Partielle Integration
|
|
|
- Calvin Koch
- vor 9 Jahren
- Abrufe
Transkript
1 Partielle Integration 1 Motivation Eine der wichtigsten Methoden der Integralrechnung ist die partielle Integration. Mit ihr lassen sich Funktionen integrieren, die ein Produkt zweier Funktionen sind. Einige Beispiele hierfür sind f 1 (x) = x sin(x) oder f 2 (x) = x 2 e x. Aber selbst die Stammfunktion von f 3 (x) = ln(x) lässt sich durch die partielle Integration sehr einfach finden. 2 Partielle Integration 2.1 Von der Produktregel zur partiellen Integration Aus der Produktregel der Differentialrechnung einer Funktion der Form f(x) = u(x) v(x) wollen wir die Formel der partiellen Integration gewinnen: (u(x) v(x)) = u (x) v(x) + u(x) v (x) (u(x) v(x)) u(x) v (x) = u (x) v(x) u(x) v(x) u(x) v (x)dx = u (x) v(x)dx u (x) v(x)dx = u(x) v(x) u(x) v (x)dx Restintegral u(x) v (x) Integration: dx also Die letzte Gleichung ist die Formel der partiellen Integration. Der Subtrahend u(x) v (x)dx wird als Restintegral bezeichnet. 2.2 Beispiel: f(x) = x ln(x) Gegeben ist die Funktion f(x) = x ln(x). Gesucht wird ihre Stammfunktion, also die Lösung des unbestimmten Integrals F (x) = f(x)dx = x ln(x)dx. Wir lösen dieses Problem mit der partiellen Integration: 1. u v-bestimmung: Zunächst wählen wir dafür: u (x) = x und v(x) = ln(x). 2. uv -Berechnung: Um die Formel nutzen zu können, benötigen wir eine Stammfunktion von u (x) = x, nach Potenzregel der Integralrechnung, u(x) = 1 2 x2, und die Ableitung von v(x) = ln(x), nach der Inversionsregel der Differentialrechnung, v (x) = 1 x. 1
2 3. Einsetzen in die Formel der partiellen Integration liefert: x ln(x)dx = x2 ln(x) 2 x2 1 x dx = x2 ln(x) 2 xdx 4. Restintegral auswerten: Durch Berechnung des Restintegrals 1 2 xdx = 1 4 x2 erhalten wir eine Stammfunktion F (x): F (x) = 1 2 x2 ln(x) 1 4 x2 5. Integrationskonstante addieren: Da eine Stammfunktion nur bis auf eine Konstante C genau bestimmt werden kann, müssen wir das erhaltene Ergebnis mit einer Integrationskonstanten C addieren. F (x) = 1 2 x2 ln(x) 1 4 x2 + C Überprüfen wir unser Ergebnis, indem wir die Stammfunktion ableiten: F (x) = ( 1 2 x2 ln(x) 1 4 x2 +C) = x ln(x)+1 2 x2 1 x 21 4 x+ = x ln(x)+1 2 x x = x ln(x) = f(x) 2 Die Ableitung der Stammfunktion ergibt die Ausgangsfunktion f(x). 3 Methode: Integration mit Hilfe der partiellen Integration Aufgabenstellung: Bestimme die Stammfunktion der Funktion f(x) = u (x) v(x). 1. u v-bestimmung 2. uv -Berechnung 3. Einsetzen 4. Restintegral auswerten 5. Integrationskonstante addieren (Dieser Schritt wird bei der Berechnung bestimmter Integrale weggelassen.) Beispiel 1: Bestimme die Stammfunktion der Funktion f(x) = x e x. 1. u v-bestimmung: f(x) = e x x u (x) = e x v(x) = x 2. uv -Berechnung: u(x) = e x v (x) = 1 2
3 3. Einsetzen: e x xdx = e x x e x 1dx = x e x e x dx 4. Restintegral auswerten: F (x) = x e x e x dx = x e x e x 5. Integrationskonstante addieren: F (x) = x e x e x + C Beispiel 2: Bestimme die Stammfunktion der Funktion f(x) = sin 2 (x). 1. u v-bestimmung: f(x) = sin(x) sin(x) u (x) = sin(x) v(x) = sin(x) 2. uv -Berechnung: u(x) = cos(x) 3. Einsetzen: sin(x) sin(x)dx = cos(x) sin(x) v (x) = cos(x) ( cos(x)) cos(x)dx = cos(x) sin(x)+ cos 2 (x)dx 4. Restintegral auswerten: F (x) = cos(x) sin(x) + cos 2 (x)dx F (x) = cos(x) sin(x) + (1 sin 2 (x))dx F (x) = cos(x) sin(x) + x sin 2 (x)dx F (x) = cos(x) sin(x) + x F (x) 2F (x) = cos(x) sin(x) + x : 2 F (x) = 1 ( cos(x) sin(x) + x) 2 5. Integrationskonstante addieren: F (x) = 1 ( cos(x) sin(x) + x) + C 2 + F (x) Bemerkungen: Bei manchen Funktionen muss die partielle Integration öfter angewandt werden, um das Integral zu lösen. Die richtige Wahl von u(x) und v(x) ist wichtig, da diese massiv das Restintegral beeinflussen. 3
4 4 Übungsaufgaben 4.1 Unbestimmte Integrale Bestimme die Stammfunktion folgender Funktionen: 1. f 1 (x) = x sin(x) 2. f 2 (x) = sin(x) cos(x) 3. f 3 (x) = ln(x) Lösung: 1. f 1 (x) = x sin(x) F 1 (x) = x sin(x)dx = cos(x) x ( cos(x)) 1dx F 1 (x) = cos(x) x + cos(x)dx = cos(x) x + sin(x) mit Integrationskonstanten addieren F 1 (x) = cos(x) x + sin(x) + C 2. f 2 (x) = sin(x) cos(x) F 2 (x) = sin(x) cos(x)dx F 2 (x) = sin(x) sin(x) sin(x) cos(x)dx F 2 (x) = sin 2 (x) sin(x) cos(x)dx F 2 (x) = sin 2 (x) F 2 (x) + F 2 (x) 2 F 2 (x) = sin 2 (x) : 2 F 2 (x) = 1 2 sin2 (x) mit Integrationskonstanten addieren F 2 (x) = 1 2 sin2 (x) + C Hinweis: Alternativ hätte man auch zuerst sin(x) integrieren und cos(x) ableiten können. Man kommt dann auf das Ergebnis F 2 (x) = 1 2 cos2 (x) + C. Beide Ergebnisse sind richtig, was man leicht durch Ableiten überprüfen kann. Sind beide Lösungen auch äquivalent? Um die Antwort auf diese Frage geben zu können, muss beachtet werden, dass die Stammfunktion bis auf eine Konstante genau bestimmt werden kann. (Daher bei Stammfunktionen immer eine Integrationskonstante addieren!) Mit dieser Information ist die Antwort klar: Ja. Wegen = 1 2 sin2 (x)+c = 1 2 (1 cos2 (x))+c = cos2 (x)+c = 1 {}} C { 2 cos2 (x)+ C = 2 cos2 (x)+ C 4
5 unterscheiden sich die beiden Lösungen lediglich um eine Integrationskonstante. Da die Stammfunktion aber wie beschrieben nur bis auf eine Konstante genau bestimmt werden kann, sind beide Lösungen äquivalent. 3. f 3 (x) = ln(x) F 3 (x) = ln(x)dx = 1 ln(x)dx F 3 (x) = x ln(x) x 1 x dx F 3 (x) = x ln(x) 1dx = x ln(x) x mit Integrationskonstanten addieren F 3 (x) = x ln(x) x + C 4.2 Bestimmte Integrale I Berechne die bestimmten Integrale: π x cos(x)dx 1 tan(x) x e x dx a Hinweis: Für punktsymmetrische (ungerade) Funktionen f(x) gilt: f(x)dx = Lösung: a π x cos(x)dx) 1 π x cos(x)dx = sin(x) x tan(x) x e x dx π π sin(x)dx [ ] π = sin(x) x + cos(x) = [ 1 ( + 1)] = 2 1 tan(x) x e x dx = 1 1 tan(x)dx x e x dx 5
6 (a) 1 tan(x)dx: Da dieses Integral allein mit der partiellen Integration nicht gelöst werden kann, nutzen wir den Hinweis und testen die Funktion f(x) = tan(x) auf Punktsymmetrie: f( x)? = f(x) tan( x) = tan(x) sin( x) cos( x) = sin(x) cos(x) sin(x) cos(x) = sin(x) cos(x) f( x) = f(x) cos( x) = cos(x), sin( x) = sin(x) f(x) = tan(x) x ist damit punktsymmetrisch, damit gilt nach dem Hinweis: 1 tan(x)dx = (b) 1 x e x dx: 1 x e x dx = e x x = 1 1 e x 1dx = x e x 1 1 e x dx [ ] 1 x e x e x = [e e ( e e )] = 2e = 2 e (c) Gesamt: 1 tan(x) x e x dx = 2 e = 2 e 4.3 Bestimmte Integrale II: Das Integral: Untersuche das bestimmte Integral x n e x dx, n N: x n e x dx 1. Setze die Ordnung n = und löse das bestimmte Integral. 2. Setze die Ordnung n = 1 und löse das bestimmte Integral. 3. Setze die Ordnung n = 2 und löse das bestimmte Integral. 6
7 4. Setze die Ordnung n = 3 und löse das bestimmte Integral. 5. Setze die Ordnung n = 4 und löse das bestimmte Integral. 6. Setze die Ordnung n = 5 und löse das bestimmte Integral. 7. Löse das bestimmte Integral x n e x dx, n N ganz allgemein. Lösung: Untersuche das bestimmte Integral x n e x dx, n N: 1. Setze die Ordnung n = und löse das bestimmte Integral. x e x dx = e x dx = [ e x ] = () = 1 2. Setze die Ordnung n = 1 und löse das bestimmte Integral. x 1 e x dx = x e x dx = e x x = ( )= 3. Setze die Ordnung n = 2 und löse das bestimmte Integral. x 2 e x dx = x 2 e x dx = e x x 2 = ( )= 4. Setze die Ordnung n = 3 und löse das bestimmte Integral. x 3 e x dx = x 3 e x dx = e x x 3 = ( )= ( e x ) 1dx = ( e x ) 2xdx = 2 ( e x ) 3x 2 dx = 3 5. Setze die Ordnung n = 4 und löse das bestimmte Integral. x 4 e x dx = x 4 e x dx = e x x 4 = ( )= ( e x ) 4x 3 dx = 4 e x dx = 1 =1 x e x dx = 2 1 = 2 =1 x 3 e x dx = = 3! =2 1 x 4 e x dx = 4 3! = 4! =3 2 1=3! 7
8 6. Setze die Ordnung n = 5 und löse das bestimmte Integral. x 5 e x dx = x 5 e x dx = e x x 5 = ( )= ( e x ) 5x 4 dx = 5 7. Löse das bestimmte Integral x n e x dx, n N ganz allgemein. x n e x dx = x n e x dx = e x x n = ( )= ( e x ) n x n dx = n x 4 e x dx = 5 4! = 5! =4! x n e x dx = n (n)! = n! =(n)! Die Durchführung der partiellen Integration in der Ordnung n liefert den Faktor n multpliziert mit dem Integral der Ordnung n 1. Dieses Integral der Ordnung n 1 wird dann ein Faktor n 1 multipliziert mit dem Integral der Ordnung n 2 liefern usw. Sobald die Ordnung erreicht wird, erhält man nurnoch einen Faktor! = 1. 8
Kettenregel. 1 Motivation. 2 Die Kettenregel. 2.1 Beispiel: f(x) = ( 2 x 2) 3
Kettenregel 1 Motivation Eine sehr praktische Ableitungsregel ist die sogenannte Kettenregel. Sie ermöglicht kompliziertere Funktionen, etwa verschachtelte Funktionen wie f 1 x = sin cosx 2 oder f 2 x
Übung 13. Die Lösungen a) Wir schreiben den Tangens als das Verhältnis von Sinus und Cosinus. tan(x)dx =
Übung 3 Aufgabe 48) Integrieren Sie die folgenden Funktionen a) tan(x)dx b) e x cos(x)dx c) +ax dx Die Lösungen a) Wir schreiben den Tangens als das Verhältnis von Sinus und Cosinus. tan(x)dx = sin(x)
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 1. Dezember 21 1 Integralrechnung Flächeninhalt Stammfunktion Rechenregeln 2 Dichten von Erwartungswert und Varianz
Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele
Grundkurs Höhere Mathematik I (für naturwissenschaftliche Studiengänge) Beispiele Prof. Dr. Udo Hebisch Diese Beispielsammlung ergänzt das Vorlesungsskript und wird ständig erweitert. 1 DETERMINANTEN 1
Integrieren und Differenzieren
Integrieren und Differenzieren Beispiele und Übungen Dieses Hand-Out ist fad. Es enthält nur eine Liste an Beispielen und eine Liste an Übungen. Meine Empfehlung ist: Lies dir die Beispiele durch, mache
8. Übungsblatt zur Mathematik I für Chemiker
Fachbereich Mathematik PD Dr. P. Ne WS 007/008 6.1.007 8. Übungsblatt zur Mathematik I für Chemiker Zur Erinnerung, die Formel für die Taylorreihe um die Stelle x 0 lautet f(x) n0 f (n) (x 0 ) (x x 0 )
Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS
Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS WS 0/0 Blatt 7. Bestimmen Sie eine Stammfunktion von sinx 4 und für alle n N π π sin nxdx. Lösung. Die Rekursionsformel lautet sinx n
d dy f 1 (y) = 1 d dy x = 1 (f 1 ) (y) Ein bekannter Satz zur Inversionsregel lautet: Ableitung = 1 durch Ableitung der Umkehrfunktion.
Inversionsregel Motivation Eine eher sonderbare, jedoch sehr praktische Ableitungsregel, gerade beim Ableiten von Arkusfunktionen stellt die sogenannte Inversionsregel dar. Sie ermöglicht es, eine Funktion
13. WEITERE INTEGRATIONSMETHODEN
06 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch
= 3 e e x 1 + 2x 2. + x 2. = x. x 1 = 5 x 2 = 2
Lösungsvorschläge zu Blatt 7: ) x ( ) 3 3 e + e ( ) ( ) ( )! x x + x + x x + x x x Wir haben hier also zwei verschiedene Darstellungen für einen Vektor, da zwei verschiedene Basen verwendet werden. b b
2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also
Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx
Lösung zur Übung 8 vom
Lösung zur Übung 8 vom 02.2.204 Aufgabe 29 Leiten Sie die nachfolgenden Funktionen ab: a) y(x) = cos(x) c) y(x) = cos 3 (x) e) y(x) = x3 b) y(x) = cos 2 (x)e x d) y(x) = tanh(x) f) y(x) = cos(x) + tan(x)
Klausurvorbereitung Höhere Mathematik Lösungen
Klausurvorbereitung Höhere Mathematik Lösungen Yannick Schrör Christian Mielers. Februar 06 Ungleichungen Bestimme die Lösungen für folgende Ungleichungen. x+ > x + x + Fall : x, x + > x + 6 Lösung im
Mathematik 3 für Informatik
Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4
Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12
Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3
Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007
Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.
Klausur zur Mathematik für Maschinentechniker
SS 04. 09. 004 Klausur zur Mathematik für Maschinentechniker Apl. Prof. Dr. G. Herbort Aufgabe. Es sei f die folgende Funktion f(x) = 4x 4x 9x 6 x (i) Was ist der Definitionsbereich von f? Woistf differenzierbar,
Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker
Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme
Lineare Differentialgleichungen 1. Ordnung
Lineare Differentialgleichungen 1. Ordnung Eine lineare Differentialgleichung 1. Ordnung hat folgende Gestalt: +f() = r(). Dabei sind f() und r() gewisse, nur von abhängige Funktionen. Wichtig: sowohl
Mathematischer Vorkurs Lösungen zum Übungsblatt 3
Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester [email protected] Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)
Lösungen der Aufgaben zu Kapitel 10
Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist
Ü b u n g s b l a t t 11
Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte
Prof. Dr. Rolf Linn
Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen
Differenzialrechnung
Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =
13. WEITERE INTEGRATIONSMETHODEN
22 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch
Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test
Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1
Anleitung zu Blatt 4, Analysis II
Fachbereich Mathematik der Universität Hamburg Dr. Hanna Peywand Kiani Anleitung zu Blatt 4, Analysis II SoSe 1 Potenzreihen III, Integration I Die ins Netz gestellten Kopien der Anleitungsfolien sollen
Differential- und Integralrechnung
Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er
Übung (13) dx 3, 2x 1 dx arctan(x3 1).
Übung (3) () Bilden Sie folgende Ableitungen: d xe x dx x ln x, d dx +cos (x), d d dx 3, x dx arctan(x3 ). () Geben Sie die Näherung. Ordnung für den Ausdruck / p v /c für v
www.mathe-aufgaben.com
Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral
Integrationsübungen mit Lösungen
Integrationsübungen mit Lösungen Wolfgang Kippels 12. Juli 2017 Inhaltsverzeichnis 1 Vorwort 2 2 Einleitung 3 3 Aufgaben 4 3.1 Aufgabe 1................................... 4 3.2 Aufgabe 2...................................
Ferienkurs Analysis 1 für Physiker Integration - Aufgaben
Ferienkurs Analysis für Physiker Integration - Aufgaben Jonas Funke 2.3.29-6.3.29 Bemerkung Bemerkung Es sollten zuerst die Aufgaben, die nicht mit einem * versehen sind bearbeitet werden. Die Aufgaben
8.2. Integrationsregeln
8.. Integrationsregeln Jeder Differentiationsregel entspricht wegen der Beziehung F ( x ) f( x ) F( x ) + C f( x ) dx eine Integrationsregel. Wir kennen schon die Additionsregel c f( x ) + d g( x )
Lösungen der Aufgaben zu Kapitel 9
Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x
4.1 Stammfunktionen: das unbestimmte Integral
Kapitel 4 Integration 4. Stammfunktionen: das unbestimmte Integral Die Integration ist die Umkehrung der Differentiation: zu einer gegebenen Funktion f(x) sucht man eine Funktion F (x), deren Ableitung
Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit x f(x) = (x + 5) e. Aufgabe : ( VP) Gegeben ist die Funktion
Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.
Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden
Abitur 2012 Mathematik Infinitesimalrechnung I
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 212 Mathematik Infinitesimalrechnung I Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion
Integrationsmethoden
Integrationsmethoden W. Kippels 4. Mai 017 Inhaltsverzeichnis 1 Einleitung 3 Die Partielle Integration 3.1 Mathematischer Hintergrund......................... 3. Beispiel 1...................................
Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester
Mathematik für Betriebswirte II (Analysis). Klausur Sommersemester 04 5.07.04 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:................................................................... Vorname:....................................................................
Integralrechnung. Petra Grell, WS 2004/05
Integralrechnung Petra Grell, WS 2004/05 1 Einführung Bei den Rechenoperationen, die wir im Laufe der Zeit kennengelernt haben, kann man feststellen, dass es immer eine Umkehrung gibt: + : log a aˆ So
6 Gewöhnliche Differentialgleichungen
6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige
Teil 2. Ganzrationale und Gebrochen rationale Funktionen. Unbestimmte Integrale und Stammfunktionen auch mit Substitution
Teil Ganzrationale und Gebrochen rationale Funktionen ANALYSIS Einführung in die Integralrechnung Unbestimmte Integrale und Stammfunktionen auch mit Substitution Kurze Theorie und dann Viel Praxis Datei
Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005
Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................
Ableitung und Steigung. lim h
Ableitung und Steigung Aufgabe 1 Bestimme die Ableitung der Funktion f(x) = x über den Differentialquotienten. f (x f '(x ) lim h h) f (x h ) (x lim h h) h x x lim h hx h h x h(x lim h h h) lim x h h x
3 Differenzialrechnung
Differenzialrechnung 3 Differenzialrechnung 3.1 Ableitungsregeln Übersicht Beispiel Vorgehen Potenzfunktionen f(x) = x 4 f (x) = 4 x 3 f(x) = x f (x) = 1 x 0 = 1 f(x) = x Hochzahl f (x) = Hochzahl x Hochzahl
Tutorium Mathematik II, M Lösungen
Tutorium Mathematik II, M Lösungen 24. Mai 2013 *Aufgabe 1. Bestimmen Sie für die folgenden Funktionen jeweils die Gleichung der Tangentialebene für alle Punkte auf der Fläche. Wann ist die Tangentialebene
Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 10. Übungsblatts
Integral- und Differentialrechnungen für USW Lösungen der Beispiele des. Übungsblatts. Flächeninhalt unter einer Kurve: (a) Das bestimmte Integral von y(x) x zwischen x und x ist x dx x + + x ( ) x / (b)
Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University
Priv. Doz. Dr. A. Wagner Aachen, 9. September 6 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 6, RWTH Aachen University Intervalle, Supremum und Infimum Für a, b R, a < b nennen wir eine
Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University
Dr. O. Wittich Aachen,. September 7 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 7, RWTH Aachen University Intervalle, Beschränktheit, Maxima, Minima Aufgabe Bestimmen Sie jeweils, ob
Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya
Substitution bei bestimmten Integralen -E Ma Lubov Vassilevskaya -E Ma Lubov Vassilevskaya Substitution bei bestimmten Integralen: Lernziele Was wir wissen: Wann berechnet man Integrale mit Hilfe einer
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 25. November 2010 1 Differentialrechnung Kurvendiskussion Trigonometrische Funktionen Bedeutung der Ableitung in
Lösungsvorschläge zur Klausur für bau, fmt, IuI, mach, tema, umw, verf und zugehörige Technikpädagogik
Prüfung in Höhere Mathematik 3 9. März 21 Lösungsvorschläge zur Klausur für bau, fmt, IuI, mach, tema, umw, verf und zugehörige Technikpädagogik Aufgabe 1: (7 Punkte Gegeben ist die Menge G : {(x,y R 2
Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.
Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ
7. Übungsblatt Aufgaben mit Lösungen
Aufgabe : Gegeben sei die Differentialgleichung 7. Übungsblatt Aufgaben mit Lösungen y x) 2 x y x) + 5 x 2 y x) 5 x yx) = 0 für x > 0. Prüfen Sie, ob die folgenden Funktionen Lösungen dieser Differentialgleichung
Klausur Mathematik I
Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.
UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009
UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe
Lösungsvorschläge zur Klausur
Prüfung in Höhere Mathematik 3 6 Februar 3 Lösungsvorschläge zur Klausur für bau, ernen, fmt, IuI, mach, tema, umw, verf, geod und so weiter ; Aufgabe : Punkte Die Fläche T im R 3 sei gegeben als T : {x,y,z
Vorkurs Mathematik Übungen zu Kurven im R n
Vorkurs Mathematik Übungen zu urven im R n Als bekannt setzen wir die folgende Berechnung voraus: Sei f : [a, b] R eine urve im R. Die Länge L der urve berechnet sich durch L b a f t dt urven in R Aufgabe.
Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW
Universität Bonn, Institut für Angewandte Mathematik Dr. Antje Kiesel WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW 08.03.2013 Matrikelnummer Platz Name Vorname 1 2 3 4 5 6
Die Differentialgleichung :
Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen
Integralrechnung. integral12.pdf, Seite 1
Integralrechnung Beispiel Zusammenhang WegGeschwindigkeit: Ist F (t) der zur Zeit t zurückgelegte Weg und v(t) die Geschwindigkeit, so ist v(t) = F (t) Geometrisch: Steigung der Tangente an der Kurve y
11 Spezielle Funktionen und ihre Eigenschaften
78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen
Differential- und Integralrechnung
Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik
Musterlösung Serie 2
D-ITET Analysis III WS 13 Prof. Dr. H. Knörrer Musterlösung Serie 1. Wir wenden die Methode der Separation der Variablen an. Wir schreiben u(x, t = X(xT (t und erhalten Daraus ergeben sich die Gleichungen
KOMPETENZHEFT ZU STAMMFUNKTIONEN
KOMPETENZHEFT ZU STAMMFUNKTIONEN 1. Aufgabenstellungen Aufgabe 1.1. Finde eine Funktion F (x), die F (x) = f(x) erfüllt. a) f(x) = 5 x 2 2 x + 8 e) f(x) = 1 + x x 2 b) f(x) = 1 x4 10 f) f(x) = e x + 2
Mathematik-Vorkurs. Übungsaufgaben. im Sommersemester 2012
Mathematik-Vorkurs Übungsaufgaben im Sommersemester 2012 Goethe Universität-Frankfurt am Main Prof. Dr. Heinz D. Mathes Professur für Produktionswirtschaft 1 Aufgaben zu Thema 1 Aufgabe 1.1: Lesen Sie
Differentialrechnung
KAPITEL 4 Differentialrechnung. Eigenschaften der Ableitung und Differentationsregeln.. Definition der Ableitung. Definition 4.. Ableitung. Die Funktion f sei auf dem Intervall I R deniert und x 0 I. )
, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3
Prof. Dr. Eck Höhere Mathematik 3 9.3.9 Aufgabe ( Punkte) Gegeben ist der Körper K mit der Parametrisierung x r cos ϕ cos ϑ K : x = Φ(r,ϕ,ϑ) = r sin ϕ cos ϑ, r [, ], ϕ [,π/], ϑ [,π/6]. x 3 r sin ϑ a) Berechnen
Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy
Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Dr. Raimund Horn a Dipl. Chem. Barbara Bliss b Dipl. Phys. Lars Lasogga c a Fritz Haber Institut der Max Planck Gesellschaft
Aufgaben für Analysis in der Oberstufe. Robert Rothhardt
Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................
Zusammenfassung Mathematik 2012 Claudia Fabricius
Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-
13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss
Fachbereich Mathematik Prof. Dr. H.-D. Alber Dr. N. Kraynyukova Dipl.-Ing. A. Böttcher WS / 3. Januar 3. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Gruppenübung Aufgabe
Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen
Abiturprüfung Mathematik 202 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen [email protected] www.elearning-freiburg.de Pflichtteil 202 2 Aufgabe : Bilden Sie die erste Ableitung
Walter Strampp AUFGABEN ZUR WIEDERHOLUNG. Mathematik III
Walter Strampp AUFGABEN ZUR WIEDERHOLUNG Mathematik III Differenzialgleichungen erster Ordnung Aufgabe.: Richtungsfeld und Isoklinen skizzieren: Wie lauten die Isoklinen folgender Differenzialgleichungen:
Abitur 2013 Mathematik Infinitesimalrechnung II
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 213 Mathematik Infinitesimalrechnung II Teilaufgabe Teil 1 1 (5 BE) Geben Sie für die Funktion f mit f(x) = ln(213 x) den maximalen Definitionsbereich
Technische Universität München Zentrum Mathematik. Übungsblatt 10
Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt Hausaufgaben Aufgabe. Sei f : R 2 R gegeben durch x 2 y für (x, y)
Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)
Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben
Aufgaben zur Analysis I aus dem Wiederholungskurs
Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden
Bachelor-Prüfung. Prüfung: Klausur zur Höheren Mathematik II Prof. Dr. E. Triesch Termin: Fachrichtung:... Matr.-Nr.:... Name:...
RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lehrstuhl II für Mathematik Bachelor-Prüfung Höhere Mathematik II Prüfung: Klausur zur Höheren Mathematik II Prüfer: Prof. Dr. E. Triesch Termin: 24.02.2009
April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil
April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten
5.6 Potential eines Gradientenfelds.
die Zirkulation des Feldes v längs aufintegriert. 5.6 Potential eines Gradientenfelds. Die Ableitung einer skalaren Funktion ist der Gradient, ein Vektor bzw. vektorwertige Funktion (Vektorfeld). Wir untersuchen
e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1
Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x
Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass
Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel Zuerst wollen wir die Gamma-Funktion definieren, die eine Verallgemeinerung von n! ist. Dazu benötigen wir einige Resultate. Lemma.
HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.
HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden
Potentialfelder und ihre Bedeutung für Kurvenintegrale
Potentialfelder und ihre Bedeutung für Kurvenintegrale Gegeben sei ein Vektorfeld v, entweder im Zweidimensionalen, also von der Gestalt ( ) v1 (x,y), v 2 (x,y) oder im Dreidimensionalen, also von der
Lineare DGL. Bei linearen Problemen liegt eine typische Lösungsstruktur vor. Betrachten wir hierzu die Gleichung 2x+y = 3
Lineare DGL Bei linearen Problemen liegt eine typische Lösungsstruktur vor. Betrachten wir hierzu die Gleichung 2x+y = 3 Die zugehörige homogene Gleichung ist dann 2x+y = 0 Alle Lösungen (allgemeine Lösung)
Gemischte Aufgaben zur Differentialund Integralrechnung
Gemischte Aufgaben zur Differentialund Integralrechnung W. Kippels 0. Mai 04 Inhaltsverzeichnis Aufgaben. Aufgabe.................................... Aufgabe.................................... Aufgabe...................................
Kleine Formelsammlung zu Mathematik für Ingenieure IIA
Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................
Prüfungsvorbereitungskurs Höhere Mathematik 3
Prüfungsvorbereitungskurs Höhere Mathematik 3 Gewöhnliche Differentialgleichungen Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Gew. DGl 1-1 Zusammenfassung y (x) = F (x, y) Allgemeine
Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016
Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der
Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II. am , Zeit: 120 Minuten
Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II am 5.8.25, Zeit: 2 Minuten Aufgabe (3 Punkte Eine Bakterienkultur hat eine stetige Wachstumsrate von % pro Stunde. Wie
VERTIEFUNGSKURS MATHEMATIK. Es gibt drei ganz einfache Techniken zum Integrieren von etwas komplizierteren
VERTIEFUNGSKURS MATHEMATIK ÜBUNGEN Es gibt drei ganz einfache Techniken zum Integrieren von etwas komplizierteren Funktionen: () Mit der Partialbruchzerlegung lässt sich jede gebrochen-rationale Funktion
Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt
Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 7.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung
Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt
KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 4 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum. Übungsblatt Aufgabe 37
Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1
Abiturprüfung Mathematik 007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (8 Punkte) Das Schaubild einer Polynomfunktion. Grades geht durch den Punkt S(0/) und hat den 3 Wendepunkt
