz Vorbereitung für die Prüfung Mathematik II für Informatiker 1 Lineare Algebra Aufgabe 1 Schauen Sie sich die

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3 4 5 6 -

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. W. Farkas ETH Zürich, August 017 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 3 4 5 6 Total Bitte

Mehr

Mathematik für Anwender I. Beispielklausur I mit Lösungen

Mathematik für Anwender I. Beispielklausur I mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

3 2 = 3 = 6. = lim. ln(n) ln(n+1) = ln(3) ln(n) = 1

3 2 = 3 = 6. = lim. ln(n) ln(n+1) = ln(3) ln(n) = 1 Stroppel Musterlösung.0.06, 80min Aufgabe 5 Punkte Bestimmen Sie die folgenden Grenzwerte. Falls die untersuchte Reihe nicht konvergiert, begründen Sie dies. 3 a n b c n! 3 n ln n n+ lnn+ lnn a Umformen

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 26 A Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar

Mehr

Klausur Mathematik II

Klausur Mathematik II Technische Universität Dresden. Juli 8 Institut für Numerische Mathematik Prof. Dr. G. Matthies, Dr. M. Herrich Klausur Mathematik II Modul Dierentialgleichungen und Dierentialrechnung für Funktionen mehrerer

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 014 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die

Mehr

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Höhere Mathematik Teil

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Höhere Mathematik Teil Prof. Dr. Guido Schneider Fachbereich Mathematik Universität Stuttgart Klausur für Studierende der Fachrichtungen el, kyb, mecha, phys, tpel Bitte unbedingt beachten: Bitte beschriften Sie jeden Ihrer

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Lösungsvorschlag Klausur MA9802

Lösungsvorschlag Klausur MA9802 Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 26/7 (2.3.27). (a) Bestimmen Sie die kartesische Form von z = 5i 2i und z 2 = ( ) 9 3 2 2 i. (b) Bestimmen Sie sämtliche

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 2013/14 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7

Mathematik für Wirtschaftswissenschaftler im WS 2013/14 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7 Mathematik für Wirtschaftswissenschaftler im WS 203/4 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7 Aufgabe 27 Sei eine lineare Abbildung f : R 4 R 3 gegeben durch f(x, x 2, x 3 ) = (2 x 3 x 2

Mehr

Mathematik IT 3 (Analysis)

Mathematik IT 3 (Analysis) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Mathematik IT 3 (Analysis für die Studiengänge Informatik, IMT und ebusiness im Wintersemester 015/016 Geben

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Übungs- und Scheinklausur

Höhere Mathematik II für die Fachrichtung Physik. Übungs- und Scheinklausur Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 15.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc., Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 24. Mai 2013 *Aufgabe 1. Bestimmen Sie für die folgenden Funktionen jeweils die Gleichung der Tangentialebene für alle Punkte auf der Fläche. Wann ist die Tangentialebene

Mehr

Prüfungklausur HM 1 (Ing), Lösungshinweise

Prüfungklausur HM 1 (Ing), Lösungshinweise Aufgabe : a Welche komplexen Zahlen erfüllen die Gleichung z + i z =? Skizzieren Sie die Lösungsmenge in der Gaussschen Zahlenebene. 6 Punkte b Für welche komplexen Zahlen z gilt (z + i = 8 e π i? Die

Mehr

Schein-Klausur HM II F 2003 HM II : S-1

Schein-Klausur HM II F 2003 HM II : S-1 Schein-Klausur HM II F 3 HM II : S- Aufgabe : Berechnen Sie die folgenden Grenzwerte: a) lim x ln ( + x) x b) lim (coshx) sin x Lösung: Wir verwenden in beiden Fällen die Regel von de l Hospital. a) Es

Mehr

, die Folge (T n (f,x,0)) n N konvergiert.

, die Folge (T n (f,x,0)) n N konvergiert. König.08.05 Klausur zur Höheren Mathematik / für el, kyb, mech, phys Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 80 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhändig handbeschrieben.

Mehr

Variante A Musterlösung

Variante A Musterlösung RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lehrstuhl II für Mathematik Bachelor-Prüfung Höhere Mathematik II / III Variante A Musterlösung Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind

Mehr

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4 Prof. Dr. B. Billhardt Wintersemester 4/5 Klausur zur Vorlesung Höhere Mathematik II (BNUW) 4.3.5 Aufgabe (a) Ermitteln Sie die Nullstellen des Polynoms p(z) = z 4 4z 3 + 3z + 8z. Tipp: p( + i) =. (b)

Mehr

Technische Universität München. Probeklausur Lösung SS 2012

Technische Universität München. Probeklausur Lösung SS 2012 Technische Universität München Andreas Wörfel & Carla Zensen Ferienkurs Analysis für Physiker Probeklausur Lösung SS Aufgabe Differenzierbarkeit / Punkte: [4,, 3, 4] Es sei f(x, y) = sin(x3 + y 3 ) x +

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 5.9.7 Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (6+8+6 Punkte) a) Zeigen Sie durch Induktion nach n N: n (k ) = n k= b) Stellen Sie die folgenden Mengen

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 3. Mai 203 *Aufgabe. Bestimmen Sie alle Punkte (x 0, y 0 ), an denen der Gradient der Funktion f(x, y) = (xy 2 8)e x+y Null ist. Untersuchen Sie, ob diese Punkte lokale

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Übungsaufgaben Aufgaben zur Wiederholung Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 06/07 a) Stellen Sie die Gleichung a b 3+c = a +c, a, b > 0, nach

Mehr

a) Wir verwenden Partialbruchzerlegung (PBZ). Der Nenner des Integranden ist x 4 + x 2 = x 2 (x 2 + 1)

a) Wir verwenden Partialbruchzerlegung (PBZ). Der Nenner des Integranden ist x 4 + x 2 = x 2 (x 2 + 1) Aufgabe 1 a) Wir verwenden Partialbruchzerlegung (PBZ). Der Nenner des Integranden ist x 4 + x 2 = x 2 (x 2 + 1) und hat somit bei x = eine doppelte und bei x = ±i zwei nicht-reelle Nullstellen. Damit

Mehr

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8. Übungsblatt. ). 12x 3 Die Hessematrix von f ist gegeben durch H f (x, y) =

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8. Übungsblatt. ). 12x 3 Die Hessematrix von f ist gegeben durch H f (x, y) = Karlsruher Institut für Technologie (KIT Institut für Analysis Priv-Doz Dr P C Kunstmann Dipl-Math D Roth SS 0 7060 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8 Übungsblatt

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Modulprüfung

Höhere Mathematik II für die Fachrichtung Physik. Modulprüfung Institut für Analysis SS7 PD Dr. Peer Christian Kunstmann 8.9.7 Höhere Mathematik II für die Fachrichtung Physik Modulprüfung Aufgabe [5+5= Punkte] (a) Zeigen Sie, dass die Matrix α A α =, α. genau dann

Mehr

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1.

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1. Stroppel Musterlösung 4..4, 8min Aufgabe 3 Punkte) Sei f n ) n N die Fibonacci-Folge, die durch f :=, f := und f n+ := f n +f n definiert ist. Beweisen Sie durch vollständige Induktion, dass für alle n

Mehr