Potentialfelder und ihre Bedeutung für Kurvenintegrale

Größe: px
Ab Seite anzeigen:

Download "Potentialfelder und ihre Bedeutung für Kurvenintegrale"

Transkript

1 Potentialfelder und ihre Bedeutung für Kurvenintegrale Gegeben sei ein Vektorfeld v, entweder im Zweidimensionalen, also von der Gestalt ( ) v1 (x,y), v 2 (x,y) oder im Dreidimensionalen, also von der Gestalt v 1 (x,y,z) v(x,y,z) = v 2 (x,y,z). v 3 (x,y,z) Das Vektorfeld heißt Potentialfeld, wenn eine reellwertige Funktion Φ existiert, deren Gradient gerade v ist, für die also gilt Φ = v. Eine solche Funktion Φ heißt dann zugehörige Potentialfunktion. Das ist zumindest die Definition eines Potentialfeldes. Um zu überprüfen, ob ein vorgegebenes Vektorfeld ein Potentialfeld ist, bietet es sich an zu testen, ob die sogenannte Integrabilitätsbedingung erfüllt ist. Wie überprüft man, ob ein Vektorfeld Potentialfeld ist? Was zu tun ist, um die Integrabilitätsbedingung zu überprüfen, erklären wir einzeln für den zwei- bzw. dreidimensionalen Fall. Für ein zweidimensionales Vektorfeld v(x, y) ist zu überprüfen, ob die Ableitung der ersten Komponente nach y übereinstimmt mit der Ableitung der zweiten Komponente nach x, ob also gilt v 1 y = v 2 x. Für ein dreidimensionales Vektorfeld v(x, y, z) ist zu überprüfen, ob seine Rotation gleich dem Nullvektor ist, ob also gilt 0 rotv = 0. 0 Ist die Integrabilitätsbedingung erfüllt, dann handelt es sich bei v um ein Potentialfeld, andernfalls nicht. Beispiele: (a) Es ist zu überprüfen, ob das zweidimensionale Vektorfeld ( ) y 2 e xy +3 (1+xy)e xy ein Potentialfeld ist. Wir prüfen, ob die Integrabilitätsbedingung erfüllt ist: v 1 y = 2ye xy +y 2 e xy x = (2y +xy 2 )e xy, v 2 x = yexy +y(1+xy)e xy = (2y +xy 2 )e xy. Die partiellen Ableitungen v 1 und v 2 stimmen überein, das heißt die Integrabilitätsbedingung ist erfüllt. Somit ist v ein y x Potentialfeld. 1

2 (b) Gegeben ist das dreidimensionale Vektorfeld 2y 2 3z 3 v(x,y,z) = 4xy 5. 9xz 2 +z Wir berechnen die Rotation dieses Vektorfeldes: ( v3 rotv = y v 2 z, v 1 z v 3 x, v 2 x v 1 y = ( 0 0, 9z 2 ( 9z 2 ), 4y 4y ) = (0,0,0). Die Rotation ist überall gleich dem Nullvektor. Das heißt, die Integrabilitätsbedingung ist erfüllt. Somit ist v ein Potentialfeld. (c) Es ist zu untersuchen, ob ( y 2 e xy +3y (1+xy)e xy ein Potentialfeld ist. Dazu überprüfen wir, ob die Integrabilitätsbedingung erfüllt ist: ) ) v 1 y = 2ye xy +y 2 e xy x+3 = (2y +xy 2 )e xy +3, v 2 x = yexy +y(1+xy)e xy = (2y +xy 2 )e xy. Die partiellen Ableitungen v 2 und v 1 stimmen nicht überein, das heißt, die Integrabilitätsbedingung ist nicht erfüllt. Somit handelt es sich nicht um ein x y Potentialfeld. Wie wird eine zugehörige Potentialfunktion ermittelt? Angenommen, wir haben festgestellt, dass es sich bei v um ein Potentialfeld handelt. Dann lautet die nächste Frage, wie eine zugehörige Potentialfunktion Φ ermittelt werden kann. Auch hier beschreiben wir das Vorgehen einzeln für den zwei- bzw. dreidimensionalen Fall, obwohl das Prinzip dasselbe ist. Angenommen, v = v(x, y) ist ein zweidimensionales Potentialfeld. Für die Potentialfunktion Φ muss dann die Bedingung Φ = v erfüllt sein. Mit anderen Worten muss die Ableitung von Φ nach x gleich v 1 (x,y) sein, die Ableitung von Φ nach y muss mit v 2 (x,y) übereinstimmen. Wir kümmern uns als erstes um die erste Bedingung. Da die Ableitung von Φ nach x gleich v 1 (x,y) sein muss, erhalten wir Φ selbst durch Integrieren von v 1 (x,y) nach x. Dabei wird y als Konstante angesehen. Durch das Integrieren kommt eine Integrationskonstante rein, die noch von y, aber nicht mehr von x abhängen darf: x Φ = v 1(x,y) Φ = v 1 (x,y) dx = V x 1 (x,y)+c(y). (1) Mit V x 1 (x,y) ist dabei eine (beliebige aber fest gewählte) Stammfunktion von v 1 (x,y) bzgl. x gemeint. Φ ist noch nicht vollständig bestimmt, denn C(y) kennen wir noch 2

3 nicht. Nun muss aber andererseits auch gelten, dass die Ableitung von Φ nach y gleich v 2 (x,y) ist. Verwenden wir die in (1) erhaltene Darstellung von Φ, muss also gelten: y Φ = y V x 1 (x,y)+c (y)! = v 2 (x,y). Stellen wir dies nach C (y) um und integrieren anschließend nach y, erhalten wir C(y). Achtung: Die Integrationskonstante, die bei dieser Integration reinkommt, hängt nicht mehr von x ab, da C(y) ja nicht von x abhängen darf. Den erhaltenen Ausdruck für C(y) setzen wir dann in (1) ein und bekommen die gesuchte Potentialfunktion Φ. Ist v ein dreidimensionales Potentialfeld, ist ebenfalls eine Funktion Φ gesucht, für die Φ = v gilt. Mit anderen Worten muss die Ableitung von Φ nach x gleich v 1 (x,y,z) sein, die Ableitung vonφnachy muss mitv 2 (x,y,z) übereinstimmen und die Ableitung von Φ nach z muss gleich v 3 (x,y,z) sein. Aus der Bedingung Φ = v x 1(x,y,z) folgt, dass wir Φ selbst erhalten, indem wir v 1 (x,y,z) nach x integrieren. Die Integrationskonstante darf dieses Mal aber noch von zwei Variablen abhängen, nämlich von y und z: x Φ = v 1(x,y,z) Φ = v 1 (x,y,z) dx = V x 1 (x,y,z)+c(y,z). (2) MitV x 1 (x, y, z) bezeichnen wir wieder eine (beliebige aber fest gewählte) Stammfunktion von v 1 (x,y,z) bzgl. der Variablen x. Die zweite Bedingung an Φ ist es, dass die Ableitung nach y gleich v 2 (x,y,z) sein soll. Also leiten wir den in (2) erhaltenen Ausdruck für Φ nach y ab und setzen die Ableitung gleich v 2 (x,y,z): y Φ = y V x 1 (x,y,z)+ y C(y,z)! = v 2 (x,y,z). Diese Gleichung stellen wir nach C(y,z) um und integrieren anschließend nach y, y wodurch sich C(y,z) ergibt. Die Integrationskonstante, die bei dieser Integration reinkommt und die wir mit D(z) bezeichnen, darf noch von z, aber nicht mehr von x oder y abhängen. Den für C(y, z) erhaltenen Ausdruck setzen wir in (2) ein. Anschließend nutzen wir die dritte Bedingung, nämlich dass die Ableitung von Φ nach z gleich v 3 (x,y,z) sein soll, um den noch immer unbekannten Summanden D(z) zu berechnen. Wir betrachten zwei Beispiele zur Berechnung der Potentialfunktion, die das Vorgehen verdeutlichen werden. Beispiele: (a) Für das Vektorfeld ( y 2 e xy +3 (1+xy)e xy hatten wir bereits festgestellt, dass es sich um ein Potentialfeld handelt (vgl. Beispiel (a) von Seite 1). Nun soll eine zugehörige Potentialfunktion ermittelt werden. Dazu arbeiten wir zunächst die erste Bedingung Φ = v x 1(x,y) ab, das heißt, wir integrieren die erste Komponente von v nach x, um die Vorschrift für Φ zu erhalten. Die Integrationskonstante darf noch von y, aber nicht mehr von x abhängen. Es ergibt sich: (y Φ = 2 e xy +3 ) dx = ye xy +3x+C(y). (3) ) 3

4 Diesen Ausdruck leiten wir nun nach y ab und setzen die Ableitung gleich v 2 (x,y), also der zweiten Komponente von v. y Φ = y (yexy +3x+C(y)) = e xy +xye xy +C (y)! = (1+xy)e xy. Diese Gleichung wird nach C (y) umgestellt. Anschließend integrieren wir nach y, um C(y) zu erhalten. C (y) = 0 C(y) = 0 dy = K, K R. Die Integrationskonstante K darf weder von x noch von y abhängen. Setzen wir den erhaltenen Ausdruck für C(y) in (3) ein, so ergibt sich die allgemeine Potentialfunktion Φ(x,y) = ye xy +3x+K, K R. Für jede Zahl K R erhält man eine spezielle Potentialfunktion. (b) Wir betrachten Beispiel (b) von Seite 2. Dort hatten wir nachgewiesen, dass das dreidimensionale Vektorfeld 2y 2 3z 3 v(x,y,z) = 4xy 5 9xz 2 +z ein Potentialfeld ist. Es soll eine zugehörige Potentialfunktion ermittelt werden. Dazu arbeiten wir zunächst die erste Bedingung Φ = v x 1(x,y,z) ab: x Φ = 2y2 3z 3 Φ = (2y 2 3z 3 ) dx = 2xy 2 3xz 3 +C(y,z). (4) Dieser Ausdruck ist nun nach y abzuleiten und gleich v 2 (x,y,z), also der zweiten Komponente von v, zu setzen. y Φ = y (2xy2 3xz 3 +C(y,z)) = 4xy + y C(y,z)! = 4xy 5 Umstellen nach C(y,z) und Integrieren nach y liefert: y C(y,z) = 5 C(y,z) = y ( 5) dy = 5y +D(z). Die Integrationskonstante darf noch von z, aber nicht mehr von x oder y abhängen. Setzen wir den erhaltenen Ausdruck für C(y,z) in (4) ein, ergibt sich Φ = 2xy 2 3xz 3 5y +D(z). (5) Das leiten wir nun nach z ab und setzen die Ableitung gleich v 3 (x,y,z), also der dritten Komponente von v. z Φ = z (2xy2 3xz 3 5+D(z)) = 9xz 2 +D (z)! = 9xz 2 +z Durch Umstellen nach D (z) und Integrieren nach z ergibt sich D (z) = z D(z) = z dz = 1 2 z2 +K, K R. 4

5 Einsetzen in (5) liefert die allgemeine Potentialfunktion Φ(x,y,z) = 2xy 2 3xz 3 5y z2 +K, K R. Für jede Zahl K R erhält man eine spezielle Potentialfunktion. Welche Bedeutung haben Potentialfelder für Kurvenintegrale? Ist ein Vektorfeld v ein Potentialfeld, dann ist ein Kurvenintegral 2. v ds stets wegunabhängig. Das heißt, der Wert des Kurvenintegrals hängt nur vom Anfangspunkt Art C und vom Endpunkt der Kurve C ab, aber nicht vom genauen Verlauf der Kurve. Sind also ein Anfangspunkt P 1 und ein Endpunkt P 2 gegeben, so ist es vollkommen egal, ob man die Verbindungsstrecke der beiden Punkte oder einen Kreisbogen oder einen Streckenzug oder irgendeine andere Verbindungskurve der beiden Punkte betrachtet, der Wert des Kurvenintegrals über dem Vektorfeld v wird stets der gleiche sein. Ist v ein Potentialfeld, so gibt es außerdem eine (häufig) elegantere Möglichkeit, den Wert des Kurvenintegrals zu ermitteln, als die sonst durchzuführenden vier Schritte abzuarbeiten, nämlich: S1: Bestimme eine zugehörige Potentialfunktion Φ des Potentialfeldes. S2: Ist P 1 (x 1,y 1,z 1 ) der Anfangspunkt und P 2 (x 2,y 2,z 2 ) der Endpunkt der Kurve C, dann gilt für den Wert des Kurvenintegrals 2. Art: C v ds = Φ(x 2,y 2,z 2 ) Φ(x 1,y 1,z 1 ). Kurz gesagt erhält man den Wert des Kurvenintegrals, indem man Φ(Endpunkt) Φ(Anfangspunkt) rechnet. Für Kurvenintegrale im Zweidimensionalen gilt die Formel natürlich auch, nur entfällt da die z-komponente. Beispiele: (a) Wir betrachten erneut das Vektorfeld aus Beispiel (a) auf der Seite 1, also ( ) y 2 e xy +3 (1+xy)e xy, sowie Kurven C mit dem Anfangspunkt (0,3) und dem Endpunkt (2,0). Gesucht ist der Wert des Kurvenintegrals entlang solcher Kurven. Wir hatten bereits die allgemeine Potentialfunktion für dieses Potentialfeld ermittelt: Φ(x,y) = ye xy +3x+K, K R. Zur Berechnung des Kurvenintegrals nutzen wir die oben (im Schritt S2) angegebene Formel: v ds = Φ(2,0) Φ(0,3) = (0 e K) (3 e K) = 3. C Diesen Wert besitzt das Kurvenintegral für jede Kurve mit dem Anfangspunkt (0, 3) und dem Endpunkt (2,0), unabhängig davon, was dazwischen passiert. Die Konstante K in der Potentialfunktion hat keinen Einfluss auf den Wert, wir brauchen also zur Berechnung des Kurvenintegrals nicht die allgemeine Potentialfunktion, sondern es genügt eine spezielle. 5

6 (b) Wir betrachten erneut das Vektorfeld v(x,y,z) = 2y 2 3z 3 4xy 5 9xz 2 +z aus Beispiel (b) auf Seite 2. Gesucht ist der Wert des Kurvenintegrals entlang einer beliebigen VerbindungskurveC vom PunktP 1 (1,1,1) zum PunktP 2 (2,2,2). Wir hatten bereits die allgemeine Potentialfunktion für dieses Potentialfeld ermittelt: Φ(x,y,z) = 2xy 2 3xz 3 5y z2 +K, K R. Für den Wert des Kurvenintegrals ergibt sich v ds = Φ(2,2,2) Φ(1,1,1) = 40 ( 5.5) = C Bemerkung: Aus unseren bisherigen Überlegungen folgt: Ist v ein Potentialfeld und C eine geschlossene Kurve, also eine Kurve, bei der Anfangs- und Endpunkt übereinstimmen, dann gilt für das Kurvenintegral 2. Art von v entlang C: v ds = 0. C 6

5.6 Potential eines Gradientenfelds.

5.6 Potential eines Gradientenfelds. die Zirkulation des Feldes v längs aufintegriert. 5.6 Potential eines Gradientenfelds. Die Ableitung einer skalaren Funktion ist der Gradient, ein Vektor bzw. vektorwertige Funktion (Vektorfeld). Wir untersuchen

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die

Mehr

12. Übungsblatt zur Analysis II

12. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno Benno van den Berg WS 9/1 1.1.1 1. Übungsblatt zur Analysis II Gruppenübung Aufgabe G1 Kreuzen Sie die richtigen Aussagen an. Sei V C 1 (R n,

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /5 G. Bärwol, A. Gündel-vom-Hofe..5 Februar Klausur Analysis II für Ingenieurswissenschaften Lösungsskizze. Aufgabe 6Punkte Bestimmen

Mehr

Übungen zu Kurvenintegralen Lösungen zu Übung 12

Übungen zu Kurvenintegralen Lösungen zu Übung 12 Übungen zu Kurvenintegralen Lösungen zu Übung. Sei der obere Halbreis mit dem Radius r um (, ), und sei f(x, y) : y. Berechnen Sie f(x, y) ds. Das ist jetzt eine leine Aufgabe zum Aufwärmen. Guter Tric:

Mehr

= r ). Beispiele. 1) Kreis. Skizze mit Tangentialvektoren ( x. 2) Zykloide. Skizze für a = r = 1:

= r ). Beispiele. 1) Kreis. Skizze mit Tangentialvektoren ( x. 2) Zykloide. Skizze für a = r = 1: VEKTORANALYSIS Inhalt: 1) Parametrisierte Kurven 2) Vektorfelder 3) Das Linienintegral 4) Potentialfelder 1 Parametrisierte Kurven Definitionen xt () Kurve: x = x() t = y() t, t zt () xt () dxt () Tangentialvektor:

Mehr

f(x, y) = x 2 4x + y 2 + 2y

f(x, y) = x 2 4x + y 2 + 2y 7. Februar Lösungshinweise Theorieteil Aufgabe : Bestimmen Sie die Niveaumengen (Höhenlinien) der Funktion f(x, y) = x 4x + y + y und skizzieren Sie das zugehörige Höhenlinienbild im kartesischen Koordinatensystem

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 8. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 8. Übungsblatt Institut für Analsis SS7 P r. Peer Christian Kunstmann 6.6.7 ipl.-math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung Phsik

Mehr

Partielle Integration

Partielle Integration Partielle Integration 1 Motivation Eine der wichtigsten Methoden der Integralrechnung ist die partielle Integration. Mit ihr lassen sich Funktionen integrieren, die ein Produkt zweier Funktionen sind.

Mehr

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a).

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a). KAPITEL 5. MEHRDIMENSIONALE INTERATION. Berechnung Integralsätze in R Hauptsatz für Kurvenintegrale wegunabhängig radientenfeld Integrabilitätsbedingung Hauptsatz für Kurvenintegrale a b Ist eine Kurve

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H 34.

Mehr

Grenzwerte und Stetigkeit

Grenzwerte und Stetigkeit Grenzwerte und Stetigkeit Gegeben sei eine Funktion z = f(,) von zwei Variablen. Außerdem sei ( 0, 0 ) eine vorgegebene Stelle der -Ebene. Wir interessieren uns für das Verhalten der Funktion bzw. der

Mehr

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann

Mehr

VEKTOREN. Allgemeines. Vektoren in der Ebene (2D)

VEKTOREN. Allgemeines. Vektoren in der Ebene (2D) VEKTOREN Allgemeines Man unterscheidet im Schulgebrauch zwischen zweidimensionalen und dreidimensionalen Vektoren (es kann aber auch Vektoren geben, die mehr als 3 Komponenten haben). Während zweidimensionale

Mehr

Komplexe Darstellung zweidimensionaler Potentialströmungen: Mittels Potentialfunktion und Stromfunktion kann man ein komplexes Potential

Komplexe Darstellung zweidimensionaler Potentialströmungen: Mittels Potentialfunktion und Stromfunktion kann man ein komplexes Potential Komplexe Darstellung zweidimensionaler Potentialströmungen: Mittels Potentialfunktion und tromfunktion kann man ein komplexes Potential definieren, wobei φ ( ) ( ) i ( ) F z =φ x,y +ψ x,y (2.8) z = x+

Mehr

6.3 Exakte Differentialgleichungen

6.3 Exakte Differentialgleichungen 6.3. EXAKTE DIFFERENTIALGLEICHUNGEN 23 6.3 Exakte Differentialgleichungen Andere Bezeichnungen: Pfaffsche Dgl., Dgl. für Kurvenscharen, Nullinien Pfaffscher Formen. 1. Definitionen Pfaffsche Dgl, Dgl.

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

Kurven. Darstellungsweisen. Steigung von Kurven. Implizite Funktionen. Bogenlänge. Felder. Kurvenintegrale. Wegunabhängigkeit

Kurven. Darstellungsweisen. Steigung von Kurven. Implizite Funktionen. Bogenlänge. Felder. Kurvenintegrale. Wegunabhängigkeit Ergänzung Kurven Darstellungsweisen Steigung von Kurven Implizite Funktionen Bogenlänge Felder Kurvenintegrale Wegunabhängigkeit Kurven Darstellungsweisen Funktionen und Kurven Wir haben schon zahlreiche

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen 8.2 Partielle Differentiation Prof. Dr. Erich Walter Farkas Mathematik I+II, 8.2 Part. Diff.

Mehr

Lineare Differentialgleichungen 1. Ordnung

Lineare Differentialgleichungen 1. Ordnung Lineare Differentialgleichungen 1. Ordnung Eine lineare Differentialgleichung 1. Ordnung hat folgende Gestalt: +f() = r(). Dabei sind f() und r() gewisse, nur von abhängige Funktionen. Wichtig: sowohl

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze Ferienkurs Analysis 3 für Physiker Übung: Integralsätze Autor: enjamin Rüth Stand: 7. März 4 Aufgabe (Torus) Zu festem R > werden mittels ϱ T : [, R] [, π] [, π] R 3, ϕ ϑ Toruskoordinaten eingeführt. estimmen

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

10. Übungsblatt zur Mathematik II für Maschinenbau

10. Übungsblatt zur Mathematik II für Maschinenbau Fahbereih Mathematik Prof. Dr. M. Joswig Dr. Davorin Lešnik Dipl.-Math. Katja Kulas 1. Übungsblatt zur Mathematik II für Mashinenbau Gruppenübung SS 211 2.6.-22.6.11 Aufgabe G1 (Wegintegral Gegeben seien

Mehr

19.2 Kurvenintegrale. c a. wobei die euklidische Norm bezeichnet. Weiterhin heißt

19.2 Kurvenintegrale. c a. wobei die euklidische Norm bezeichnet. Weiterhin heißt Kapitel 19: Integralrehnung mehrerer Variabler 19.2 Kurvenintegrale Für eine stükweise C 1 -Kurve : [a, b] D, D R n, und eine stetige skalare Funktion f : D R hatten wir das Kurvenintegral 1. Art definiert

Mehr

Lösung zu Kapitel 5 und 6

Lösung zu Kapitel 5 und 6 Lösung zu Kapitel 5 und 6 (1) Sei f eine total differenzierbare Funktion. Welche Aussagen sind richtig? f ist partiell differenzierbar f kann stetig partiell differenzierbar sein f ist dann immer stetig

Mehr

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017 TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik Prof. Dr. K. Eppler Institut für Numerische Mathematik Dr. M. Herrich SS 207 Aufgabe Gegeben sei die Funktion f : R 2 R mit Übungen

Mehr

Theoretische Elektrodynamik

Theoretische Elektrodynamik Theoretische Elektrodynamik Literatur: 1. Joos: Lehrbuch der Theoretische Physik 2. Jackson: Klassische Elektrodynamik 3. Nolting: Grundkurs Theoretische Physik zusätzlich: Sommerfeld: Landau/Lifschitz:

Mehr

Abbildung 14: Ein Vektorfeld im R 2

Abbildung 14: Ein Vektorfeld im R 2 Vektoranalysis 54 Vektoranalysis Wir wollen nun Vektorfelder betrachten. Es sei U R n. Ein Vektorfeld im R n ist eine Abbildung v : U R n, die jedem Punkt x ihres sbereichs U einen Vektor v(x) zuordnet.

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller SS 2014

Institut für Analysis und Scientific Computing E. Weinmüller SS 2014 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller SS 14 P R A K T I S C H E M A T H E M A T I K I I F Ü R T P H, 13.58) Test 1 Gruppe C Mo, 8.4.14) mit Lösung ) Unterlagen: eigenes VO-Skriptum.

Mehr

Institut für Analysis und Scientific Computing Dr. E. Weinmüller SS 2014

Institut für Analysis und Scientific Computing Dr. E. Weinmüller SS 2014 Institut für Analysis und Scientific Computing TU Wien Dr. E. Weinmüller SS 14 P R A K T I S C H E M A T H E M A T I K I I F Ü R T P H, (13.58) Test 1 Gruppe A (Mo, 8.4.14) (mit Lösung ) Unterlagen: eigenes

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

Serie 7: Kurvenintegrale

Serie 7: Kurvenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 7: Kurvenintegrale Bemerkungen: Die Aufgaben der Serie 7 bilden den Fokus der Übungsgruppen vom 4./6. April.. Ordnen Sie den Kurven -8 die

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Betrachtet wird eine (n,n)-matrix A. Eine Zahl λ heißt Eigenwert von A, wenn ein Vektor v existiert, der nicht der Nullvektor ist und für den gilt: A v = λ v.

Mehr

1 Kurven und Kurvenintegrale

1 Kurven und Kurvenintegrale Fabian Kohler Karolina Stoiber Ferienkurs Analysis für Physiker SS 14 A 1 Kurven und Kurvenintegrale 1.1 Einschub: Koordinatentransformation Gegeben sei eine Funktion f : R n R. Dann ist die totale Ableitung

Mehr

Prüfungsklausur Höhere Mathematik II (20. Juli 2005) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM

Prüfungsklausur Höhere Mathematik II (20. Juli 2005) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM Prüfungsklausur Höhere Mathematik II (2. Juli 25) für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM - Lösungen zum Theorieteil - Aufgabe : Sei f(x, y) eine in einem Gebiet zweimal stetig differenzierbare

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Krlsruher Institut für Technologie KIT SS 3 Institut für Anlysis 943 Prof Dr Tobis Lmm Dr Ptrick Breuning Höhere Mthemtik II für die Fchrichtung Physik 3 Übungsbltt Aufgbe Sei K ein Kreis im R vom Rdius

Mehr

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional Christina Schindler Karolina Stoiber Ferienkurs Analysis für Physiker SS 13 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.

Mehr

Musterlösung Höhere Mathematik I/II Di. Aufgabe 1 (11 Punkte) Geben Sie die Matrixbeschreibung der Quadrik

Musterlösung Höhere Mathematik I/II Di. Aufgabe 1 (11 Punkte) Geben Sie die Matrixbeschreibung der Quadrik Aufgabe Punkte Geben Sie die Matrixbeschreibung der Quadrik {x R 3x 3x 8x x +x +4x +7 = 0} an Berechnen Sie die euklidische Normalform der Quadrik und ermitteln Sie die zugehörige Koordinatentransformation

Mehr

Optimierung unter Nebenbedingungen

Optimierung unter Nebenbedingungen Optimierung unter Nebenbedingungen Kapitel 7: Optimierung unter Nebenbedingungen Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 1. Juli 2009 1 / 18 7.1 Bemerkung

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

Linien- und Oberflächenintegrale

Linien- und Oberflächenintegrale Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg

Mehr

Exakte Differentialgleichungen

Exakte Differentialgleichungen Exakte Differentialgleichungen M. Vock Universität Heidelberg Seminar Mathematische Modellierung am 11.11.2008 Gliederung Differentialgleichungen eine erste Begegnung Definition Gewöhnliche DGL Die exakte

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 10

Technische Universität München Zentrum Mathematik. Übungsblatt 10 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt Hausaufgaben Aufgabe. Sei f : R 2 R gegeben durch x 2 y für (x, y)

Mehr

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel 103 Differenzialrechnung 553 1035 Kettenregeln Die Kettenregel bei Funktionen einer Variablen erlaubt die Berechnung der Ableitung von verketteten Funktionen Je nach Verkettung gibt es bei Funktionen von

Mehr

Repetitorium Analysis II für Physiker

Repetitorium Analysis II für Physiker Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

Kuvenintegrale 1. u. 2. Art

Kuvenintegrale 1. u. 2. Art Kuvenintegrale. u. 2. Art Die Lage eines Drahtes sei durch eine C -Kurve : [a, b] R 3 beschrieben. Seine ortsabhängige Massendichte ist durch die stetige Funktion ϱ(,, z) = Masse Längeneinheit gegeben.

Mehr

Divergenz und Rotation von Vektorfeldern

Divergenz und Rotation von Vektorfeldern Divergenz und Rotation von Vektorfeldern Mit Hilfe des Nabla-Operators können nun zwei weitere wichtige elementare Operationen definiert werden, welche formal der Bildung des Skalarproduktes bzw. des äußeren

Mehr

(geometrische) Anschauung

(geometrische) Anschauung (geometrische) Anschauung Marcus Page Juni 28 In dieser Lerneinheit widmen wir uns dem schon oft angesprochenen Zusammenhang zwischen Matrizen und linearen Abbildungen. Außerdem untersuchen wir Funktionen,

Mehr

3 Kraft als Vektorfeld

3 Kraft als Vektorfeld 3 Kraft als Vektorfeld 3.1 Der Kraftvektor In2Doder3DwirddieKraftdurcheinenVektorFbeschrieben, derihrerichtung anzeigt. Wie der Ortsvektor r, so läßt sich auch der Kraftvektor F in Komponenten zerlegen,

Mehr

Kurven in der Ebene Darstellungsformen, Bogenlänge, Tangente

Kurven in der Ebene Darstellungsformen, Bogenlänge, Tangente Kurven in der Ebene Darstellungsformen, Bogenlänge, Tangente Wir betrachten Kurven in der -Ebene. Als erstes wollen wir uns damit beschäftigen, wie sich solche Kurven mathematisch beschreiben lassen. Dafür

Mehr

Extrema von Funktionen mit zwei Variablen

Extrema von Funktionen mit zwei Variablen Extrema von Funktionen mit zwei Variablen Es gilt der Satz: Ist an einer Stelle x,y ) f x x,y ) = und f y x,y ) = und besteht außerdem die Ungleichung f xx x,y )f yy x,y ) f xy x,y ) >, so liegt an dieser

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Übungen zu gewöhnlichen Differentialgleichungen Lösungen zu Übung 23

Übungen zu gewöhnlichen Differentialgleichungen Lösungen zu Übung 23 Übungen zu gewöhnlichen Differentialgleichungen Lösungen zu Übung 3 3.1 Gegeben sei die Anfangswertaufgabe (AWA) Zeigen Sie, dass die Funktion y (x) = x y(x) mit y(0) = 1 die einzige Lösung dieser AWA

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

Wie man dieses (Weg-)Integral berechnet, kann man sich mit der folgenden Merkregel im Kopf halten. Man schreibt d~r = d~r

Wie man dieses (Weg-)Integral berechnet, kann man sich mit der folgenden Merkregel im Kopf halten. Man schreibt d~r = d~r Vektoranalysis 3 Die Arbeit g Zum Einstieg eine kleine Veranschaulichung. Wir betrachten ein Flugzeug, das irgendeinen beliebigen Weg zurücklegt. Ausserdem seien gewisse Windverhältnisse gegeben, so dass

Mehr

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,

Mehr

Analysis I & II Lösung zur Basisprüfung

Analysis I & II Lösung zur Basisprüfung FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die

Mehr

Linien- oder Kurvenintegrale: Aufgaben

Linien- oder Kurvenintegrale: Aufgaben Linien- oder Kurvenintegrale: Aufgaben 4-E Das ebene Linienintegral Im Fall eines ebenen Linienintegrals liegt der Integrationsweg C häufig in Form einer expliziten Funktionsgleichung y = f (x) vor. Das

Mehr

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

4.1 Stammfunktionen: das unbestimmte Integral

4.1 Stammfunktionen: das unbestimmte Integral Kapitel 4 Integration 4. Stammfunktionen: das unbestimmte Integral Die Integration ist die Umkehrung der Differentiation: zu einer gegebenen Funktion f(x) sucht man eine Funktion F (x), deren Ableitung

Mehr

2.8 KURVENINTEGRALE UND STAMMFUNKTIONEN

2.8 KURVENINTEGRALE UND STAMMFUNKTIONEN 2.8 KURVENINTEGRALE UND STAMMFUNKTIONEN Im folgenden seien X normierter Vektorraum und Y B-Raum über IK = IR oder IK = CI. Wir wollen in diesem Kapitel für stetige Abbildungen f : X D f B(X; Y ) und stückweise

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 4. Juni 203 *Aufgabe. Bestimmen Sie die allgemeinen Lösungen der Differentialgleichungen (a) y 2y + y2 = (b) y + ( 2 y)y = 0 Lösung: (a) Bei dieser Differentialgleichung

Mehr

Ebene Bereiche und Bereichsintegrale

Ebene Bereiche und Bereichsintegrale Ebene ereiche und ereichsintegrale Gegeben sei ein ebener ereich, das heißt ein beschränktes Teilgebiet desr, das durch eine oder mehrere Kurven begrenzt wird. Des Weiteren sei eine reellwertige Funktion

Mehr

Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester

Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester 2015 14.07.2015 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Der allgemeine Satz von Stokes...

Der allgemeine Satz von Stokes... Der allgemeine Satz von Stokes...... in der Sprache der Differentialformen. dω Differentialformen... sind - vereinfacht gesagt - orientierte Differentiale. k-form im R n a i1,...,i k (x) dx i1... dx ik,

Mehr

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( )

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( ) Abb. 5.0: Funktion und Tangentialebene im Punkt Aus der totalen Differenzierbarkeit folgt sowohl die partielle Differenzierbarkeit als auch die Stetigkeit von : Satz 5.2: Folgerungen der totalen Differenzierbarkeit

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 29/ Vorlesung 9, Freitag vormittag Linienintegrale und Potential Wir betrachten einen Massenpunkt, auf den die konstante

Mehr

10. Übungsblatt zur Mathematik II für MB

10. Übungsblatt zur Mathematik II für MB Fachbereich Mathematik Prof. Dr. U. Reif R. Hartmann, T. och SS 1 1.6.1 1. Übungsblatt zur Mathematik II für MB Aufgabe 3 Arbeitsintegrale Berechnen Sie jeweils das Integral F dx für die Funktion F (x,

Mehr

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 }

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 } A Analsis, Woche Implizite Funktionen A Implizite Funktionen in D A3 Wenn man den Kreis mit Radius um, beschreiben möchte, dann ist { x, ; x + = } eine Möglichkeit Oft ist es bequemer, so eine Figur oder

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Universität Ulm Abgabe: Donnerstag,

Universität Ulm Abgabe: Donnerstag, Universität Ulm Abgabe: Donnerstag,.5.03 Prof. Dr. W. Arendt Stephan Fackler Sommersemester 03 Punktzahl: 0 Lösungen Elemente der Differenzialgleichungen: Blatt 4. Gradientenfelder. Welche der folgenden

Mehr

Grundlagen der Vektorrechnung

Grundlagen der Vektorrechnung Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 11: e Prof. Dr. Erich Walter Farkas Mathematik I+II, 11. Linienintegrale 1 / 39 1 Ein einführendes Beispiel 2 3 Prof. Dr. Erich

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 Definition: Ein Skalarfeld ordnet jedem Punkt im dreidimensionalen Raum R 3 eine ahl () zu. Unter einem räumlichen Vektorfeld

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2.

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2. - 1 - Gewöhnliche Differentialgleichungen Teil I: Überblick Ein großer Teil der Grundgesetze der Phsik ist in Form von Gleichungen formuliert, in denen Ableitungen phsikalischer Größen vorkommen. Als Beispiel

Mehr

Probeklausur zu Mathematik 3 für Informatik

Probeklausur zu Mathematik 3 für Informatik Gunter Ochs Juli 0 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immel ohne Galantie auf Fehreleiheit Sei f ln a Berechnen Sie die und die Ableitung f und f Mit der Produktregel erhält

Mehr

Testvorbereitung: Integrierender Faktor

Testvorbereitung: Integrierender Faktor Testvorbereitung: Integrierender Faktor Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien,.02.2007 Voraussetzung: Kenntnis der exakten Differentialgleichungen! Theoretische Grundlagen Eine nicht exakte

Mehr

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 5/6 8..6 Höhere Mathematik II für die Fachrichtung Physik Bachelor-Modulprüfung Aufgabe

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017 TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1 Prof. Dr. K. Eppler Institut für Numerische Mathematik Dr. M. Herrich SS 2017 Aufgabe 1 Übungen zur Vorlesung Mathematik II 4. Übung,

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 2, Montag nachmittag Differentiation und Integration von Vektorfunktionen Der Ortsvektor: Man kann

Mehr

Fixpunkt-Iterationen

Fixpunkt-Iterationen Fixpunkt-Iterationen 2. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 27. Februar 2014 Gliederung Wiederholung: Gleichungstypen, Lösungsverfahren Grundprinzip

Mehr

Satz über implizite Funktionen und seine Anwendungen

Satz über implizite Funktionen und seine Anwendungen Satz über implizite Funktionen und seine Anwendungen Gegeben sei eine stetig differenzierbare Funktion f : R 2 R, die von zwei Variablen und abhängt. Wir betrachten im Folgenden die Gleichung f(,) = 0.

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

5. Implizit definierte und inverse Funktionen

5. Implizit definierte und inverse Funktionen 5. Implizit definierte und inverse Funktionen für Donnerstag, 17.9.9 von Carla Zensen Stelle ein paar Personen die Frage: Welches x löst 2+x=4 und du wirst folgende Antworten erhalten: Ingenieur zückt

Mehr